Math 132 - Week 3

Textbook sections: 7.4, 3.1, 3.2
Topics covered:

e Mobius transforms
e Exponential functions
e Trig and hyperbolic functions

e The complex logarithm



Mobius transforms

e A Mobius transform is any mapping of the form
az+0b
cz+d

where a, b, ¢, d are complex numbers such that ad —
bc # 0. Examples:
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e There are some other names for these transforma-
tions, such as fractional linear transformations or bi-
linear transformations, but we won’t use that termi-
nology in this course.

e This transform is defined everywhere except when
z = —d/c. When z = —d/c we say that w = oc.
Conversely, we say that w = a/c when z = o0,
e.g. the transform z+’ takes the value of 1/2 When
2z = 00. The point —d / c is called the singularity or
pole of the Mobius transform. For instance, j“ has

its pole at z = 1.



e These transforms are useful for converting bounded
regions into unbounded regions and vice versa; for
instance, you can turn a half-plane into a disk with
these transformations. We'll see some examples of
this later.

e If ¢ = 0, then Mobius transforms are just glide trans-
forms of the type discussed last week. If ¢ # 0, a
Mobius transform can be analyzed by rewriting it as
a vulgar fraction:

zZ4+1 21

zZ—1 zZ—1

zZ4+1 1 i—%
w = :——'—

2z +1 2 2z+4+1

az+b a_|_ —%l
w = _— —

cz+d ¢ cz+d

The advantage of writing a Mobius transform this
way is that it can be broken up into simpler com-

ponents such as translations, inversions, and so on.

For instance, the transform w = ;—J_F?L can now be bro-

ken up into a translation, followed by an inversion,
followed by a dilation and rotation, followed by a

translation:
1 21 214
—> — 1+

Z—1 <z —1 Z—1

2z — 1 = w.



Example

e For instance, suppose we want to find out what hap-
pens to the unit circle {z : |z| = 1} via the transform
w = j—fi To do this directly is somewhat difficult be-
cause the transform is so complicated. However, if
we break it up into components as on the previous
page, then it becomes much simpler to handle.

e We begin with z — ¢. Subtracting an ¢ lowers every-
thing by one unit. If z is on the unit circle centered
at the origin, then z — ¢ is on the circle of radius 1
centered at —i.
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e Now we do 1/(z — ). The circle of radius 1 centered
at —1 is a circle through the origin with furthest point
—2¢. So the inverse of this circle is a straight line
with closest approach to the origin at 1/(—2i) =
i/2. Thus 1/(z — 1) lives on the horizontal line going
through /2.



. U(z)
2

-

e Now we do 2i/(z — 4). Multiplying by 2¢ increases
the magnitude by a factor of 2, and rotates the phase
by 4+ /2. Thus, 2i/(z — i) lives on the vertical line
going through —1.
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e Finally, we do w = 1+2i/(z—1). Adding by 1 shifts
everything to the right, hence w lives on the vertical
line going through 0, i.e. the imaginary axis.

e To summarize, we have shown that the transform
z — 5 maps the unit circle {z : |2| = 1} to the
imaginary axis {w : Re(w) = 0}.

e The same procedure - breaking up a complicated
transform into simpler pieces - can be used to find
the transform of any circle or line under any Mobius

transform.



e Once one can do circles and lines, it is not hard to
work out more complicated objects like arcs, line seg-
ments, disks, etc. For instance, suppose we want to
know how the semi-circle

{z:|z]| = 1,Im(z) > 0}

transforms under the Mobius transformation w =
Z—J_r; This semi-circle is part of the unit circle {z :
|z| = 1}, so we know that the image of the semi-
circile will be some subset of the line {w : Re(w) =

0} that we've just computed.

e Now let’s look at the endpoints of the semi-circle,
namely +1 and -1. When z = +1, w = % = 1;

when z = —1, w = % = —1. S0 it seems that the
semi-circle is mapping to the line segment between ¢

and —1.

e However, that isn’t quite correct. Let’s test some
interior values of the semi-circle. The most obvious
value to test is z = ¢, but this is the pole of the
transform, and w = oo. This already tells us that
something odd is going on. Let’s look at another

value, say z = @ + @z A calculation shows that

w = (1+§)z’. Or, if z = —g—l—gi, then w =
—(1+%)i.



e What’s going on is that as z moves along the upper
semi-circle from 1 to -1, w starts off at ¢+ and moves
upwards. When z reaches ¢, w has moved all the way
upwards to 0o, and then comes back on the other
side. When z reaches —1, w has moved upwards
back to —i. (Think about how the graph of y = 1/z
behaves as x moves from —1 to 1 to get an idea of
what’s going on).

2|/(Z'|) 1+ 2|/(Z'|)

e One can also find the image of the upper semi-circle
by breaking up w = (2 + ¢)/(z — %) into pieces
as we did before. Note that the lower semi-circle
{z : Im(2) < 0}, being the complement of the upper
semi-circle, will move along the line segment ¢ to —i.



e Now let’s look at what happens to the disk {z : |z] <
Z+1t
the boundary of this disk maps to the imag?ngry axis,
the disk will map to either the left half or the right
half of the imaginary axis. To find out which half it
is, the easiest way is to take a single test point in the
disk (e.g. z = 0) and see where that goes. When
z =0 w= % = —1, which is to the left of the
imaginary axis. Thus the disk maps to the left half-
plane {w : Re(w) < 0}. Similarly, the complement
{2z : |z| > 1} of the disk will map to the right half-

plane {w : Re(w) > 0},

1} under the same transformation w = Since
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Some properties of Mobius transforms

e The translations, dilations, rotations, and inversion
are all special cases of Mobius transforms.

e Mobius transforms map circles and lines to circles
and lines. In other words, the image of a circle under
a Mobius transform is always either a circle or a line
(and never something like an ellipse, square, etc.). It
is sometimes convenient to think of lines as really big
circles with an infinite radius, and a center infinitely
far away.

e All Mobius transforms are invertible, and the inverse
of a Mobius transform is another Mobius transform.
For instance, to invert the transform

z+1
z—1

w =

we solve for z:
w(z—1)=2z+1
wz — 1w =z +1

Wz — 2 =1 + 1

1w 1
z = ,
w—1
Thus the inverse transformation is given by w +—

1w—+1
w—1"
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e When you compose two Mobius transforms you al-
ways get another Md&bius transforms. (Combined
with the previous property, this means that the set
of Mdbius transforms form a group). For instance, if
f(2) = 2 and g(z) = 2z, then

Z2—1

foul) = flalz)) = o
and
9o f(2) = g(f() = 22 = 212

are also Mobius transforms. Note that f o g is, in
general, not the same as g o f.

e Mobius transforms are complex differentiable at ev-
ery point except at their pole - this is just because
of the quotient rule. For instance, the transform
f(z) = £ is differentiable for all z # i, and its
derivative is given by

(z+14)(z—1i) = (2 +0)(z —1) —2

(z —1)? (=07

() =

e Mobius transforms preserve orientation: a clock whose
hands rotate clockwise will, after a transformation re-
main a clock whose hands rotate clockwise (although
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the clock may be seriously distorted by this). This
is unlike, say, a reflection, which reverses orientation
(so a reflected clock’s hands rotate anti-clockwise).

e They also preserve angle. If two curves intersect at an
angle 6, when one transforms them using a Mobius
transform their images also intersect at an angle of
6. So angles are not distorted, only distances are.
(Another way of stating the above two properties are
that Mobius transforms are conformal).

13



Constructing a Mobius transform with specific prop-
erties

e Sometimes one wants to construct a Mobius trans-
form that does a specific task, such as map one object
X to another object Y. The easiest way to do this is
by a trial-and-error process, with each trial making
X look more and more like Y.

e As an example, suppose we want a transform which
maps the upper half-plane {z : Im(z) > 0} to the
disk {w : |w| < 1}, and maps the point ¢ to the
point O:

14



e We first try the elementary Mobius transforms to
convert the left image to the right image. Transla-
tions, dilations, and rotations do not appear to make
the left image look anything like the right image. An
inversion doesn’t seem to help either, because when
one inverts the real line one just gets the real line,
and when one inverts ¢ one just gets —i. So inver-

15




sion does nothing apart from flipping the set across

the real axis. ,

1z

e However, if you first do a translation, then an inver-
sion does something interesting. If we shift upwards
by i, mapping z to z+1, and then invert to 1/(z+1),
the real line maps first to the vertical line through ¢,
and then to the circle through the origin with fur-

16



thest point —i, while ¢ maps first to 2¢ and then to

—3/2:
_

Z+i U(z)

e This is almost what we want. To move the point
—1/2 to the origin we can shift upwards by /2, to
1/(z+1i)+i/2. Then to get the unit circle instead
of the half-unit circle we multiply by 2, to 2(1/(z +
i) +i/2):

17



(zH) +i1
Uz +11)

e Thus the Mobius transform

1 1 1z + 1
-+ o) = .
z4+1 2 zZ+1

will map the upper half-plane to the unit circle and

w = 2(

map i to 0. (There are a couple other transformations
which will also work, such as w = —% Why does
this also work?)

18



e In the special case that you want to map three points
21, 22, 23 to three other points wy, wy, w3 there is
a nice formula for the Mobius transform. Namely,
write down the equation

(z—2z1)(z2 —23) _ (w—wy)(wy — ws)
(z — 29)(21 — 23) (0 — w2)(w1 — w3)

and solve for w. For instance, to map —1,0,1 to
—1,1, 1 respectively, we solve

(z4+1)(0—-1)  (w+1)(i —1)

(z—=0)(-1-1) (w—19)(-1-1)
—z—1 (i—Dw+@i—1)
2z 2w —1)
(—z—=1D)(w—1i)=((—Dwz+ (i — 1)z

(—z—1—iz+2)w=—zi—i+1iz—2
—2Z —1
w = — :
—1z — 1

(Exercise: why does this trick work?)
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Elementary complex functions

e In the next few lectures, we’ll discuss some basic com-
plex functions, such as

e, cos(z),sin(z), tan(z), cosh(z), sinh(z),
log(z), 212, 21, ...

e In some ways, these functions are very similar to their
real-variable counterparts. For instance, sin(z) is dif-
ferentiable and its derivative is cos(z). But there
will be some surprises. For instance, sin(z) is not
restricted to between —1 and 1; it can take the value
of 2, or 4, or any other complex number!
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The complex exponential

e We've already defined the complex exponential e or
exp(z) as

e" = exp(z + iy) = €’ cosy + ie” siny.

e We have the usual exponentiation laws:
ez+w — ezew, ez—w — eZ/Gw, (62)77, _ enz

for all integers n and complex numbers z and w.
(Exercise!)

e The function e* is entire, with derivative

d z z
—e” =¢€°.
dz
e Unlike the real exponential, the complex exponential
is periodic:

ez+27rz _ ez.

So if e# = e, one cannot conclude that z = w. The
best one can say is that z = w+ 2k for some integer

k.

e ¢“T% has magnitude e” and phase y. Thus increasing
(decreasing) z causes e to increase (decrease) in
magnitude, whereas increasing (decreasing) y causes
e®*t% to rotate anti-clockwise (clockwise).
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e Also unlike the real exponential, the complex expo-
nential does not have to be positive. For instance,
e = —1.

e In fact, any non-zero number can be written as the
exponential of some complex number. For instance,
to solve the equation e* = 1+, we write z in Carte-
sian and 1 + ¢ in polar:

o 6 o x—i—zy \/7€m/4
so e® = /2 and y = w/4 + 2km. Thus
2 =InV2+i(r/4+ 2kn).

e However, e* can never be zero, because the magni-
tude e” is never zero.

e Incidentally, the way Euler arrived at his formula
"V = cos(y) + isin(y)

was by considering the Taylor series

2 3 4
vy Y
Zy_
Lhy+or o+

and replacing y by ty:
2 .3
: —Y —y Y
y _ 7
e’ =1+ + o + 3 +4!+...
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Separating into real and imaginary parts he got

2 4 3
Y Y - Y
y_ (1 _ _
e’ = (1 TR o) +iy 3!—|—...)
which he then recognized as the series for cosine and

sine.
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Complex trigonometric functions

e If z is a real number, we can define sin(z) and cos(z)
geometrically, using right-angled triangles. This doesn’t
work for complex numbers, because there’s no such
thing as a complex angle. So how can we define sines
and cosines of complex numbers?

e Start with the identities
1z - -1z -
e’ =cosxr+isinz, e " =cosx —isinT
and solve for cosine and sine to get

e'Ll' _|_ e—Z:L' ] el.’,C _ e—ZfE
cosy=———  Snr=—.—+
2 ’ 2

Based on these equations, it is now natural to define
the complex cosine and sine as

cosz =————, sinz=

e Examples:

COSTT = = = —1



e Both these functions are clearly entire, and have deriva-
tives

d . d .
—cosz = —sinz, —sinz = cos z.
dz dz

e All the trig identities that hold for the real sine and
cosine, also hold for the complex sine and cosine. For
instance:

cos(—z) = cos(z)
cos(z + w) = cos(z) cos(w) — sin(z) sin(w)
sin(m/2 — z) = cos(z)
cos?(z) + sin’(z) = 1
etc., etc. There’s a reason for this which has to do

with analytic continuation, which we’ll see later in
the course.

e Both sin(z) and cos(z) are periodic with period 27.

e Caution: sin(z) and cos(z) aren’t always real num-
bers, and don’t always lie between -1 and 1. That’s
only when z is real. For complex z it is not necessar-
ily true that Re(e") = cos(z), for instance.

e Example: find all solutions to cos(z) = 2. We rewrite
this as . .
eZZ + e—ZZ
2

25
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eiF 41 e i — .
Writing w = e'?, this becomes
w—4+1/w =0
w* —4w+1=0
(w—2)*=3
w=2++/3

e — eln(2i\/§)

iz =In(2 £ V/3) + 2kmi
2= —iln(2 + V/3) + 2kn.

e One can also define other complex trig functions by
the usual formulae:

tan(z) = sin(z)/ cos(z), sec(z) =1/ cos(z), etc.

e These functions satisfy the usual identities (e.g. - tan(z) =
sec?(2) if z # (k + 3)m).
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Hyperbolic trig functions

e You may remember the hyperbolic trig functions

e’ +e” , e’ —e”
cosh(z) = ———, sinh(z) = ———
2 2
from real analysis. Their complex counterparts are
e 4 e ? . e? — e %
cosh(z) = —5 sinh(z) = —

Thus, for instance,

em 4 e—m' —1—1

cosh(mi) = = = —1.
2 2
e These functions are clearly related to the trig func-
tions
eiz s e—z’z . eiz . e—iz
cos(z) = ——, sin(z) = ——

Indeed, we have
cosh(z) = cos(iz),sinh(z) = —isin(iz),
cos(z) = cosh(iz),sin(z) = —isinh(iz).

e This explains why every trig identity is paired up
with a hyperbolic trig identity which is almost the
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same except for some sign changes. For instance, we
have

cosh®(z) — sinh*(z) = cos®(iz) — (—isin(iz))?
= cos*(iz) + sin®(iz).

Since we have the trig identity cos?(w)+sin?(w) = 1,
we thus have the hyperbolic trig identity cosh?(z) —
sinh?(z) = 1. And so forth.

e sinh(z) and cosh(z) are entire, with derivatives

d d
- sinh(z) = cosh(z), e cosh(z) = sinh(z).

e One can also define tanh(z), sech(z), etc. as usual.
The complex logarithm - introduction

e The natural logarithm In(x) is very useful in real
analysis (for instance, when one wants to integrate
1/z), and is defined for positive = by the relationship

y=In(z) <= z=¢"

In other words, the natural logarithm is the inverse
of exponentiation.
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e In analogy to this, one can define the complex loga-
rithm log(z) in the same way:

w =log(z) <= z=¢€".

(We always use In() for the real logarithm, and log()
for the complex logarithm). This definition is quite
reasonable, but has one major defect - a single com-
plex number z will have infinitely many logarithms
w, because the complex exponential is periodic. For
instance log(1) can equal 0, or £27i, or 474, etc.

e This problem occurs also in real analysis, whenever
one tries to invert a periodic function. For instance,
if one were to naively define the inverse sine function
by

y =sin"'(z) <= 2z =sin(y)
then a single value of x could have infinitely many

inverse sines. For instance, sin~*(0) could be 0, 4,
127, etc.

e To get around this, one usually restricts the value of
an inverse function to a small set in order to only
get one possible inverse. For instance, the inverse

sine function is traditionally restricted to the interval
[—m/2,7/2] - so sin”}(0) = 0, for instance. This is

29



not the only possible choice - for instance, one could
restrict sin~! to [7/2, 37 /2] - but it is the convention
which is most frequently used in practice (and on
your calculators).

A similar situation occurs with the complex loga-
rithm. In order to get a single value for w = log(z),
we will need to make a restriction on w; for instance,
we can restrict the imaginary part of w to (—m, 7.
Such a restriction is known as a “branch” of the log
function. Unfortunately, any such restriction will
create a discontinuity in the function, known as a
“branch cut”. Different branches have cuts in dif-
ferent places, and sometimes it is better to use one
branch over another.
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The multi-valued logarithm log(z).

e Let’s try to find all possible values of log(z). In other
words, we choose a z and then try to solve the equa-
tion

for w.

e If z = 0, then there is no solution to this equation,
because e is never zero. Thus log(0) is undefined.

e Otherwise, we can write w = = + 1y to get
e’e” = 2.

This means that e’ is the magnitude of z, and y is
one of the phases of z:

e’ =|z], y=arg(2).
So we can solve for w = x + 1y as
w = In |2| + jarg(z).

Recall that arg(z) has multiple values (it is only
determined up to a multiple of 27), so w is also
multiple-valued (it is only determined up to a multi-
ple of 27i).
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e FExample:
log(1+4) =1In |1+ ¢| +darg(l + 1)

—Inv2+ z(% + 2km).
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Branches

o If y = f(x) is a multi-valued function, its graph
does not always intersect each vertical line segment
in a single point (which is what a single-valued func-
tion). Usually the graph looks like a tree with many
branches, e.g. the graph of y = sin™!(x):

x = sin(y)

e When we restrict the range of y to [—7/2, 7 /2], how-
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ever, the we prune all but one branch off of the tree,
and the function becomes single-valued. The restric-
tion of sin ™' () to [—7/2, /2] is thus called a branch
of the multi-valued inverse sine function.

e We use the same terminology for complex functions,
even though the graphs of these functions are much
harder to visualize.
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Branches of the argument
e The multi-valued complex logarithm is given by
log(2) = In |z| 4 darg(2).

In order to find branches of this function, we need to
find a branch for the multi-valued arg function.

e The standard (or principal) branch Arg of the argu-
ment, which takes values in (—m, 7], is one example
of a branch of arg. This branch is discontinuous on
the negative real axis; this axis is said to be a branch
cut for Arg.

e However, there are other possible branches of arg.
In fact, for every half-open interval (a, a + 27| we
can create a branch of arg which takes values in that
interval. In the textbook this branch is denoted

w=arg(z) a<arg(z) < a4+ 2m;
in other books it is denoted

W = Arg(oz,oz-l—%r] (Z) y

Thus, Arg(_, . is the standard branch of the argu-
ment.
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o The branch Arg, ,or
{z : « = arg(z)}. Thus different branches usually

| has a branch cut on the ray

have different branch cuts.

e There are more exotic branches with curved branch
cuts, but they are almost never needed in practice.
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Branches of the logarithm

e Every branch of the argument determines a branch
of the logarithm. The principal branch Arg of the
argument determines the principal branch Log of the
logarithm:

Log(z) = In |z| + iArg(z).
Thus, for instance, Log(1 + i) = In /2 + im/4.

e More generally, every branch Arg, .o, gives rise to
a branch Log, ,19x(2) of the logarithm:

LOg(q,at2r](2) = In | 2| + 1ATg (0 0 12m)(2).
This branch is denoted by
w=log(z), a<Arg(z) <a+2rm
in the textbook.
e Thus, for instance, Log(, o 5./2(1 + i) = Inv/2 +
i9m /4.

e The branch Log, ,,.(2) sends the complex plane
to the half-open strip {w € C : a < Im(w) <
a+2m}. This strip is called a fundamental domain
for the exponential function, because the exponential
function is invertible on this set.

e More exotic branches of the logarithm also exist.
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Properties of the logarithm

e The exponential always inverts the logarithm, but
the logarithm does not always invert the exponential!

e8?) — 2 but log(e®) = z + 2kmi!

e The multi-valued log converts products and quotients
to sums and differences:

log(zw) = log(z)+log(w), log(z/w) = log(z)—log(w);

e However, this is not quite true for branches of the
logarithm, as one can be off by a factor of 27i. For
instance:

0 = Log(—1-—1) # Log(—1) + Log(—1) = im + i.

e In polar co-ordinates, the branches of the logarithm
can be written

Log ](rew) =Inr+#@ a<0<a+2m.

a,a+27

One can verify the polar co-ordinate Cauchy-Riemann
equations

8u_181) 8’0_ 10u

or o0 o row
for all 8 strictly between o and a + 27w. Thus the
Log

o097 Pranch is complex differentiable everywhere
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except at the branch cut {z : arg(z) = a}, and at
the origin, where it is undefined.

To differentiate a branch of the logarithm - let’s say
the principal branch Log(z) - it’s easiest to start with

the identity
L08() _

and differentiate this using the chain rule:

d
elog(?) —Log(z) =1

dz
d
z%Log(z) =1
d 1
—L = —.
T Log(2) =~

Thus the principal branch of the logarithm has deriva-
1
z
on the branch cut Log isn’t even continuous, let alone
differentiable).

tive - away from the branch cut. (As we said before,

The same is true for every other branch of the loga-
rithm - they are differentiable away from the branch
cut, with derivative 1/z. It may seem odd that so
many functions have the same derivative, but bear
in mind that the different branches only differ from
each other by a multiple of 2.
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