Math 132 - Week 2

Textbook sections: 2.3-2.5, 7.3
Topics covered:

e Complex analytic functions

e Real and imaginary parts of analytic functions
e Harmonic functions

e Harmonic conjugates

e Complex maps

e Translation, Rotation, Dilation, Inversion

e Mobius transforms



Differentiability vs analyticity

e Last week, we defined what it meant for a complex
function w = f(z) to be complex differentiable at a
point zy. If the partial derivatives 0 f /0x and 0 f /0y
exist and are continuous at zy, then it turns out that
f(2) is complex differentiable at z; if and only if the
Cauchy-Riemann equations

hold.

e In many cases the Cauchy-Riemann equations only
hold for a handful of points zy, so that the function
f is mostly non-differentiable. For instance, consider
the function f(z + iy) = z? + y*>. The Cauchy-
Riemann equations read

1
2r =
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which is only satisfied when = y = 0. Thus this
function is only differentiable at the origin.

o A derivative f’(z) is pretty useless when it is only
defined on one or two points. In order to use even



the most basic results in calculus - Fundamental The-
orem of Calculus, Mean Value Theorem, Taylor ex-
pansion, etc. - one needs a derivative to be defined
on a larger set.

Definition: A function f(z) is complezx analytic (or
just analytic) at z, if there exists a disk {z : |z —
29| < 7} such that f is complex differentiable at
every point on the disk. (“disk” is just another word

for “ball”).

In other words, we define a function to be analytic
at zp if it is differentiable not only at z, but also at
all points near z.

Thus analyticity is a stronger condition than differ-
entiability, and it turns out to be more useful (you
can say more things about analytic functions than
about merely differentiable functions).

The adjectives “regular” or “holomorphic”’ are some-
times used instead of “analytic”.

If a function is analytic on the entire complex plane,
it is said to be entire. Entire functions are the very
best class of complex functions.



Examples

o f(r +1iy) = x° + y* is differentiable at the origin,
but not analytic at the origin because it is not differ-
entiable on any ball around the origin.

o Let f(x +iy) = x° + iy>. The Cauchy-Riemann
equations are

L.

g(Zzy).

Thus f is differentiable on the line x = y, but is not

analytic anywhere because there is no ball on which
f is differentiable.

20 =

o Let f(2) = 2%, 50 f(z +iy) = 2* — y* + 2ixy. The
Cauchy-Riemann equations are

1 .
2z + 2iy = =(—2y + 2ix),
0

which holds for all x and y. So f is differentiable ev-
erywhere, and analytic everywhere. In other words,
f(z) = 2? is an entire function.

e In general, the set on which a function is analytic is
the interior of the set on which a function is differ-
entiable.



e In particular, if D is a domain (an open connected
set), then f is analytic on D if and only if f is dif-
ferentiable at every point in D.



A remark on notation

e In real analysis, there is also a notion of a function
being analytic, which looks quite different from the
definition just given. Namely, a function y = f(z)
is said to be real analytic, (or just analytic) at xq if
one can write f(x) as a power series

f(CE) = ag + al(:v — .I'(]) + &2(1‘ — CI?())2 + ...
which converges on some interval {z : |z —z(| < r}.

e Real analytic functions are always differentiable (in
fact, they can be differentiated as many times as one
wishes), but not every differentiable function is real
analytic. They are the best kind of real function.

e Later on in the course, we will show that the no-
tions of complex analytic and real analytic are not as
different as they seem. In fact:

e Theorem: A complex function w = f(z) is com-
plex analytic at 2 if and only if it can be expanded
as a POWer series

f(2) =ag+ai(z — z) +ax(z —20)* + ...

which converges on some disk {z : |z — 29| < r}.



o (We'll define what it means for a power series to con-
verge later in the course).



Real and imaginary parts of analytic functions

e Let D be a domain, and let f be an analytic function
on D. We can break f into real and imaginary parts:

flz +iy) = u(z + iy) + iv(z + iy)

e In order for f to be analytic, the real part v and
imaginary part v have to be related by the Cauchy-
Riemann equations

Ou  Ov 8u__@
oxr Oy Oy Oz

e These equations have an interesting consequence: if
you only know the real part u of an analytic func-
tion f, you can deduce the imaginary part v (up to a
constant) by integrating the Cauchy-Riemann equa-
tions.

e Example: suppose we have a function f(z) which is
entire (i.e. analytic on C) and we know the real part
is u(x+iy) = zy. Let’s work out what the imaginary
part is.

e From the Cauchy-Riemann equations we have

v _ ~ 0v_
oy ar
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e Let’s look at the first equation. If we integrate it in
y we get

1
v(z +iy) = 5y° + o(x)

where ¢(z) is some unknown function which can de-
pend on x but not on y. If we then substitute this
back into the other equation we get

d(r)=—z

SO
1

c(x) = —§x2 +C

where C' is a constant that doesn’t depend on either
x or y. Thus we have

1 1

: 2 2
=y — = C
v(x + iy) LA
SO . .
flz+iy) = zy + i(§y2 — §x2) +1iC,

which can be written in complex form as
12

which makes the analyticity obvious.

e In general, given u, one can find v up to a constant:



e Theorem If fi = u + v, and fo = u + vy are

two analytic functions on the same domain D which
have the same real part u, then v; = vy + C for some

constant C.

e Lemma If g is a function on a domain D such that

99 _ 99 — () on D. then g is a constant.
ox oy !

a(zp) =gz »

e Proof of lemma Since g—g = 0, g is constant on ev-

ery horizontal line segment in D (by the fundamental

theorem of calculus). Since g—g = 0, g is constant on

every vertical line segment in D). Since every two
points in D can be connected by vertical and hori-

zontal line segments, g is constant.

e Proof of theorem From the Cauchy-Riemann equa-
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tions we have

a’LL B (%1 B 87}2
oxr Oy Oy
and
Ou _ _Ou__0v
oy  Ox Oz
SO
8(1}1 — ’UQ) 0= 8(1}1 — ’UQ)
Oy oxr

By the lemma, v; — vy = C. QED

e If u + 2v is an analytic function, then v is called a
harmonic conjugate of u, and vice versa. The above
theorem then says that every function u has only one
harmonic conjugate v (up to a constant).
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Harmonic functions

e Not every function has a harmonic conjugate. For
instance, consider the function u(zx + iy) = 2% If
we had a function v(z + iy) such that u + iv was
analytic, then we would have

2:13:%:@
or Oy
and
o _ o
Oy oz

From the first equation we get v(z+iy) = 2zy+c(z).
But if we insert this equation back into the second
one we get 0 = —2y — ¢(x). We can’t solve this for
c(x), because 2y is a function of y rather than z. So

x? cannot be the real part of an analytic function.

e To see what’s going on, take the Cauchy-Riemann
equations

ou Ov Ou ov

or oy’ Oy T O
and differentiate the first one with respect to x and
the second one with respect to y:

0%u 0%v 0%u 0%v

o2 dxdy’ Oy2  Oydx
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Adding the two equations together, the v’s cancel,
and we get
u  Pu
0%x i 0%y
This equation is known as Laplace’s equation. Func-

0.

tions which satisfy this equation are called harmonzc.

What we've just shown is that in order for u to be the
real part of an analytic function, it must be harmonic.
If w is not harmonic, it cannot possibly be the real
part of an analytic function.

Example: the function u(z + iy) = z* is not har-
monic for any x, y, and so cannot be the real part of
an analytic function.

Conversely, if v is harmonic in a domain D, does this
mean that u is the real part of an analytic function?
Usually the answer is yes. For instance, this is always
true when D is the entire complex plane. (When D
has some “holes” there are some cases of harmonic
functions which are not the real part of any analytic
function, but we won’t dwell on this topic here).

Everything we said above also applies to the imagi-
nary part v. Thus both the real and imaginary parts
of an analytic function are harmonic.
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Physical interpretation of harmonic functions

e A function u(z,y) of two variables is harmonic if it
obeys Laplace’s equation

0u N °u
ox?  Oy?

0

e Similarly, a function u(x,y, z) of three variables is
harmonic if we have
Pu  0%u  Ou

=0
Ox? i Oy? i 022

e These functions occur often in applications, espe-
cially in physics. Generally speaking, any steady-
state field will be harmonic in the absence of exter-
nal influences. Steady-state temperature fields, elec-
trostatic fields, and gravitational fields fall into this
category.

e As a first approximation, the surface of soap films
(or any elastic surface) is the graph of a harmonic
function.

e The study of harmonic functions is a field in itself,
and is beyond the scope of this course.
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Singularities

e If 2 is not an analytic point of w = f(z), but it is
the limit of a sequence of analytic points, then it is
said to be a singular point of w = f(z), and f is
said to have a singularity at zj.

e For instance, if f(z) = 1/z, then f is analytic every-
where except at zero (because one can differentiate
f everywhere except at zero). So 0 is not an analytic
point of f(z), but every nearby point is. So 1/z has
a singularity at 0.

e The function f(z+1iy) = x°+y* is not analytic any-
where. So it has no singularities (i.e. points which
border on the region of analyticity, but aren’t actu-
ally contained inside it).

e We'll study singularities in great detail much later in
the course. For now, we’ll just be satisfied with the
definition of a singularity.
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Complex maps

e Let’s now start looking at some specific complex func-
tions (aka complex maps) w = f(2).

e As mentioned before, complex functions are difficult
to graph directly. A more mundane way to depict
such these functions to display the z plane and w
plane side-by-side, and describe how points on the
z-plane map to points in the w-plane.

e We'll illustrate this with some very basic maps:
Translations: w = z + ¢;
Dilations/rotations: w = kz
Rigid motions: w = kz + ¢
Inversion: w =1/z
Here k£ and c¢ are complex numbers. Then we’ll look

at a wider class of maps which contain these four
examples, namely the Mébius transformsw = (az+

b)/(cz + d).
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Translations

e Let ¢ = a+0bi be a complex number, and consider the
map w = z + ¢. This map adds a to the real part of
z and adds b to the imaginary part. Thus, this map
is a translation to the right by a and upwards by 0.
Here’s a way to depict this, with ¢ =2 — z'I:

Im m

17
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Dilations

e Now consider the map w = kz, where k is a posi-
tive real number. This multiplies both the real and
imaginary parts of z by k, and is called a dilation by
a factor of k. Here’s a depiction with k = 2:
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Rotations

e Now consider the map w = kz, where k = ¢’®. This
is best understood in polar co-ordinates. If z = re®,

6+e)  Thus this map does not

then w = kz = re'l
change the magnitude of z, but adds a to the phase.
In other words, this is a counter-clockwise rotation

by . Here’s a depiction with k& = e™/2 = {

= 1.
Im
A w=iz

77N

W

o If £k = —i, we would rotate clockwise by 7/2. If
k = —1, then we would rotate by m. (This gives a
nice interpretation of the relationship 72 = —1).

e For more general k£, the map w = £z is a combination
of dilation and rotation. E.g. the map w = 2z
dilates by 2 and then rotates counterclockwise by
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/2.

20



Rigid motion

e A map of the form w = kz + c is called a sim-
ilarity, or affine transformation. (It’s also called
a linear transformation, but this is slightly inaccu-
rate). Clearly it is composed of a dilation, rotation,

and translation.

e For instance, the map w = (1+i)z—i = /242 —
i consists of a dilation by v/2, a counterclockwise
rotation by 7/4, and then a downward shift by i:

Im

|
YA m W

A W=(1+)z
R\
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Inversion

e Now let’s look at a more interesting map, the inver-
sion map w = 1/z.

e In Cartesian co-ordinates, the map looks intimidat-
ing: if z = x + 1y, then

x y .
— 1.

w = 1/(z+iy) = (z—iy)/(2*+y°) =

e Let’s look at polar instead. If z = re?, then

re? r

In other words, the magnitude of w is the reciprocal
of the magnitude of z, while the argument of w is the
negative of that of z. (Inversion turns the complex
plane inside-out and upside-down).

e Qualitatively: if you move z closer to the origin, then
w moves further away, and vice versa; if you move
z clockwise around the origin, then w moves anti-
clockwise, and vice versa.
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e In particular if you take a line through the origin in
the z-plane and invert it, you get a line through the
origin in the w plane which is the reflection of the
original line through the real axis. (But with the
origin removed).

23
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e Let’s try to invert some simple geometric objects,
starting with the line {2z : Re(z) = 1}. What is the
image of this line under the map w = 1/27

e In other words, we ask what are all the w such that
w = 1/z and Re(z) = 1.

e Saying w = 1/z is the same as saying z = 1/w, so
we're looking for those w such that Re(1/w) = 1.

e Write w = = + yi. Then 1/w = z/(z* + y*) +
yi/(x? 4+ y*), so we're looking for those w such that
z/(z*+y*) = 1.

e This simplifies to 22 —z+y* = 0 (unless x = y = 0).
We complete the square by adding 1/4 to each side,
obtaining

(x —1/2)* +y* =1/4.
This is the equation for the circle of radius 1/2 and
center 1/2. Thus the inverse of the line is a circle
(with the origin removed).

e One can do a similar procedure for other simple ob-
jects. It turns out that whenever you invert a line or
circle, you always get another line or circle (but the
origin is always removed, since 0 is not the reciprocal
of anything).
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e For instance, if [ is a line not passing through the
origin, whose closest approach to the origin is at a
point P, then the inverse of [ will be a circle through
the origin, whose furthest point from the origin is

1/P.
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w=1/z

.,

e Conversely, if C' is a circle through the origin with
furthest point from the origin P, then the inverse
of C' is a line not passing through the origin with
nearest point 1/P.
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e Finally, if C is a circle not passing through the origin,
but with nearest point to the origin P and furthest
point to the origin @), then the inverse of C'is another
circle not passing through the origin with furthest
point 1/P and nearest point 1/Q).

27



1Q

e

e There is a Java applet on the class web page at
www.math.ucla.edu/~tao/java/Mobius.html

which displays these operations graphically.
e Translations, dilations, rotations, and inversions are
all special cases of Mobius transformations (due

to August Mobius, 1790-1868, most famous for his
strip). A Mobius transformation is defined as any

28



transformation of the form
_az+ b

w =
cz+d

where a, b, ¢, d are complex numbers such that ad —
bc # 0. This last condition is intended to avoid silly

maps such as
3z+6

=3
z+2
which send everything to a constant. Note that ev-

w =

ery map described above is a Mobius transform; for
instance w = 24+ 2 — 1 is

z+2—1

o 0z41

We'll study Mobius transforms in more detail next
week.
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