- Section 1.1, Questions 15, 20, 23
- Section 1.2, Question 7(cdh)
- Section 1.4, Questions 4,17
- Section 1.5, Question 5(ad)
- Section 1.6, Questions 2(bcd), 3(bcd), 4(bcd), 5(bcd)
- Section 2.1, Question 1(f)

- Section 2.2, Questions 9(ace), 15
- Section 2.3, Question 4
- Section 2.4, Questions 2, 5*, 11
- Section 2.5, Questions 1(ac), 3(ce)
- Section 7.3, Questions 3,4,9,12

- Section 7.4, Questions 1, 14
- Section 3.1, Questions 5(ace), 9(b), 11, 12(c)
- Section 3.2, Questions 1(bd), 5, 9, 13
- Section 3.3, Question 11

- Section 4.1, Questions 1(ab), 8, 10
- Section 4.2, Questions 3(b), 5, 7, 11, 13
- Section 4.3, Questions 1(bdfg*), 2, 5

- Section 4.4, Question 10(ace), 13
- Section 4.5, Questions 2, 3(bce), 4, 5, 7, 8
- Section 4.6, Question 5

- Section 5.1, Questions 1(bc), 3, 7
- Section 5.2, Questions 1(ae), 2(ae), 8(ac), 11(ab), 14

- Section 5.3, Questions 2, 3(bd)
- Section 5.5, Questions 3, 4, 7(b), 9

- Section 5.6, Questions 1(acdg), 2, 3, 6
- Section 5.7, Questions 1(cdegh), 6
- Section 6.1, Questions 1(eg), 2, 3(abc)

Hint for Section 5.7, Question 6: An alternate solution to the one suggested in the textbook is to make a change of variables, replacing zeta with 1/zeta. (You may use the change of variables formula for contour integrals in exactly the same way you would use it for real integrals.)

- Section 6.2, Questions 1, 4, 5
- Section 6.3, Questions 1, 3, 9
- Section 6.4, Questions 3, 9
- Section 6.5, Question 3
- Section 6.6, Question 2