Math 131BH - Week 7
Textbook pages covered: 204-227

e Review of linear transformations and matrices
e Derivatives in several variable calculus
e Total derivatives, partial derivatives, and directional derivatives
e The chain rule in several variable calculus
e Double derivatives; Clairaut’s theorem
e Inverse function theorem
e Implicit function theorem
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Review of linear transformations

e We shall now switch to a different topic, namely that of differentiation
in several variable calculus. More precisely, we shall be dealing with
maps f : R" — R™ from one Euclidean space to another, and trying
to understand what the derivative of such a map is.

e Before we do so, however, we need to recall some notions from linear
algebra (Math 33A and Math 115A), most importantly that of a linear
transformation and a matrix. We shall be rather brief here, since we
do not want to review the entirety of Math 115A.

e First recall that elements of R" are sometimes referred to as n-dimensional
row vectors. A typical n-dimensional row vector may take the form
r = (z1,22,...,2,), which we abbreviate as (2;)1<i<n; the quantities
T1,Ta, ..., %, are of course real numbers. If (;)1<i<n, and (¥;)1<i<n are
n-dimensional row vectors, we can define their vector sum by

(@i)1<i<n + Wi)1<i<n = (Ti + Yi)1<i<n,



and also if ¢ € R is any scalar, we can define the scalar product
C(xi)1gignby
C($i)1§z‘§n = (Cﬂfi)lgign-

Of course one has similar operations on R™ as well. However, if n # m,
then we do not define any operation of vector addition between vectors
in R" and vectors in R™ (e.g. (2,3,4) + (5, 6) is undefined).

The operations of vector addition and scalar multiplication obey a num-
ber of basic axioms, for instance c¢(x + y) = cx + cy; a full list of these
axioms can be found in Math 115A (see e.g. my week 1 notes on this).
Because of this, we say that R" is a vector space. (There are many
more examples of vector spaces than this, but we will only need this
one).

If (2:)1<i<n = (21,%2,...,2,) is an n-dimensional row vector, we can
define its transpose (z;)} e, = (1, Ta, ..., 2z,)T by
L1
T2
T — —
(@) cicn = @1, T2, ., 0) = |
Tn

We refer to objects such as (z;)! ., as n-dimensional column vectors.
There is no functional difference between a row vector and a column
vector (e.g. one can add and scalar multiply column vectors just as well
as we can row vectors), however we shall (rather annoyingly) need to
transpose our row vectors into column vectors in order to be consistent
with the conventions of matrix multiplication, which we will see later.

We identify n special vectors in R", the standard basis row vectors
€e1,...,e,. Foreach 1 < j < n, ¢; is the vector which has 0 in all
entries except for the j** entry, which is equal to 1. For instance, in
R?, we have e; = (1,0,0), e5 = (0,1,0), and e3 = (0,0, 1). Note that if
T = (%j)1<j<n is a vector in R", then

n
T =1x1€1 + 29y + ...+ X6, = E Zj€;j,
j=1



or in other words every vector in R" is a linear combination of the stan-
dard basis vectors ey, ..., e,. (The notation 2?21 xje; is unambiguous
because the operation of vector addition is both commutative and asso-
ciative). Of course, just as every row vector is a linear combination of
standard basis row vectors, every column vector is a linear combination
of standard basis column vectors:

n
zf = xlei + xgeg + ...+ xnel = ije;'-.
j=1

There are (many) other ways to create a basis for R", but this is a
topic for Math 115A and will not be discussed here.

Definition A linear transformation T : R"™ — R™ is any function from
one Euclidean space R" to another R™ which obeys the following two
axioms:

(1) (Additivity) For every z,z' € R", we have T'(x + ') = Tx + Tz’

(ii) (Homogeneity) For every € R" and every ¢ € R, we have T'(cx) =
cT'x.

Example The dilation operator T) : R®* — R? defined by Tiz := 5z
(i.e. it dilates each vector x by a factor of 5) is a linear transformation,
since 5(x + 2') = 5z + 52’ for all z,2' € R® and 5(cz) = c¢(5z) for all
z € R? and z € R.

Example The rotation operator Ty : R> — R? defined by a clockwise
rotation by 7/2 radians around the origin (so that 75(1,0) = (0,1),
T5(0,1) = (—1,0), etc.) is a linear transformation; this can best be
seen geometrically rather than analytically.

Example The projection operator Ty : R* — R? defined by T3(z, y, 2) :=
(z,y) is a linear transformation (why?). The inclusion operator Ty :
R? — R? defined by Ty(z,y) := (z,v,0) is also a linear transformation
(why?).



As we shall shortly see, there is a connection between linear transfor-
mations and matrices. Recall that an m x n matriz is an object A of
the form

air  a12 A1n
a21 Q22 Qonp

A= . :
m1 G2 Amn

we shall abbreviate this as

A = (ai)1<i<m<izn-

In particular, n-dimensional row vectors are 1 X n matrices, while n-
dimensional column vectors are n x 1 matrices.

Given an m X n matrix A and an n X p matrix B, we can define the
matriz product AB to be the m x p matrix defined as

n

(aij)1<i<mac<i<n(bin)1<jcnickep = (Y Gigbjk)1<icmi<k<p-
j=1

In particular, if z = (x])J{ <j<n 18 an n-dimensional column vector, and
A = (aij)1<i<mji<j<n 15 an m X n matrix, then Az is an m-dimensional
column vector:

n
Azl = (Z a’ijxj)J{Sigm'
7j=1

We now relate matrices to linear transformations. If A is an m X n
matrix, we can define the transformation L, : R" — R™ by the formula

(Laz)t := Azl

Thus, for instance, if A is the matrix

123
A‘(4 5 6)’



and © = (z1,22,23) is a 3-dimensional row vector, then Lz is the
2-dimensional row vector defined by

1
1 2 3 T + 229 + 3x
t_ _ 1 2 3
(Laz) (4 5 6) > (4x1+5x2+6x3)
3
or in other words
LA(.’L'l,CCQ, .Tg) = (331 —+ 2%2 + 3$3,4.Z'1 + 5372 + 6$3)

More generally, if

a1r  a12 A1n

21 Q22 Qon
A= )

Am1 Am2 ... (Omn

then we have

n
La(j)i<jsn = (D 0575)1<i<m.
i=1

For any m x n matrix A, the transformation L, is automatically linear;
one can easily verify that Ly (x+y) = Lax+ Ly and Ly(cz) = ¢(Lax)
for any n-dimensional row vectors x,y and any scalar ¢. (Why?)

Perhaps surprisingly, the converse is also true, i.e. every linear trans-
formation from R" to R™ is given by a matrix:

Lemma 1. Let T : R® — R™ be a linear transformation. Then there
exists exactly one m x n matrix A such that T = Ly.

Proof. Suppose 7" : R" — R™ is a linear transformation. Let
e1,€q, ..., e, bethe standard basis row vectors of R". Then Te;,Tes,, ...
are vectors in R™. For each 1 < j < n, we write T'e; in co-ordinates as

Te; = (a1j, A25y « + s amj) = (aij)lﬁiﬁm’

,Te,



i.e. we define a;; to be the i"* component of Te;. Then for any n-
dimensional row vector x = (z1,...,z,), we have

Tz =T()  zje;),
j=1

which (since T is linear) is equal to
n n
= ZT(.T]E]') = ZSE‘]‘TGJ'
P j=1
n
=Y zj(ay)icicm
j=1
n
=D (i) i1<i<m
j=1

n
= () azj)icicm-
j=1

But if we let A be the matrix

a1 a12 e Qup

a921 9292 ... Qop
A=

Am1 Am2 ... Omn

then the previous vector is precisely Lax. Thus Tx = L,z for all
n-dimensional vectors x, and thus 1" = Ly4.

e Now we show that A is unique, i.e. there does not exist any other
matrix

bll b12 bln
B = b21 {)22 b2n
bml bm2 bmn



for which T is equal to Lg. Suppose for contradiction that we could
find such a matrix B which was different from A. Then we would have
Ly = Lg. In particular, we have Lse; = Lge; for every 1 < j < n.
But from the definition of L4 we see that

Laej = (aij)i<i<m

and
Lpe; = (bij)i<i<m

and thus we have a;; = b;; for every 1 <¢<mand 1 < j <m, thus A
and B are equal, contradiction. O

This Lemma establishes a one-to-one correspondence between linear
transformations and matrices, and is one of the fundamental reasons
why matrices are so important in linear algebra. (One may ask then
why we bother dealing with linear transformations at all, and why we
don’t just work with matrices all the time. The reason is that some-
times one does not want to work with the standard basis eq,...,e,,
but instead wants to use some other basis. In that case, the correspon-
dence between linear transformations and matrices changes, and so it is
still important to keep the notions of linear transformation and matrix
distinct. See Math 115A for more information).

If T = Ly, then A is sometimes called the matriz representation of T,
and is sometimes denoted A = [T]. We shall avoid this notation here,
however.

If T :R" — R™ is a linear transformation, and S : R? — R" is a
linear transformation, then the composition 7S : R? — R™ of the two
transforms, defined by T'S(z) := T'(S(x)), is also a linear transforma-
tion (why? Expand T'S(z + y) and T'S(cz) carefully, using plenty of
parentheses). The next lemma shows that the operation of composing
linear transformations is connected to that of matrix multiplication.

Lemma 2. Let A be an m x n matrix, and let B be an n X p matrix.
Then LALB = LAB-

Proof. See Week 7 homework. O
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Derivatives in several variable calculus

Now that we’ve reviewed some linear algebra, we turn now to our main
topic, which is that of understanding differentiation of functions of the
form f: R" — R™, i.e. functions from one Euclidean space to another.
For instance, one might want to differentiate the function f: R®* — R*
defined by

f(z,y,2) = (xy,yz, xz, 2Y2).

In single variable calculus, when one wants to differentiate a function
f + EF — R at a point zy, where E is a subset of R that contains xg,
this is given by
fl(xo) = lim f(iC) B f(x()) )
z—z0;2€E\{z0} T — X

One could try to mimic this definition in the several variable case f :
E — R™, where F is now a subset of R", however we encounter a
difficulty in this case: the quantity f(z) — f(zo) will live in R™, and
x—xg lives in R", and we do not know how to divide an m-dimensional
vector by an n-dimensional vector.

To get around this problem, we will rewrite the concept of derivative
in a way which does not involve division of vectors.

Conversely, if f behaves like a linear function near zy, then f is differ-
entiable at x:

Lemma 3. Let E be a subset of R, f : E — R be a function, xq € F,
and L € R. Then the following two statements are equivalent.

(a) f is differentiable at zo, and f'(zo) = L.
f(2)—(f(@o)+L(z—2z0))| _ (.

|z—zo|

(b) We have lim,_,;o.z¢ 5—{z0}

Proof. See Week 7 homework. O



e In light of the above lemma, we see that the derivative f’(zq) can be
interpreted as the number L for which |f(z) — (f(x¢) + L(z — xy))|
is small, in the sense that it tends to zero as = tends to xg, even if
we divide out by the very small number |x — xy|. More informally,
the derivative is the quantity L such that we have the approximation

f(x) = f(zo) = L(z — o).

e This does not seem too different from the usual notion of differentiation,
but the point is that we are no longer explicitly dividing by x —z,. (We
are still dividing by |z — x|, but this will turn out to be OK). When
we move to the several variable case f : E — R™, where F C R",
we shall still want the derivative to be some quantity L such that
f(z) — f(xo) = L(z — xo). However, since f(x) — f(xo) is now an m-
dimensional vector and x — zy is an n-dimensional vector, we no longer
want L to be a scalar; we want it to be a linear transformation. More
precisely:

e Definition. Let E be a subset of R", f : E — R™ be a function,
zo € F be a point, and let L : R® — R™ be a linear transformation.
We say that f is differentiable at xq with derivative L if we have

1/ (z) — (f(zo) + L(z — m0))|| _

lim = 0.
z—x0;rEE—{xz0} ||$ - -TOH

Here ||z|| is the length of z (as measured in the [ metric):

(21, 2o, ..., 20)|| = (27 + 23 +...—|—aji)l/2.

e Example. Let f : R* — R? be the map f(z,y) := (22,17), let 2, be
the point zo := (1,2), and let L : R*> — R? be the map L(z,y) :=
(2x,4y). We claim that f is differentiable at xo with derivative L. To
see this, we compute

. I1f(z,y) = (f(1,2) + L((z,y) — (1,2)))]
(29)—(1,2):(2,9) £(1,2) (z,y) — (1,2)] '

Making the change of variables (z,y) = (1,2) + (a, b), this becomes

(a,)—>(0,0):(a,b) #(0,0) | (a, b)]|




Substituting the formula for f and for L, this becomes

L I+ 24D — (1,4)  (20,49)|
(a,6)—(0,0):(a,b)#(0,0) l(a, )| ’

which simplifies to

2 b2
el
(a,6)—=(0,0):(a,)£(0,0) ||(a, )|
We use the squeeze test. The expression ”ﬁ?zﬂ is clearly non-negative.

a bl
On the other hand, we have by the triangle inequality

1(a®,6%)]| < 1(a®, 0)[l + 11(0,6%) || = a® + b°

and hence

2 b2
[(a®, )] <V + 2.
(@, 0)]
Since va? +b?> — 0 as (a,b) — 0, we thus see from the squeeze test
that the above limit exists and is equal to 0. Thus f is differentiable
at xo with derivative L.

As you can see, verifying that a function is differentiable from first
principles can be somewhat tedious. Later on we shall find better ways
to verify differentiability, and to compute derivatives.

We have to check a basic fact, which is a function can have at most
one derivative at any interior point of its domain:

Lemma 4. Let E be a subset of R", f : E — R™ be a function, zg € F
be an interior point of E, and let L; : R — R™ and L, : R" - R™
be a linear transformations. Suppose that f is differentiable at zy with

derivative L;, and also differentiable at zy, with derivative L,. Then
L1 == LQ.

Proof. See Week 7 homework. O

10



Because of Lemma 4, we can now talk about the derivative of f at
interior points zy, and we will denote this derivative by f'(xy). Thus
f'(zg) is the unique linear transformation from R" to R™ such that

o 1@ = (@) + @)@ = 20)|

T—T0;TAT0 ||l‘ — .730“

=0.

Informally, this means that derivative f'(xg) is the linear transforma-
tion such that we have

f(@) = f(zo) = f'(20)(x — 20)

or equivalently
f(@) = f(20) + f'(w0)(x — @0)

(this is known as Newton’s approzimation).

Another consequence of Lemma 4 is that if you know that f(z) = g(x)
for all x € F, and f, g are differentiable at zy, then you also know
that f'(zo) = ¢'(z0) at every interior point of E. However, this is not
necessarily true if xy is a boundary point of E; for instance, if F is
just a single point E = {xy}, merely knowing that f(x¢) = g(x¢) does
not imply that f'(zo) = ¢'(z0). We will not deal with these boundary
issues here, and only compute derivatives on the interior of the domain.

We will sometimes refer to f' as the total derivative of f, to distinguish
this concept from that of partial and directional derivatives below.
k % X X X

Connection with partial and directional derivatives

e We now connect the notion of differentiability with that of partial and
directional derivatives, which you should have already seen in Math
32A.

e Definition Let E be a subset of R", f : E — R™ be a function, let xq
be an interior point of E, and let v be a vector in R". If the limit

i f(zo +tv) — (o)
t—0;t£0,z0+tveE t

11



exists, we say that f is differentiable in the direction v at zy, and we
denote the above limit by D, f(x):

Dutton) =l Flao + wt) — flw)

Equivalently, we have
d
D, f(zo) := Ef(ﬂﬁo + tv) |1=0-

Note that this time we are dividing by a scalar ¢, rather than a vector,
so this definition makes sense, and D, f(zo) will be a vector in R™.
It is sometimes possible to also define directional derivatives on the
boundary of FE, if the vector v is pointing in an “inward” direction
(this generalizes the notion of left derivatives and right derivatives from
single variable calculus); but we will not pursue these matters here.

Example. We use the function f : R* — R? defined by f(z,y) :=
(2?,y?) from before, and let xq := (1,2) and v := (3,4). Then

va(xo) ~ lim f(l +3t,2+4t) — f(1,2)
t—0;t£0 t

_ (1+ 6t + 9¢%,4 + 16t + 16¢%) — (1,4)
a ta%)r;?;éo t

= lim (6+9¢,16 + 16t) = (6, 16).
t—0;t£0

Directional derivatives are connected with total derivatives as follows:

Lemma 5. Let F be a subset of R", f : E — R™ be a function, z, be
an interior point of F, and let v be a vector in R". If f is differentiable
at xo, then f is also differentiable in the direction v at xy, and

Dy f(z0) = f'(xo)v.

Proof. See Week 7 homework. O

Thus total differentiability implies directional differentiability. How-
ever, the converse is not true; see homework.

12



e A special case of directional derivative is when the direction v is equal

to one of the basis vectors e;. In this case we sometimes write %(wo)
J

or a%j f(zo) for D,, f(z0), and refer to %(wo) as the partial derivative
of f with respect to z;. Thus

of . . fxo+te;) — flwo) d
8—33](330) T t—)O;t;ﬁ%l,g;-l-tveE t T dt (w0 + tej)=0-

Informally, the partial derivative can be obtained by holding all the
variables other than z; fixed, and then applying the single-variable
calculus derivative in the x; variable. Note that if f takes values in
R™, then so will 8%' Indeed, if we write f in components as f =

(f1,---, fm), it is easy to see (why?) that

of _ dfi 0 fm
8—1:]($0) = (a—x](xo)a <y a—%(xO))a

i.e. to differentiate a vector-valued function one just has to differentiate
each of the components separately.

e We sometimes replace the variables z; in A1 with other symbols. For

Ox;
instance, if we are dealing with the function f(z,y) = (2%, v?), then
we might refer to % and ? instead of g—f and g_f' (In this case,
of Y Z1 Z2

5 (z,y) = (22,0) and %(m, y) = (0,2y)). One should caution however
that one should only relabel the variables if it is absolutely clear which
symbol refers to the first variable, which symbol refers to the second
variable, etc.; otherwise one may become unintentionally confused. For
instance, in the above example, the expression 2L (z, z) is just (2z,0),

ox
however one may mistakenly compute

of
ox
the problem here is that the symbol x is being used for more than just
the first variable of f. (On the other hand, it is true that £ f(z, z) is
equal to (2x,2z); thus the operation of total differentiation - is not

dr
the same as that of partial differentiation a%).

(z,z) = %(xQ,xQ) = (2z, 2z);

13



From Lemma 5, we know that if a function is differentiable at a point
o, then all the partial derivatives 2L exist at zg, and that

Ox;
g—é(iﬂo) = f'(z0)e;.

Also, if v = (v1,...,v,) = Zj vje;, then we have
Dy f(xo) = f'(zo Zv]e] Zvjf'(xo)ej
J

(since f'(zp) is linear) and thus
D, f(zo) ZU] oz, :1:0

Thus one can write directional derivatives in terms of partial deriva-
tives, provided that the function is actually differentiable at that point.

As mentioned before, however, just because the partial derivatives exist
at a point xy, we cannot conclude that the function is differentiable
there. However, if we know that the partial derivatives not only exist,
but are continuous, then we can in fact conclude differentiability:

Theorem 6. Let E be a subset of R", f : E — R™ be a function, F’
be a subset of E, and xy be an interior point of F. If all the partial

derivatives % exist on F' and are continuous at xy, then f is differen-
J

tiable at zy, and the linear transformation f'(x) : R" — R™ is defined
by

f (:EO U_] 1<5<n — ZU] 837]

Proof. Let L : R® — R™ be the linear transformation

We have to prove that
L @) = () + L = w0))]

z—zo;x€EE—{z0} ”x - 330”

14



Let € > 0. It will suffice to find a radius 4 > 0 such that
|f(x) = (f(w0) + L(z — z0))|

[l = ol

<e

for all z € B(zo,9)\{z0}. Equivalently, we wish to show that

1f(z) = f(z0) — L(z — @) || < éellz — o
for all z € B(zg,0)\{zo0}-

Because z is an interior point of F', there exists a ball B(zy,r) which is

contained inside F'. Because each partial derivative g ! is continuous on

F, there thus exists an 0 < 6; < 7 such that “E( x)— 8f (x0)|| <e/nm
for every z € B(xo, ;). If we take 6 = min(dy,.. .,(5 ) then we thus
have ||%(x) - af (x0)|| < ¢/nm for every x € B(zg,0) and every
1<j<n

Let x € B(xg,0). We write = xo + v1e1 + veey + ... + v,€, for some
scalars vy, ..., v,. Note that

||3:—x0||:\/v%+v%+...+v%

and in particular we have |v;| < ||z — zo|| for all 1 < j < n. Our task
is to show that

| f(zo +vier + ...+ vnen) — Zv] :co ) < ellz — zo]|-

Write f in components as f = (f1, f2, ..., fm) (so each f; is a function
from F to R). From the mean value theorem in the x; variable, we see
that

fi(zo +vier) — fi(zo) = 0f; (o + tier)v:

8:51
for some t; between 0 and v;. But we have
|3£j (2o + tier) — 85;- (@o)] < ”8—9{](% +tier) — 8—3{](960)” <e/nm

15



and hence

| fi(zo + vier) — fi(wo) —

axj (o)v1| < elvs|/nm.

Summing this over all 1 < ¢ < m (and noting that ||(y1,...,ym)|| <
ly1] + ... + |ym| from the triangle inequality) we obtain

OF (coyonl] < efon]/m;

I.f (2o + vier) — f(zo) — pr

since |v1| < ||z — ]|, we thus have

| f(zo +vie1) — f(wo) —

A (@o)vi|| < ellz — woll/n.

6$1
A similar argument gives
of
1f (o + vier + vaez) — f(wo + vier) — 5~ (wo)vel < €llw — zol|/n.
2

and so forth up to

| f(otvier+. . .Avpe,)—f(zotvies+. . AV, 165 1) —=—(20)Vs|| < ellz—20]| /7.

o0z,

If we sum these n inequalities and use the triangle inequality ||z +y|| <
||z|| + ||y||, we obtain a telescoping series which simplifies to

"0
|vmm+ma+.n+w&ﬂ—f@w—§:5§@@wnSdu—xm
j=1 "

as desired. O

From Theorem 6 and Lemma 5 we see that if the partial derivatives of
a function f : E — R™ exist and are continuous on some set F', then
all the directional derivatives also exist at every interior point xq of F,
and we have the formula

D(vl’ ,Un)f .7/‘0 Zvjax
J

16



In particular, if f : £ — R is a real-valued function, and we define
the gradient V f(zy) of f at zo to be the n-dimensional row vector
Vf(xg) := (aa—gl(xo), ..., 2L (x4)), then we have the familiar formula

) Oz
D’uf(xO) =v- Vf(x())

whenever z, is in the interior of the region where the gradient exists
and is continuous.

More generally, if f: E — R™ is a function taking values in R™, with
f={(f1,---, fm), and x¢ is in the interior of the region where the partial
derivatives of f exist and are continuous, then we have from Theorem
6 that

fH(@0)(vj)1<j<n = Zvja—f_(xo)
- Of: )y
Z Vig 83:] z:l:

which we can rewrite as

Lpf(zo)(Vj)1<j<n

where D f(xzg) is the m x n matrix

d Py d
g_a;:l(%) g—%:;(l“o) . ﬁ(ﬂfo)
af; o (o) g2 (mo) ... 522 (wo)
Df(zo) = (—afz (%0) )1<i<msi<j<n = o _a“ _‘%”
Lj : : .o
Ofm Ofm Ofm
8J;1 (.’L’o) _622 (IL'()) P _3J;n (330)

Thus we have
(va(ﬂﬁo))T = (f’(fUO)U)T = Df(IO)UT

The matrix D f(xg) is sometimes also called the derivative or differential
of f at xy, although we will try to avoid this notation in order to
separate the matrix D f(zq) from the linear transformation f'(zy). One
can also write Df as

of

—('TO)T’ a—x?‘(xO)Ta ) ﬂ(ﬁO)T)’

Df (@) = (5



i.e. each of the columns of Df(zy) is one of the partial derivatives of
f, expressed as a column vector. Or one could write

V fi(zo)
Vv 2(Zo
Dfeo) = | | Jfa(wo)
me(mo)

i.e. the rows of Df(xzg) are the gradient of various components of f.
In particular, if f is scalar-valued (i.e. m = 1), then Df is the same as

Vf.

e Example. Let f : R* — R? be the function f(z,y) = (22 + zy, y?).
Then % = (22 +y,0) and g—g = (x,2y). Since these partial derivatives

are continuous on R?, we see that f is differentiable on all of R?, and

Df(z,y) = ( gfﬁ_y ;y)

Thus for instance, the directional derivative in the direction (v,w) is
D) f(2,y) = (27 + y)v + 2w, 2yw).

X %k ok ok ok

The several variable calculus chain rule

e We are now ready to state the several variable calculus chain rule.
Recall that if f: X — Y and g : Y — Z are two functions, then the
composition go f : X — Z is defined by g o f(z) := g(f(z)) for all
r e X.

e Several variable calculus chain rule. Let E be a subset of R",
and let F' be a subset of R™. Let f : E — F be a function, and let
g : F' — RP” be another function. Let x be a point in the interior of E.
Suppose that f is differentiable at zy, and that f(z,) is in the interior of
F. Suppose also that g is differentiable at f(z(). Then go f : E — R?
is also differentiable at =y, and we have the formula

(g0 f)' (o) = ¢'(f (o)) [ (wo)-
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e Proof. See Week 7 homework. O

e Intuitively, one can think of the several variable chain rule as follows.
Let = be close to . Then Newton’s approximation asserts that

f(@) = f(zo) & f'(xo)(z — o)

and in particular f(x) is close to f(zo). Since g is differentiable at
f(zo), we see from Newton’s approximation again that

9(f(2)) — 9(f(z0)) = ¢'(f (o)) (f (z) — f(20))-
Combining the two, we obtain

go f(x) —go f(zo) = ¢'(f(0)) [ (w0)(x — o)

which then should give (g o f)(x¢) = ¢'(f(x0))f'(xo). This argument
however is rather imprecise; to make it more precise one needs to ma-
nipulate limits rigorously (see homework).

e As a corollary of the chain rule and Lemma 2 (and Lemma 1), we see
that

D(go f)(zo) = Dg(f(0))Df(x0);
i.e. we can write the chain rule in terms of matrices and matrix multi-

plication, instead of in terms of linear transformations and composition.

e Example Let f : R" — R and ¢ : R" — R be differentiable func-
tions. We form the combined function h : R® — R? by defining
h(z) := (f(z),g(z)). Now let k : R> — R be the multiplication func-
tion k(a, b) := ab. Note that

while
Dk(a,b) = (b, a)

(why?). By the chain rule, we thus see that

D(koh)(zo) = (g(x0), f(w0)) ( gg((jg)) ) = g(x0) V f(w0)+f(0) Vg(z0).
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But koh = fg (why?), and D(fg) = V(fg). We have thus proven the
product rule

V(fg) =9gVf+ fVy.

e A similar argument gives the sum rule V(f + g) = Vf 4+ Vg, or the
difference rule V(f — g) = Vf — Vg. In the homework you will be
asked to similarly derive a several variable calculus quotient rule from
the chain rule. As you can see, the several variable chain rule is quite
powerful, and can be used to deduce many other rules of differentiation.

e We do record one useful application of the chain rule. Let 7 : R" — R™
be a linear transformation. Observe that T' is continuously differen-
tiable at every point, and in fact 7'(xz) = T for every z. (This equation
may look a little strange, but perhaps it is easier to swallow if you
view it in the form -£(T'z) = T). Thus, for any differentiable function
f:E—R" weseethat Tf: F — R™ is also differentiable, and hence
by the chain rule

(Tf) (o) = T(f'(xs).

This is a generalization of the single-variable calculus rule (cf)" = e(f')
for constant scalars c.

e Another special case of the chain rule which is quite useful is the follow-
ing: if f : R" — R™ is some differentiable function, and z; : R =+ R
are differentiable functions for each 7 = 1,...n, then

d = . Of
S @(0),2a(0), .. 2at)) = ij(t)a—xj(xl(t),xz(t), o 7(t)).

j=1
(Why is this a special case of the chain rule?).
kK k% K

Double derivatives and Clairaut’s theorem

e We now investigate what happens if one differentiates a function twice.

e Definition Let E be an open subset of R", and let f : E — R™ be

a function. We say that f is continuously differentiable if the partial
of of

derivatives 5+, ..., = exist and are continuous on E. We say that f is
oz’ ) Oy,

20



twice continuously differentiable if it is continuously differentiable, and
the partial derivatives aa_;flﬂ cen % are themselves continuously differ-
entiable.

Continuously differentiable functions are sometimes called C' func-
tions; twice continuously differentiable functions are sometimes called
C? functions. One can also define C3, C*, etc. but we shall not do so
here.

Example Let f : R* — R? be the function f(z,y) = (2® + zy, y?).

Then f is continuously differentiable because the partial derivatives
8 (z,y) = (2z+y,0) and &L (x y) = (x, 2y) exist and are continuous on
all of R%. Tt is also twice contlnuously differentiable, because the double
partial derivatives 22 97 ~(7,y) = (2,0), aay gj: (z,y) = (1,0), & gi (z,y) =

(1,0), gy gg (z,y) = (0,2) all exist and are continuous.

f 9 of
and 5 oy ATe

Observe in this example that the double derivatives 8‘9 g

the same. This is a general fact:

Clairaut’s theorem. Let E be an open subset of R", and let f : E —

R be a twice continuously differentiable function on E. Then we have

B f)
%ai(ﬂﬁo) = 32 &Uf (mo) for all 1 < 4,5 <n.

Proof. The claim is trivial if # = j, so we shall assume that i # j.
We shall prove the theorem for z; = 0; the general case is similar.
(Actually, once one proves Clairaut’s theorem for zo = 0, one can
immediately obtain it for general xy, by applying the theorem with

f(z) replaced by f(z — x))-

Let a be the number a := %%(0), and a' denote the quantity o’ :=
J i
%%(0). Our task is to show that o' = a.
J i

Let ¢ > 0. Because the double derivatives of f are continuous, we can
find a 0 > 0 such that
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and

—(r)—-d|<Le¢
8a:i (%J( ) | -
whenever |z| < 26.

Now we consider the quantity

X = f(5e, + 5€j) - f(5ez) - f(5e]) - f(O)

From the fundamental theorem of calculus in the e; variable, we have

0
f(be; + dej) — f(de;) = /0 8;: (wie; + dej) dz;
and 5
e~ 10 = [ 2 ey
and hence

of
X = / o (wie; + dej) — 9 —— (z;e;) dz;.

1

But by the mean value theorem, for each x; we have

of 0 of
or. (zie; + de;j) o, (zie;) = ax] o

——(wie; + zj€;)

for some 0 < z; < 4. By our construction of 4, we thus have

of of
e ) — — (1.e:) — < A
o, (zie; + de;) o, (xie;) — dal < €6

Integrating this from 0 to J, we thus obtain

| X — 6%a| < 6’

We can run the same argument with the role of ¢ and j reversed (note
that X is symmetric in ¢ and j), to obtain

|X — §%'| < e
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From the triangle inequality we thus obtain
6%a — §%d’| < 2e6?,

and thus
la —d'| < 2e.

But this is true for all € > 0, and a and &' do not depend on &, and so
we must have a = o/, as desired. [l

One should caution that Clairaut’s theorem fails if we do not assume
the double derivatives to be continuous; see homework.

X %k sk ok ok

Digression: the contraction mapping theorem

Before we turn to the next topic - namely, the inverse function theorem
- we need to develop a useful fact from the theory of complete metric
spaces, namely the contraction mapping theorem.

Definition Let (X, d) be a metric space, and let f: X — X be a map.
We say that f is a contraction if we have d(f(x), f(y)) < d(z,y) for all
z,y € X. We say that f is a strict contraction if there exists a constant
0 < ¢ < 1 such that d(f(z), f(y)) < cd(z,y) for all z,y € X.

Example The map f : R — R defined by f(x) := x+1 is a contraction
but not a strict contraction. The map f : R — R defined by f(z) :=
x/2 is a strict contraction. The map f : [0,1] — [0,1] defined by
f(z) == x — 22 is a contraction but not a strict contraction.

One can easily verify that contractions are continuous (why?). Also,
every strict contraction is of course also a contraction, but not con-
versely.

Definition Let f : X — X be a map, and x € X. We say that z is a
fized point of f if f(x) = x.

Contractions do not necessarily have any fixed points; for instance, the
map f : R — R defined by f(z) = 2 + 1 does not. However, it turns
out that strict contractions always do, at least when X is complete:
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e Contraction mapping theorem. Let (X, d) be a metric space, and
let f : X — X be a strict contraction. Then f can have at most
one fixed point. Moreover, if we also assume that X is non-empty and
complete, then f has exactly one fixed point.

e Proof. See Week 7 homework. O

e The contraction mapping theorem is one example of a fized point the-
orem - a theorem which guarantees, assuming certain conditions, that
a map will have a fixed point. There are a number of other fixed point
theorems which are also useful. One amusing one is the so-called hairy
ball theorem, which (among other things) states that any continuous
map f : S2 — S? from the sphere S? := {(z,y,2) € R* : 22 + 9% + 22 =
1} to itself, must contain either a fixed point, or an anti-fixed point (a
point z € S? such that f(x) = —z). A proof of this theorem can be
found in Math 121.

e We shall give one consequence of the contraction mapping theorem
which is important for our application to the inverse function theorem.
Basically, this says that any map f on a ball which is a “small” pertur-
bation of the identity map, remains one-to-one and cannot create any
internal holes in the ball.

e Lemma 7. Let B(0,7) be a ball in R" centered at the origin, and let
g : B(0,7) = R" be a map such that g(0) = 0 and

lo(z) — gl < 3z~

for all z,y € B(0,7) (here ||z|| denotes the length of z in R"™). Then
the function f : B(0,7) — R" defined by f(z) := z + g(x) is one-to-
one, and furthermore the image f(B(0,r)) of this map contains the ball
B(0,7/2).

e Proof. We first show that f is one-to-one. Suppose for contradiction
that we had two different points z,y € B(0,) such that f(z) = f(y).
But then we would have = + g(z) = y + ¢g(y), and hence

lg(z) — gl = |z — yll.
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The only way this can be consistent with our hypothesis ||g(z)—g(y)|| <
sllz —y| is if ||z — y|| = 0, i.e. if z = y, contradiction. Thus f is one-
to-one.

e Now we show that f(B(0,7)) contains B(0,7/2). Let y be any point
in B(0,7/2); our objective is to find a point x € B(0,r) such that
f(z) =y, or in other words that z = y — g(z). So the problem is now
to find a fixed point of the map = — y — g(z).

e Let F: B(0,7) — B(0,r) denote the function F(z) := y — g(x). Ob-
serve that if x € B(0,r), then

r

T r 1 T
IF@I < llgll+llg()]| < S+9() 9O < S+5lle—0] < S+5 =,

so F does indeed map B(0, ) to itself. Also, for any z,z’ in B(0,r) we
have

|1F(z) = F(2')|| = llg(=') — g()]| < %HI' — x|

so F'is a strict contraction. By the contraction mapping theorem, F

has a fixed point, i.e. there exists an z such that z = y — g(z). But

this means that f(z) =y, as desired. O
* ok kK *

The inverse function theorem in several variable calculus
e We recall the inverse function theorem in single variable calculus, which

asserts that if a function f : R — R is invertible, differentiable, and
f'(zo) is non-zero, then f~! is differentiable at f(x¢), and

(f7)'(f (o)) =

f'(wo)

e In fact, one can say something even when f is not invertible, as long as
we know that f is continuously differentiable. If f'(z) is non-zero, then
f'(xo) must be either strictly positive or strictly negative, which implies
(since we are assuming f’ to be continuous) that f'(x) is either strictly
positive for x near zy, or strictly negative for  near zy. In particular,
f must be either strictly increasing near g, or strictly decreasing near
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Zg. In either case, f will become invertible if we restrict the domain
and range of f to be sufficiently close to z¢ and to f(zq) respectively.
(The technical terminology for this is that f is locally invertible near

.’L‘()).

The requirement that f be continuously differentiable is important. For
instance, if one lets f : R — R be the function f(z) := x+x?sin(1/z*)
for  # 0 and f(0) := 0, then one can show that f is differentiable and
f'(0) =1, but f is not increasing on any open set containing 0 (this is
easiest to see by sketching the graph of f; alternatively, one can show
that the derivative of f can turn negative arbitrarily close to 0).

It turns out that a similar theorem is true for functions f : R* — R"
from one Euclidean space to the same space. However, the condition
that f’(zo) is non-zero must be replaced with a slightly different one,
namely that f’'(zy) is invertible. We first remark that the inverse of a
linear transformation is also linear:

Lemma 8 Let T : R® — R” be a linear transformation which is also
invertible. Then the inverse transformation 77! : R® — R" is also
linear.

Proof. See Week 7 homework. O

Inverse function theorem. Let F be an open subset of R", and let
T : E — R" be a function which is continuously differentiable on FE.
Suppose zy € E is such that the linear transformation f'(zy) : R" —
R" is invertible. Then there exists an open set U in E containing z,
and an open set V' in R" containing f(z,), such that f is a bijection
from U to V. In particular, there is an inverse map f~! : V — U.
Furthermore, this inverse map is differentiable at f(z), and

(f) (F (@) = (f' (o))"
Proof. (Optional) We first observe that once we know the inverse

map f~! is differentiable, the formula (f=1)'(f(zo)) = (f'(x))™! is
automatic. This comes from starting with the identity

I=f"of
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on U, where I : R" — R" is the identity map Iz := z, and then
differentiating both sides using the chain rule at x, to obtain

I'(zo) = (77)'(f(z0)) f' (20)-
Since I'(xg) = I, we thus have (f 1) (f(zo)) = (f'(w)) " as desired.

(Remark: This argument shows that if f(x) is not invertible, then
there is no way that an inverse f~! can exist and be differentiable at

f (o).

Next, we observe that it suffices to prove the theorem under the addi-
tional assumption f(zy) = 0. The general case then follows from the
special case by replacing f by a new function f(z) := f(x) — f(z,) and
then applying the special case to f (note that V' will have to shift by

f(zo))- Note that f~'(y) = f*(y+ f(zo)) - why?. Henceforth we will
always assume f(zq) = 0.

In a similar manner, one can make the assumption xqg = 0. The gen-
eral case then follows from this case by replacing f by a new function
f(z) := f(x + x0) and applying the special case to f (note that E and
U will have to shift by zy). Note that f~'(y) = f~'(y) + 2o - why?
Henceforth we will always assume o = 0. Thus we now have that
f(0) =0 and that f’(0) is invertible.

Finally, one can assume that f'(0) = I where I : R® — R" is the
identity transformation Iz = x). The general case then follows from
this case by replacing f with a new function f : E — R™ defined by
f(z) == f'(0)"'f(z), and applying the special case to this case. Note
from Lemma 8 that f’(0)! is a linear transformation. In particular,
we note that f(0) = 0 and that

F0) =) f(0) =1,

so by the special case of the inverse function theorem we know that
there exists an open set U’ containing 0, and an open set V' containing
0, such that f is a bijection from U’ to V', and that f=% : V' - U

is differentiable at 0 with derivative I. But we have f(z) = f'(0)f(x),
and hence f is a bijection from U’ to f'(0)(V') (note that f'(0) is also
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a bijection). Since f’(0) and its inverse are both continuous, f'(0)(V")
is open, and it certainly contains 0. Now consider the inverse function
f1: f10)(V") — U'. Since f(z) = f'(0)f(x), we see that f(y) =
FHf(0) ty) for all y € f'(0)(V') (why? use the fact that f is a
bijection from U’ to V'). In particular we see that f~! is differentiable
at 0.

e So all we have to do now is prove the inverse function theorem in the
special case, when zq =0, f(zo) =0, and f'(zo) = 1. Let g: E - R"
denote the function f(z) — z. Then ¢(0) = 0 and ¢'(0) = 0. In
particular

dg
—(0)=0
5 0)
for j =1,...,n. Since g is continuously differentiable, there thus exists
a ball B(0,r) in F such that
1
< —
5@l <

for all z € B(0, 7). (There is nothing particularly special about 5 L we
just need a nice small number here). In particular, for any = € B(0,r)
and v = (vy,...,v,) we have

| Dyg(z I—IIZ
n ag
<) illlz=(2)
; J Ox;
<
van2 ;< 5ol

But now for any x,y € B(0,r), we have by the fundamental theorem
of calculus

o)~ 9(o) = [ Goota+tly o) at
:/0 Dy_g9(x +t(y — x)) dt.
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By the previous remark, the vectors D, ,g(z +t(y —x)) have a magni-
tude of at most illy — z||. Thus every component of these vectors has
magnitude at most ||y — «||. Thus every component of g(y) — g()
has magnitude at most 5-||y — ||, and hence g(y) — g(z) itself has
magnitude at most ||y — z|| (actually, it will be substantially less than
this, but this bound will be enough for our purposes). In other words,
g is a contraction. By Lemma 7, the map f = g + I is thus one-to-one
on B(0,7), and the image f(B(0,r)) contains B(0,7/2). In particular
we have an inverse map f~! : B(0,7/2) — B(0,r) defined on B(0,7/2).

Applying the contraction bound with y = 0 we obtain in particular
that 1
lo)l < 3l

for all z € B(0,r), and so by the triangle inequality

1 3
el < 1@ < e
for all x € B(0, 7).

Now we set V := B(0,7/2) and U := f~'(B(0,7)). Then by construc-
tion f is a bijection from U to V. V is clearly open, and U = f~1(V)
is also open since f is continuous. (Notice that if a set is open relative
to B(0,7), then it is open in R™ as well). Now we want to show that
f~': V — U is differentiable at 0 with derivative I=! = I. In other
words, we wish to show that

L@ = S0 = I = 0)

= 0.
z—0;zeV\{0} |||

Since f(0) = 0, we have f~!(0) = 0, and the above simplifies to
-1 .
Ll

=0.
z—0;z€V\{0} ||.T||

Let (z,)$2 , be any sequence in V'\0 that converges to 0. By Proposition
1(b) of Week 3 notes, it suffices to show that

1~ () = @all _




Write y,, := f~!(z,). Then y, € B(0,r) and z,, = f(y,)- In particular
we have

1 3
Syall < lhzall < 5l

and so since ||z,|| goes to 0, ||ys|| goes to zero also, and their ratio
remains bounded. It will thus suffice to show that

v = Fl

nooo |y

=0.

But since y,, is going to 0, and f is differentiable at 0, we have

i 1) = 10) = PO =0 _
e o]

as desired (since f(0) = 0 and f'(0) = I). O

e The inverse function theorem gives a useful criterion for when a function
is (locally) invertible at a point x - all we need is for its derivative f'(xq)
to be invertible (and then we even get further information, for instance
we can compute the derivative of f=! at f(xg)). Of course, this begs
the question of how one can tell whether the linear transformation
['(zo) is invertible or not. Recall that we have f'(zo) = Lpf(z), SO
by Lemmas 1 and 2 we see that the linear transformation f'(z,) is
invertible if and only if the matrix D f(z) is. There are many ways to
check whether a matrix such as D f(z) is invertible; for instance, one
can use determinants, or alternatively Gaussian elimination methods.
We will not pursue this matter here, but see math 115A for more details.

o If f'(x¢) exists but is non-invertible, then the inverse function theorem
does not apply. In such a situation it is not possible for f~! to exist
and be differentiable at x; this was remarked in the above proof. But
it is still possible for f to be invertible. For instance, the single-variable
function f : R — R defined by f(z) = z? is invertible despite f'(0)
not being invertible.

* % k % %

The implicit function theorem
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e Recall that a function f : R — R gives rise to a graph

{(z,f(z)): 2 € R}

which is a subset of R?, usually looking like a curve. However, not all
curves are graphs, they must obey the vertical line test, that for every
x there is exactly one y such that (z,y) is in the curve. For instance,
the circle {(z,y) € R? : 22 + 4? = 1} is not a graph, although if one
restricts to a semicircle such as {(z,y) € R*: 22+ y? = 1,y > 0} then
one again obtains a graph. Thus while the entire circle is not a graph,
certain local portions of it are. (The portions of the circle near (1,0)
and (0,1) are not graphs over the variable x, but they are graphs over
the variable y).

e Similarly, any function f : R®" — R gives rise to a graph {(z, f(z)) :
r € R"} in R"™ which in general looks like some sort of n-dimensional
surface in R™™! (the technical term for this is a hypersurface). Con-
versely, one may ask which hypersurfaces are actually graphs of some
function, and whether that function is continuous or differentiable.

e If the hypersurface is given geometrically, then one can again invoke
the vertical line test to work out whether it is a graph or not. But
what if the hypersurface is given algebraically, for instance the surface
{(z,y,2) € R*: xy+yz+22 = —1}? Or more generally, a hypersurface
of the form {z € R" : f(z) = 0}, where f : R" — R is some function?
In this case, it is still possible to say whether the hypersurface is a
graph, locally at least, by means of the implicit function theorem.

e Implicit function theorem Let E be an open subset of R", let
f : E — R be a continuously differentiable function, and let y =
(y1,-.-,Yn) be a point in E such that f(y) = 0 and %(y) # 0. Then

there exists an open subset U of R"™! containing (y1,...,%, 1), an
open subset V' of E containing y, and a function ¢ : U — R such that

9(Y1, -« Yn—1) = Yn, and
{($1,...,$n) ev;f(ﬂh,...,.’lin) :0}

={(z1,. . xn 1,9(x1,. .., T 1)) : (T1,..., 25 1) E U}
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In other words, the set {z € V : f(z) = 0} is a graph of a function over
U. Moreover, g is differentiable at (y1,...,¥y, 1), and we have

0 0 0
St 1) =~ )/ 50

J

foralll1 <j<n-—1.

Remark. This last equation is sometimes derived using implicit dif-
ferentiation. Basically, the point is that if you know that

f(.fE]_,...,xn) =0

then (as long as % # 0) the variable z,, is “implicitly” defined in
terms of the other n — 1 variables, and one can differentiate the above
identity in, say, the z; direction using the chain rule to obtain

of of 0z,
0z * 0z, Oz =0

which is the above formula in disguise (we are using g to represent
the implicit function defining z, in terms of z,...,z,). Thus, the
implicit function theorem allows one to define a dependence implicitly,
by means of a constraint rather than by a direct formula of the form

T = g(mla - -axnfl)-

Proof. This theorem looks somewhat fearsome, but actually it is a
fairly quick consequence of the inverse function theorem. Let F': E —
R" be the function

F(z,. . xn) = (@1, o T 1, (@1, 00, X))

This function is continuously differentiable. Also note that

F(y) = (y1,--,Yn-1,0)

and
of

,...,8xn

DF(y) = (j—jl " g—;w ()
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0 1 0 0
0 0 1 0
L) L) .. 2 W)

Since %(y) is assumed by hypothesis to be non-zero, this matrix is
invertible; this can be seen either by computing the determinant, or
using row reduction, or by computing the inverse explicitly, which is

1 0 .0 0
0 1 .0 0
DF(y)~'=| : : S : :
0 0 1 0
—2Lwy)/ja LW ... 32=()/a 1/a

where we have written a = %(y) for short. Thus the inverse function

theorem applies, and we can find an open set V in E containing y,
and an open set W in R" containing F(y) = (y1,...,¥Yn_1,0), such
that F is a bijection from V to W, and that F! is differentiable at

(yla .- ':yn—lao)'

Let us write F~! in co-ordinates as
Fl(z) = (h(z), ha(z), ..., ha(z))

where z € W. Since F(F~'(z)) = x, we thus have h;(z1,...,2,) = z;
foralll1<j<n-—1landz e W,and f(z1,---,Tn1, hn(T1, ..., Tp)) =

T,. Also, h, is differentiable at (yi,...,y,_1,0) since F! is.

Now we set U := {(21,...,Zn_1) € R : (z1,...,7,1,0) € W} It
is easy to check that U is open and contains (y1, ..., ¥,_1,0). Now we
define g : U — R by g(x1,...,24 1) := hp(x1,...,2,1,0). Then g is
differentiable at (y1,...,Yn 1). Now we prove that

{(z1,...,2,) €V : f(x1,...,2,) =0}

= {(xla' . 'axnflag(xl,' . ':xnfl)) : (-,L.la- . 'axnfl) € U}
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First suppose that (zi,...,z,) € V and f(z1,...,2,) = 0. Then
we have F(zq,...,2,) = (21,...,2Z51,0), which lies in W. Thus
(T1,...,Tn_1) lies in W. Applying F~!, we see that (z1,...,2,) =
FYz1,...,2,_1,0). In particular z, = h,(z1,...,7n_1,0), and hence
Tn = g(x1,...,2,_1). Thus every element of the left-hand set lies in
the right-hand set. The reverse inclusion comes by reversing all the
above steps and is left to the reader.

Finally, we show the formula for the partial derivatives of g. From the
above set identity we have

f(xla"'axn417g(xla"'axn41)) =0

for all (x1,...,x, 1) € U. Since g is differentiable at (y1,...,y, 1), and
f is differentiable at (y1,.-.,Yn-1,9(Y1,---,Yn_1)) = Yy, we may use the
chain rule, differentiating in z;, to obtain

Of (4 9f
8a:j 8.’L‘n

dg

(y)aTj(yla ceey yn—l)

(y) +

and the claim follows by simple algebra. O

Example Consider the surface S := {(z,y,2) € R® : zy + yz + 20 =
—1}, which we rewrite as {(z,y,2) € R® : f(z,y,2) = 0}, where
f : R® = R is the function f(z,v,2) := xy + yz + zz + 1. Clearly f
is continuously differentiable, and % =y + . Thus for any (zo, yo, 20)
in S with yo + 2o # 0, one can write this surface (near (x, o, 20))
as a graph of the form {(z,y,g(z,y)) : (z,y) € U} for some open set
U containing (¢, o), and some function g which is differentiable at
(20, Yo)- Indeed one can implicitly differentiate to obtain that

dg

and — (o, =
Yo + To ay( 0:%0)

$0+Z()

99 Y%t % B
Yo + To

3_x($0,y0) =

In the implicit function theorem, if the derivative % equals zero at
some point, then it is unlikely that the set {z € R" : f(z) = 0} can
be written as a graph of the z, variable in terms of the other n — 1

variables near that point. However, if some other derivative % is zero,
J
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then it would be possible to write the z; variable in terms of the other
n — 1 variables, by a variant of the implicit function theorem. Thus
as long as the gradient V f is not entirely zero, one can write this set
{zr € R" : f(z) = 0} as a graph of some variable z; in terms of the
other n — 1 variables. (The circle {(z,y) € R? : 22+ 4> -1 =0} is a
good example of this; it is not a graph of y in terms of x, or x in terms
of y, but near every point it is one of the two. And this is because the
gradient of 72 4+ y* — 1 is never zero on the circle). However, if V f does
vanish at some point zy, then we say that f has a critical point at x
and the behavior there is much more complicated. For instance, the
set {(z,y) € R*: 22 — y? = 0} has a critical point at (0,0) and there
the set does not look like a graph of any sort (it is the union of two
lines).

Sets which look like graphs of continuous functions at every point have
a name, they are called manifolds. Thus {z € R" : f(z) = 0} will
be a manifold if it contains no critical points of f. The theory of
manifolds is very important in modern geometry (Especially differential
geometry and algebraic geometry), but we will not discuss it here as it
is a graduate level topic.
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