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Uniform convergence and derivatives

We have already seen in last week’s notes how uniform convergence
interacts well with continuity, with limits, and with integrals. Now we
investigate how it interacts with derivatives.

The first question we can ask is: if f,, converges uniformly to f, and
the functions f,, are differentiable, does this imply that f is also differ-
entiable? And does f] also converge to f'?

The answer to the second question is, unfortunately, no. To see a
counterexample, we will use without proof some basic facts about
trigonometric functions (which we will make rigorous at the end of
these notes). Consider the functions f, : [0,27] — R defined by
fn(2) := n~'?sin(nz), and let f : [0,27] — R be the zero func-
tion f(z) := 0. Then, since sin takes values between -1 and 1, we
have de(fn, f) < n~'/2, where we use the uniform metric do(f, g) :=
SUDefo.2q] | f (%) — g(z)| introduced in the previous week’s notes. Since
n~1/2 converges to 0, we thus see by the squeeze test that f, converges
uniformly to f. On the other hand, f!(z) = n'/?cos(nz), and so in
particular |f’(0) — f/(0)] = n'/2. Thus f. does not converge point-
wise to f’, and so in particular does not converge uniformly either. In
particular we have

L i fo(2) # lim L £, (2).

dx n—oo n—oo dx



e The answer to the first question is also no. An example is the sequence
of functions f, : [~1,1] — R defined by f,(z) := (/-5 + 22. These

functions are differentiable (why?). Also, one can easily check that
1
o] < Jal) < ]+

for all z € [—1,1] (why? square both sides), and so by the squeeze
test f, converges uniformly to the absolute value function f(z) := |z|.
But this function is not differentiable at 0. Thus, the uniform limit of
differentiable functions need not be differentiable.

e So, in summary, uniform convergence of the functions f, says nothing
about the convergence of the derivatives f;. However, the converse is
true, as long as f, converges at at least one point:

e Theorem 1. Let [a,b] be an interval, and for every integer n > 1,
let f, : [a,b] = R be a differentiable function whose derivative f; :
[a,b] — R is continuous. Suppose that the derivatives f] converge
uniformly to a function g : [a,b] — R. Suppose also that there exists a
point g such that the limit lim,, o f,(zo) exists. Then the functions
fn converge uniformly to a differentiable function f, and the derivative
of f equals g.

e Informally, the above theorem says that if f, converges uniformly, and
fn(zo) converges for some x,, then f, also converges uniformly, and

A limy, oo fn(®) = limy, o0 £ fo ().

e Proof. We only give the beginning of the proof here; the remainder of
the proof is given as a homework assignment.

e Since f, is continuous, we see from the fundamental theorem of calculus
(see my Week 10 Math 131AH notes, or Theorem 6.21 of Rudin) that

fa() = fulzo) = f
[1'031']
when z € [z, b], and

fn(m) - fn(-rO) - - fyIL

[z,:l,‘o]



when z € [a, x).
Let L be the limit of f,(zo) as n — oo:
L:= lim f,(zo).

n—oo
By hypothesis, L exists. Now, since each f! is continuous on [a, b], and
f} converges uniformly to g, we see by Corollary 3 from last week’s
notes that g is also continuous. Now define the function f : [a,b] - R

by setting
f@i=1-[ g+ [ g
[a,wo] [a,:c]

for all € [a, b]. To finish the proof, we have to show that f,, converges
uniformly to f, and that f is differentiable with derivative g. (The rest
of the proof is assigned as homework). 0

It turns out that Theorem 1 is still true when the functions f; are not
assumed to be continuous, but the proof is more difficult; see Rudin.

By combining this theorem with the Weierstrass M-test, we obtain

Corollary 2. Let [a,b] be an interval, and for every integer n > 1, let
fn : [a,b] = R be a differentiable function whose derivative f, : [a, b] —
R is continuous. Suppose that the series Y > ||f. |l is absolutely
convergent, where || f,||co = SUD,¢[q4 |f(7)] is the sup norm of f;, as
described in last week’s notes. Suppose also that the series Y | f,(zo)
is convergent for some zy € [a,b]. Then the series Y >°, f, converges
uniformly on [a, b] to a differentiable function, and in fact

d — 2. d
for all z € [a, b].

Proof. See Week 4 homework. O

We now pause to give an example of a function which is continuous
everywhere, but differentiable nowhere (this particular example was
discovered by Weierstrass). Again, we will presume knowledge of the
trigonometric functions.



e Example. Let f : R — R be the function f(z) := )" ", 47" cos(32"nx).
Note that this series is uniformly convergent, thanks to the Weierstrass
M-test, and since each individual function 4™ cos(32"7x) is continu-
ous, the function f is also continuous. However, it is not differentiable
(see homework).

o A related, but slightly different, example of a continuous, nowhere dif-
ferentiable function, appears in Rudin.

X %k ok ok ok

Uniform approximation by polynomials.

e As we have just seen, continuous functions can be very badly behaved,
for instance they can be nowhere differentiable. On the other hand,
functions such as polynomials are always very well behaved, in partic-
ular being always differentiable. Fortunately, while most continuous
functions are not as well behaved as polynomials, they can always be
uniformly approximated by polynomials; this important (but difficult)
result is known as the Weierstrass approximation theorem, and is the
subject of this section.

e Definition. Let [a, b] be an interval. A polynomial on [a, b] is a function
f:]a,b] = R of the form f(x) := Y 7, c;z?, where n > 0 is an integer
and ¢y, ..., c, are real numbers. If ¢, # 0, then n is called the degree

of f.

e Example. The function f : [1,2] — R defined by f(z) := 3z* +22° —
4z + 5 is a polynomial on [1, 2] of degree 4.

e Weierstrass approximation theorem. If [a,b] is an interval, f :
[a,b] — R is a continuous function, and ¢ > 0, then there exists a
polynomial P on [a,b] such that doo(P, f) < e (i.e. |P(x)— f(z)| <e
for all z € [a, b]).

e Another way of stating this theorem is as follows. Recall that C([a, b]; R)
was the space of continuous functions from [a, b] to R, with the uniform
metric do. Let P([a, b]; R) be the space of all polynomials on [a, b]; this
is a subspace of C([a, b]; R), since all polynomials are continuous. The
Weierstrass approximation theorem then asserts that every continuous
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function is an adherent point of P([a, b]; R); or in other words, that the
closure of the space of polynomials is the space of continuous functions:

P([a, b];R) = C([a" b]§R)'

In particular, every continuous function on [a, b] is the uniform limit of
polynomials.

The proof of this theorem is somewhat complicated and will be done
in stages. We first need the notion of an approxrimation to the identity.

Definition. Let [a,b] be an interval. A function f : R — R is said
to be supported on [a,b] iff f(z) = 0 for all x & [a,b]. We say that f
is compactly supported iff it is supported on some interval [a,b]. If f
is continuous and supported on [a,b], we define the improper integral

o ftobe [ f:= f[a!b] f.

Note that a function can be supported on more than one interval, for
instance a function which is supported on [3,4] is also automatically
supported on [2,5] (why?). In principle, this might mean that our
definition of ffooo f is not well defined, however this is not the case:

Lemma 3 If f : R — R is continuous and supported on an interval
[a,b], and is also supported on another interval [c,d], then f[a B f=

Jiea I
Proof. See Week 4 homework. O

Definition Let ¢ > 0 and 0 < 6 < 1. A function f : R — R is said to
be an (g, 0)-approzimation to the identity if it obeys the following three
properties:

(a) f is supported on [—1,1], and f(z) > 0 for all -1 <z < 1.
(b) f is continuous, and [ f =1.
(¢) |[f(x)| <eforall § < |z| <1.

Optional remark: For those of you who are familiar with the Dirac delta
function, approximations to the identity are ways to approximate this
(very discontinuous) delta function by a continuous function (which is
easier to analyze).



Our proof of the Weierstrass approximation theorem relies on three key
facts. The first fact is that polynomials can be approximations to the
identity:

Lemma 4. For every ¢ > 0 and every 0 < d < 1 there exists an (g, §)-
approximation to the identity which is a polynomial P on [—1, 1].

Proof. See Week 4 homework. O

We will use these polynomial approximations to the identity to approx-
imate continuous functions by polynomials. We will need the following
important notion, however, that of a conwvolution.

Definition. Let f : R —+ R and ¢ : R — R be continuous, compactly
supported functions. We define the convolution fxg: R — R of f and
g to be the function

(f +9)(@) = / T F)gle —y) dy.

Note that if f and g are continuous and compactly supported, then
for each x the function f(y)g(x — y) (thought of as a function of y)
is also continuous and compactly supported, so the above definition
makes sense.

Convolutions play an important role in Fourier analysis and in PDE,
and are also important in physics, engineering, and signal processing.
An in-depth study of convolution would occupy an entire course; for
now, we only give a very brief discussion. We begin by listing some
basic properties of convolution.

Proposition 5. Let f: R—>R,¢g: R— R, and h: R — R be con-
tinuous, compactly supported functions. Then the following statements
are true.

(a) The convolution f x g is also a continuous, compactly supported
function.



(b) (Convolution is commutative) We have f*g = g« f; in other words
fro@= [ twee-vdy= [ g)i-v) dy=g+ ().

(¢) (Convolution is linear) We have f x (g + h) = f * g+ f * h. Also,
for any real number ¢, we have f * (cg) = (¢f) * g = c(f * g).

Proof. See Week 4 homework. O

Optional remark: There are many other important properties of con-
volution, for instance it is associative, (f * g) * h = f = (g * h), and it
commutes with derivatives, (f x g)' = f'xg = f* ¢, when f and ¢
are differentiable. The Dirac delta function § mentioned earlier is an
identity for convolution: fxd = ¢ * f = f. These results are slightly
harder to prove than the ones in Proposition 5, however, and we will
not need them in this course.

As mentioned earlier, the proof of the Weierstrass approximation theo-
rem relies on three facts. The second key fact is that convolution with
polynomials produces another polynomial:

Lemma 6. Let f : R — R be a continuous function supported on
[0,1], and let g : R — R be a continuous function supported on [—1, 1]
which is a polynomial on [—1,1]. Then f % g is a polynomial on [0, 1].
(Note however that it may be non-polynomial outside of [0, 1]).

Proof. Since g is polynomial on [—1, 1], we may find an integer n > 0
and real numbers cg, cq, ..., ¢, such that

9(z) = chxj for all x € [—1,1].
=0

On the other hand, for all z € [0, 1], we have

£ g(a) = / " fwgla—y) dy = Swote ) dy

0,1



since f is supported on [0,1]. Since z € [0,1] and the variable of
integration y is also in [0,1], we have z —y € [—1,1]. Thus we may
substitute in our formula for g to obtain

£+ () / Zc]x— ¥ dy.

We expand this using the binomial formula to obtain

fxg(z) / ZCJZ R — k (—y)i " dy.

We can interchange the two summations (this is OK since both sums
are finite) to obtain

Frow= [ Y g

(why did the limits of integration change? It may help to plot j and &
on a graph). Now we interchange the £ summation with the integral,
and observe that z* is independent of y, to obtain

| -
Z /;)1 Jk|(J k‘)( y)J_ dy.

If we thus define

n

!
Cy = E I (y)ik g

for each £ = 0,...,n, then C} is a number which is independent of =z,
and we have

fxglz Z Cra®
for all z € [0,1]. Thus f * g is a polynomial on [0, 1]. O



The third key fact is that if one convolves a uniformly continuous func-
tion with an approximation to the identity, we obtain a new function
which is close to the original function:

Lemma 7. Let f : R — R be a continuous function supported on
[0, 1], which is bounded by some M > 0 (i.e. |f(z)| < M for all z € R),
and let ¢ > 0 and 0 < § < 1 be such that one has |f(z) — f(y)| < ¢
whenever z,y € R and |z — y| < 0. Let g be any (&, §)-approximation
to the identity. Then we have

|f*xg(z) — f(z)| < (BM +26)e
for all x € [0,1].
Proof. See Week 4 homework. O

Combining these together, we obtain a preliminary version of the Weier-
strass approximation theorem:

Corollary 8. Let f: R — R be a continuous function supported on
[0,1]. Then for every € > 0, there exists a function P : R — R which
is polynomial on [0, 1] and such that |P(z) — f(z)| < e for all z € [0, 1].

Proof. See Week 4 homework. O

Now we perform a series of modifications to convert Corollary 8 into
the actual Weierstrass approximation theorem. We first need a simple
lemma.

Lemma 9. Let f: [0,1] — R be a continuous function which equals 0
on the boundary of [0,1], i.e. f(0) = f(1) =0. Let F': R — R be the
function defined by setting F'(z) := f(z) for x € [0,1] and F(z) := 0
for x ¢ [0,1]. Then F is also continuous.

Proof. See Week 4 homework. O

The function F' obtained in Lemma 9 is sometimes known as the ex-
tension of f by zero.

From Corollary 8 and Lemma 9 we immediately obtain



e Corollary 10. Let f: [0,1] — R be a continuous function supported
on [0, 1] such that f(0) = f(1) = 0. Then for every € > 0 there exists a
polynomial P : [0,1] — R such that |P(z) — f(z)| < ¢ for all z € [0, 1].

e Now we strengthen Corollary 10 by removing the assumption that

f(0)=f(1)=0.

e Corollary 11. Let f: [0,1] — R be a continuous function supported
on [0,1]. Then for every € > 0 there exists a polynomial P : [0,1] - R
such that |P(z) — f(z)| < ¢ for all z € [0, 1].

e Proof. Let F: [0,1] — R denote the function

F(z) := f(x) = £(0) — z(f(1) — £(0)).

Observe that F' is also continuous (why?), and that F'(0) = F(1) = 0.
By Corollary 10, we can thus find a polynomial @ : [0,1] — R such
that |Q(z) — F(z)| < e for all z € [0,1]. But

Q(x) — F(z) = Qz) + f(0) + z(f(1) — £(0)) — f(x),
so the claim follows by setting P to be the polynomial P(z) := Q(z) +
f(0) +z(f(1) = £(0)). O

e Finally, we can prove the Weierstrass approximation theorem.

e Proof of Weierstrass approximation theorem. Let f : [a,b] = R
be a continuous function on [a, b]. Let g : [0, 1] — R denote the function

g(z) == f(a+ (b—a)z) for all z € [0, 1]
Observe then that
f(y) =9((y —a)/(b—a)) for all y € [a,b].

The function ¢ is continuous on [0, 1] (why?), and so by Corollary 11
we may find a polynomial @ : [0,1] — R such that |Q(z) — g(z)| < ¢
for all z € [0,1]. In particular, for any y € [a, b], we have

Q((y —a)/(b—a)) —g((y —a)/(b—a))| <e.

If we thus set P(y) := Q((y—a)/(b—a)), then we observe that P is also
a polynomial (why?), and so we have |P(y) —g(y)| < € for all y € [qa, b],
as desired. [l
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e Note that the Weierstrass approximation theorem only works on bounded
intervals [a, b]; continuous functions on R cannot be uniformly ap-
proximated by polynomials. For instance, the exponential function
f : R — R defined by f(z) := e* cannot be approximated by any
polynomial, because exponential functions grow faster than any poly-
nomial and so there is no way one can even make the sup metric between
f and a polynomial finite.

e There is a generalization of the Weierstrass approximation theorem
to higher dimensions: if K is any compact subset of R" (with the
Euclidean metric dp2), and f : K — R is a continuous function, then
for every € > 0 there exists a polynomial P : K — R of n variables
Z1,---,Zy such that doo(f, P) < e. The proof of this more general
theorem is in Rudin, however we will not need it here.

%k ok ok %k
Power series

e We now discuss an important subclass of series of functions, that of
power series.

e Definition. Let a be a real number. A formal power series centered
at a is any series of the form

o
E en(z —a)”
n=0
where ¢y, ci,... is a sequence of real numbers (not depending on z);

we refer to ¢, as the n'® coefficient of this series. Note that each term
¢n(x — a)™ in this series is a function of a real variable z.

e Example The series ) n!(z —2)" is a formal power series centered
at 2. The series Y -~  2%(z — 3)™ is not a formal power series, since the
coefficients 2% depend on x.

e We call these power series formal because we do not yet assume that
these series converge for any x. However, these series are automatically
guaranteed to converge when z = a (why?). In general, the closer x
gets to a, the easier it is for this series to converge. A more precise
statement is as follows.
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e Definition. Let ) °  ¢,(z — a)” be a formal power series. We define
the radius of convergence R of this series to be the quantity

1

= limsup,, ., |ca|Y/™

where we adopt the convention that % = +o00 and ﬁo =0.

1/n 1/n

e Note that each number |c,|'/™ is non-negative, so limsup,,_, . |¢,|"/" can
take on any value from 0 to +00, inclusive. Thus R can also take on any
value between 0 and +oo inclusive (in particular it is not necessarily a
real number). Note that the radius of convergence always exists, even
if the sequence |c,|'/™ is not convergent, because the lim sup of any
sequence always exists (though it might be +o00 or —o0).

e Example. The radius of convergence of the series > --  n(—2)"(z—3)"

1S
1 1 1

limsup,,_, ., [n(—2")*/» - limsup,,_, ., 2n'/™ T2

The radius of convergence of the series Y220 2" (z + 2)" is

1 1 1

limsup,,_,,, |27*|}/™ ~ lim SUDP,, o0 2™ T ¥oo

The radius of convergence of the series 3702 27 (x + 2)" is

1 1 1

limsup,,_,, |27 |1/" ~ lim SUp, o2 0

e The significance of the radius of convergence is the following.

e Theorem 12. Let Y ° ¢,(z — a)"” be a formal power series, and let
R be its radius of convergence.

e (a) (Divergence outside of the radius of convergence) If z € R is such
that |z — a| > R, then the series Y, c,(z — a)" is divergent for that
value of z.

e (b) (Convergence inside the radius of convergence) If x € R is such that
|z — a| < R, then the series Y - ,cn(z — a)" is absolutely convergent
for that value of z.

12



For parts (cde) we assume that R > 0 (i.e. the series converges at at
least one other point than x = a). Let f: (a — R,a + R) — R be the
function f(z) := Y., cn(x — a); this function is guaranteed to exist
by (b).

(¢) (Uniform convergence on compacta) For any 0 < r < R, the series
> o cn(z —a)™ converges uniformly to f on the compact interval [a —
r,a + r]. In particular, f is continuous on (a — R,a + R).

(d) (Differentiation of power series) The function f is differentiable on
(a — R,a+ R), and for any 0 < 7 < R, the series Y o nc,(z —a)™ !
converges uniformly to f’ on the interval [a — r,a + r].

(e) (Integration of power series) For any closed interval [y, z] contained
in (¢ — R,a+ R), we have

/ f_ic (z—a)”“—(y—a)”“
= - .
[,2] 0 n -+ 1

Proof. See Week 5 homework. O

Parts (a) and (b) of the above theorem give another way to find the
radius of convergence, by using your favorite convergence test to work
out the range of z for which the power series converges:

Example. Consider the power series Y - n(z — 1)”. The ratio test
shows that this series converges when |z — 1| < 1 and diverges when
|t — 1| > 1 (why?). Thus the only possible value for the radius of
convergence is R = 1 (if R < 1, then we have contradicted Theorem
12(a); if R > 1, then we have contradicted Theorem 12(b)).

Note that Theorem 12 is silent on what happens when |z —a| = R, i.e.
at the points a — R and a+ R. Indeed, one can have either convergence
or divergence at those points; see homework.

Notice in Theorem 12 that while a power series Y > ¢,(z — a)" will
converge pointwise on the interval (a — R, a + R), it need not converge
uniformly on that interval (see homework). On the other hand, Theo-
rem 12(c) assures us that the power series will converge on any smaller

13



interval [a—r, a+r]. In particular, being uniformly convergent on every
closed subinterval of (a — R,a + R) is not enough to guarantee being
uniformly convergent on all of (a — R, a + R).

A function f(z) which is lucky enough to be representable as a power
series have a special name; they are real analytic.

Definition Let (a — r,a + r) be an open interval, and let f : E - R
be a function defined on a set E C R which contains (a — r,a + 7).
We say that f is real analytic on (a — r,a + r) iff there exists a power
series » >° ¢, (2 — a)™ centered at a which has a radius of convergence
greater than or equal to r, and which converges to f on (a —r,a + 7).

Example. The function f: (0,2) — R defined by f(z) =>_° ,n(z—
1)™ is real analytic on (0, 2).

The notion of being real analytic is closely related to another notion,
that of being complezx analytic, but this is a topic for Math 132, Com-
plex Analysis, and will not be discussed here.

We now discuss which functions are real analytic. From Theorem
12(cd) we see that if f is real analytic on (a — r,a + r), then f is
both continuous and differentiable on (a — r,a+r). We can in fact say
more:

Definition Let E be a subset of R. We say a function f : £ — R
is once differentiable on FE iff it is differentiable. More generally, for
any k > 2 we say that f : E — R is k times differentiable on E, or
just k times differentiable, iff f is differentiable, and f’ is k — 1 times
differentiable. If f is k times differentiable, we define the k' derivative
f® : E — R by the recursive rule f) := f’, and f® = (f*=DY for all
k > 2. We also define f(O) := f (this is f differentiated 0 times), and
we allow every function to be zero times differentiable (since clearly
f© exists for every f). A function is said to be infinitely differentiable
iff it is k£ times differentiable for every k£ > 0.

Thus for instance, the function f(z) := |z|® is twice differentiable on
R, but not three times differentiable (why?). Indeed, f = f" = 6|z,
which is not differentiable, at 0.
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Proposition 13. Let f of a function real analytic on the interval
(a — rya + ), with the power series expansion

for all z € (a — r,a + 7). Then for any integer k£ > 0, the function f is
k times differentiable on (a — 7,a + r), and the k" derivative is given
by

fP@) =) can(n+1)(n+2)...(n+ k)@ —a)"

n=0

forallz € (a —r,a+r).
Proof. See Week 5 homework. O

Corollary 14 (Taylor’s formula). Let f of a function real analytic
on the interval (@ — r,a + r), with the power series expansion

flz) = ch(:c —a)"

for all z € (a — r,a +r). Then for any integer £ > 0, we have
F®)(a) = Kleg,

where k! :=1x 2 x ... x k (and we adopt the convention that 0! = 1).
In particular, we have Taylor’s formula

0 £(n) (g
f) =3 D oy

n

forall z in (¢ —r,a + 7).

Proof. See Week 5 homework. O

The power series >, ! (Z!(a) (x — a)™ is sometimes called the Taylor

series of f around a. Taylor’s formula thus asserts that if a function is
analytic, then it is equal to its Taylor series.

n
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e Note that Taylor’s formula only works for functions which are analytic;
there are examples of functions which are infinitely differentiable but
for which Taylor’s theorem fails (see Week 5 homework).

e Another corollary of Taylor’s formula is that a real analytic function
can have at most one power series at a point:

e Corollary 15 (uniqueness of power series). Let f of a function real
analytic on the interval (a — 7, a+7), with two power series expansions

and

Then ¢, = d, for all n > 0.

e Proof. By Corollary 14, we have f*)(a) = k!¢, for all k > 0. But we
also have f%*)(a) = k!d), by similar reasoning. Since k! is never zero,
we can cancel it and obtain ¢, = dj, for all £ > 0, as desired. O

e On the other hand, an analytic function can certainly have different

power series at different points. For instance, the function f(z) := -

1—x’
defined on R — {1}, has the power series
f(z) = Zx"
n=0
around 0, on the interval (—1, 1), but also has the power series
1 2 = 1 = 1

— — — 22 — =)\ = 2n+1 _ T\

F0) = = g = 20 - =3 e )

around 1/2, on the interval (0,1) (note that the above power series
has a radius of convergence of 1/2, thanks to the root test. Indeed, it
can be proven that if f is analytic on any interval (¢ — r,a + ), and
(b— s,b+ s) is a sub-interval of (a —r,a+7), then f is also analytic on
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(b—s, b+s); in particular, it has a power series expansion at b. However,
we will not do so here, because this theorem is easiest to prove using
the machinery of complex analysis and contour integration, as you will
see in Math 132, Complex Analysis.

X %k sk ok ok

Abel’s theorem

o Let f(z) = D o yca(@ — a)® be a power series centered at ¢ with a
radius of convergence 0 < R < oo strictly between 0 and infinity.
From Theorem 12 we know that the power series converges absolutely
whenever |z —a| < R, and diverges when |z — a| > R. However, at the
boundary |z —a| = R the situation is more complicated; the series may
either converge or diverge (see homework). However, if the series does
converge at the boundary point, then it is reasonably well behaved; in
particular, it is continuous at that boundary point.

e Abel’s theorem. Let f(z) = Y 2 c,(z — a)" be a power series
centered at a with radius of convergence 0 < R < oo. If the power
series converges at a + R, then f is continuous at a + R, i.e.

hm E cn(x —a)® g cn R™.
z—a+R:z€(a—R,a+R)

Similarly, if the power series converges at a — R, then f is continuous
at a — R, i.e.

lim Y al@—a)" =D c(-R)"

z—a—R:x€(a—R,a+R)
n=0

e Before we prove Abel’s theorem, we need the following lemma.

e Summation by parts formula. Let (a,)%, and (b,)°, be se-
quences of real numbers which converge to limits A and B respec-
tively, i.e. lim,_,o a, = A and lim,,_,, b, = B. Suppose that the sum
Yoo o(ant1 — ay)by is convergent. Then the sum Y ° any1(bpy1 — by)
is also convergent, and

Z(an—l—l - an)bn = AB — aObO - Z an—l—l(bn—l—l - bn)
n=0 n=0
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e Proof. See Week 5 homework. O

e Note that the summation by parts formula has a certain similarity with
the more well-known integration by parts formula

/000 f'(x)g(z) dz = f(z)g(z) | — /OOO f@)d () dx.

Indeed, the two are actually quite closely related.

e Now we can prove Abel’s theorem. It will suffice to prove the first
claim, i.e. that

0o 00
lim E en(z —a)" = E e R"
z—a+R:z€(a—R,a+R)
n=0 n=0

whenever the sum ) ° ¢, R" converges; the second claim will then
follow (why?) by replacing ¢, by (—1)"c, in the above claim. If we
make the substitutions d,, := ¢, R" and y := #3%, then the above claim
can be rewritten as

o0

lim > duy" = i dy,
n=0

—1liye(—1,1
y—Lliy€e( ’)n:0

whenever the sum Y >°  d, converges. (Why is this equivalent to the
previous claim?)

e Write D := > d,, and for every N > 0 write

N-1
Sy = (Z d,) — D
n=0
so in particular sy = —D. Then observe that limy_,,, Sy = 0, and that

dp = Spy1 — Sy Thus for any y € (—1,1) we have

Z dnyn = Z(Sn—l—l - Sn)yn
n=0 n=0
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Applying the summation by parts formula, and noting that lim,,_,,, y" =
0, we obtain

o0 oo
D duy" ==80y° =Y Snpa ("™ = y").
n=0 n=0

Observe that —Sy® = +D. Thus to finish the proof of Abel’s theorem,
it will suffice to show that

n+l . ny _
hm ERP. ZSn+1 y") = 0.

y—1ye(

Since y is converging to 1, we may as well restrict y to [0, 1) instead of
(—1,1); in particular we may take y to be positive.

From the triangle inequality for series, we have

o0 o0 o0
| Z Sn-l—l( i Z n+1 n+1 - yn)| = Z |Sn+1|(yn - yn—f—l)’
n=0 n=0 n=0

so by the squeeze test it suffices to show that

hm Z\Sn+1| y" — "t = 0.

y—1: yG

Since the expression Y > |Sp41/(y™ — y™t?!) is clearly non-negative, it
will suffice to show that

lim  sup Z‘Sn+1| y" =yt =0.

y—1lwye(—1,1)

Let € > 0. Since S,, converges to 0, there exists an N such that |S,| < e
for all n > N. Thus we have

[e%s) N [e%¢)
D ISl =™ <D 1Sl =y + D el -y,
n=0 n=0 n=N-+1
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The last summation is a telescoping series, which sums to ey™ ! (why?
Note that y™ — 0 as n — 0o, and thus

N

o0
D Sual (" = ™) <D [Snaal (" =y + N
n=0

n=0

Now take limits as y — 1. Observe that y* — y"*! — 0 as y — 1 for
every n € 0,1,..., N. Since we can interchange limits and finite sums,
we thus have

lim sup » " [Spat|(y" —y") <.

n—0o0 n=0

But € > 0 was arbitrary, and thus we must have

lim sup Z Sl (" —y" ™) =0

71—)00

since the left-hand side must be non-negative. The claim follows. [

e We will see some applications of Abel’s theorem later.

X %k ok ok ok

Multiplication of power series

e We now show that the product of two analytic functions is again ana-
lytic.

e Theorem 16 Let f: (a —r,a+7) >R and g: (a—r,a+7) = R be
functions analytic on (@ — r,a + r), with power series expansions

and

respectively. Then fg : (a—r,a+r) — R is also analytic on (a—r, a+r),
with power series expansion
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where e, ==Y " o Cndn_m.

Remark. The sequence (e,)5°, is sometimes referred to as the convo-
lution of the sequences (¢,)%, and (d,)%,; it is closely related to the
notion of convolution discussed earlier, in the proof of the Weierstrass
approximation theorem.

Proof. We have to show that the series Y~ e,(z — a)" converges
to f(z)g(x) for all z € (¢ — r,a + r). Now fix z to be any point in
(a —r,a+ 7). By Theorem 12, we see that both f and ¢ have radii of
convergence at least 7. In particular, the series > - c,(z — a)” and
Y02 o dn(x — a)™ are absolutely convergent. Thus if we define

C:= Z len(z — a)"|
n=0

and o
D:=>|du(z — a)"|
n=0
then C and D are both finite.

For any N > 0, consider the partial sum

YD lem(a — a)"dn(z — a)"|.

n=0 m=0

We can rewrite this as

Y ldn(z = a)"[ Y lem(z — @)™,

which by definition of C' is equal to
N
Z |dn(x - a)n|c’
n=0
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which by definition of D is less than or equal to DC'. Thus the above
partial sums are bounded by DC for every N. In particular, the series

S fenle — @) du(a — a)"|

n=0 m=0
is convergent, which means that the sum

o« o0

Z Z Cm(z —a)"d,(z —a)"

n=0 m=0

is absolutely convergent.

Let us now compute this sum in two ways. First of all, we can pull the
d,(z — a)™ factor out of the Y >~ summation, to obtain

by our formula for g(z), this is equal to f(x)g(x). Thus

icm z—a)"dy(x —a)".

m=0

i’:
0
[M]8

Il
o

n

Now we compute this sum in a different way. We rewrite it as

= Z Z Cmdp(z — a)™™.

n=0 m=0

By Fubini’s theorem for series (see Week 5 notes from my Math 131AH
class), because the series was absolutely convergent, we may rewrite it

as
o0 o
= E E Cmdp(z — a)™™.

m=0 n=0
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Now make the substitution n' := n + m, to rewrite this as

f(z)g(z) = Z Z ot (2 — @)™ .

m=0n'=m

If we adopt the convention that d; = 0 for all negative j, then this is
equal to

o0 o
f(x)g(x) = Z Z cmdn’fm(x - G,)n’.
m=0n'=0
Applying Fubini’s theorem again, we obtain

o0

f(x)g(x) = Z Z Cmdn’—m(x - a)n"

n/=0m=0
which we can rewrite as
o0 (o]
f@)g@)=> (&= a)" > cmln—m.
n’=0 m=0

Since d; was 0 when j is negative, we can rewrite this as

f(x)g(z) = i(m —a)" i Cmln —m,
n'=0 m=0
which by definition of e is
F@)g(@) = 3 ewlo— a)".
n'=0
as desired. O
* ok K %k

The exponential and logarithm functions

e We can now use the machinery developed in the last few sections to de-

velop a rigorous foundation for many standard functions used in math-
ematics. We begin with the exponential function.
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Definition For every real number z, we define the exponential function
exp(z) to be the real number

exp(z) = Z %

We now list the basic properties of the exponential function.

Theorem 17

. n .
(a) For every real number z, the series ° /- is absolutely conver-

gent. In particular exp(z) exists and is real for every x € R, the
power series Y - o % has an infinite radius of convergence, and exp is
an analytic functlon on (—00, 00).

(b) exp is differentiable on R, and for every z € R, exp/(z) = exp(z).

(¢) exp is continuous on R, and for every interval [a, b], we have f[a’b] exp(z) dz =
exp(b) — exp(a).

(d) For every z,y € R, we have exp(z + y) = exp(z) exp(y).

(e) We have exp(0) = 1. Also, for every x € R, exp(z) is positive, and
exp(—z) = 1/ exp(x).

(f) exp is strictly monotone increasing: in other words, if z,y are real
numbers, then we have exp(y) > exp(z) if and only if y > z.

Proof. See Week 5 homework. O

Definition The number e is defined to be

<1 1 1
e := exp(1 =Z—, —+ +2,+3,+

Proposition 18 For every real number z, we have exp(x) = e®.

Proof. See Week 5 homework. O

We will thus use e® and exp(z) interchangeably.
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e Since e > 1 (why?), we see that e* — +00 as £ — 400, and €* — 0 as
r — —oo. From this and the intermediate value theorem we see that
the range of the function exp is (0,00). Since exp is increasing, it is
injective, and hence exp is a bijection from R to (0,00), and thus has
an inverse from (0,00) — R.

e Definition We define the natural logarithm function log : (0,00) - R
(also called In) to be the inverse of the exponential function. Thus
exp(log(z)) = z and log(exp(z)) = z.

e Since exp is continuous and strictly monotone increasing, we see that
log is also continuous and strictly monotone increasing (see Proposition
3 of Week 7/8 notes of my Math 131AH class). Since exp is also
differentiable, and the derivative is never zero, we see from the inverse
function theorem that log is also differentiable (see Week 7/8 notes from
Math 131AH). We list some other properties of the natural logarithm
below.

e Theorem 19

e (a) For every z € (0,00), we have In'(z) = Z. In particular, by the
fundamental theorem of calculus, we have f[a i L dz = In(b) — In(a) for
any interval [a, b] in (0, 00).

e (b) We have In(zy) = In(z) + In(y) for all z,y € (0, 00).

(¢) We have In(1) = 0 and In(1/x) = — In(z) for all z € (0, 00).
e (d) For any z € (0,00) and y € R, we have In(z¥) = yIn(z).
(e) For any = € (—1,1), we have

ln(l—:v):—zm—.

n=1

In particular, In is analytic on (0, 2), with the power series expansion

n(z) =Y (_1nn+1 (x—1)"

for z € (0,2).



e Proof. See Week 5 homework. O

e We now give a modest application of Abel’s theorem: from the alter-

nating series test we see that » > % is convergent. By Abel’s
theorem we thus see that

o o

(_1)n+1 . (_1)71—1—1 "
S > E
n=1 n=1
= lim In(z) = In(2),
T—2

thus we have the formula

1 1 1 1
* %k k sk 3k

A quick digression on complex numbers.

e To proceed further we need the complex number system C. We assume
that you are familiar with the complex numbers from other courses, so
we will only give the briefest of descriptions here. Math 132 will give
a much more detailed study of the analysis of complex numbers.

e Definition. A complexr number is any expression of the form a + bi,
where a and b are real numbers; the symbol i at present is just a
placeholder with no intrinsic meaning. Two complex numbers a + bz
and ¢ + di are said to be equal, a + bi = ¢+ di, iff a = c and b = d.
Every real number z is considered a complex number as well: z =
z + 0¢. The sum of two complex numbers a + bi and ¢ + di is defined
as (a+bi)+ (c+di) :== (a+c¢) + (b+ d)i. The product of two complex
numbers is defined as (a + bi)(c + di) := (ac — bd) + (ad + bc)i. The
difference of two complex numbers is defined by (a + bi) — (¢ + di) :=
(a —¢) + (b — d)i. The quotient of two complex numbers is defined
by (a + bi)/(c+ di) == (a + bi)(zig — cszLdﬂ'), provided that ¢ + di is
non-zero. The complexr conjugate of a complex number a + bi is defined
by a 4 bi := a — bi. The absolute value of a complex number a + b: is
defined by |a + bi| = Va? + b2. The space of all complex numbers is
called C.
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We write 4 as shorthand for 0 + 1i. Note in particular that 72 = —1.

We remark that the complex numbers obey all the normal rules of
algebra, for instance if z,w, ( are complex numbers, then (z + w){ =
2(+w(, and (z2w)¢ = z(w(), etc. (More precisely, the complex numbers
form a field). One can also show that the rules of complex arithmetic
are consistent with those of real arithmetic (e.g. 3 + 5 is equal to
8 regardless of whether one uses the addition supplied by R or the
addition supplied by C).

The operation of complex conjugation preserves all the arithmetic op-
erations: z + w =z+w, z —w =zZ—w, zw = zZ W, and z/w = Z/w. (In
the language of algebra, conjugation is an automorphism of the com-
plex numbers). The complex conjugate and absolute value are related
by the identity |2|? = 2Z.

If z is a complex number, then |z| = 0 if and only if z = 0. One
can show that [zw| = |z||w|, |z/w| = |z|/|w| (if w # 0), and that
|z +w| < |z|+ |w]|. In particular, we can turn C into a metric space by
defining d(z,w) := |z — w|. One can show that C is in fact a complete
metric space.

The machinery of this set of notes and the previous set of notes of
pointwise and uniform convergence of real-valued series of functions
Yoo o f(x) to cover complex-valued series as well. In fact there is almost
no change in the theory. (In the textbook, complex-valued functions
are used throughout).

For instance, one can define the exponential function exp(z) for complex
z in exactly the same manner as for real numbers:

exp(z) := Z %

One can state and prove the ratio test for complex series and use it
to show that exp(z) converges for every z. It turns out that many of
the properties from Theorem 17 still hold: we have that exp(z + w) =
exp(z) + exp(w), for instance. (The other properties require complex
differentiation and complex integration, and we will not discuss these
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here; those are topics for Math 132). Another useful observation is

that exp(z) = exp(z); this can be seen by conjugating the partial sums
SN, 2 and taking limits as N — oo,

n=0 n!

e The complex logarithm turns out to be somewhat more subtle, mainly
because exp is no longer invertible, and also because the various power
series for the logarithm only have a finite radius of convergence (unlike
exp, which has an infinite radius of convergence). Again, we will not
discuss this rather delicate issue here and refer the reader to Math 132.

X %k ok ok ok

Trigonometric functions

e We now discuss the next most important class of special functions,
after the exponential and logarithmic functions, namely the trigono-
metric functions. (There are several other useful special functions in
mathematics, such as the hyperbolic trigonometric functions and hy-
pergeometric functions, the gamma and zeta functions, and elliptic
functions, but they occur more rarely and will not be discussed here.)

e Trigonometric functions are often defined using geometric concepts,
notably those of circles, triangles, and angles. However, it is also possi-
ble to define them using more analytic concepts, and in particular the
(complex) exponential function.

e Definition If z is a real number, then we define

61’1‘ _+_e—z'z‘
cos(z) = —
and . .
. el _ p—ix
sin(z) = %

We refer to cos and sin as the cosine and sine functions respectively.

e These formulae were discovered by Euler, who recognized the link be-
tween the complex exponential and the trigonometric functions.

28



From the power series definition of exp, we have

2

x izt

wr o <
et =1+1x o] 3!+4!+...
and
- x? i’ 2t
—ir __ s _ _ -
e =1-1x 2!+3!+4!
and so from the above formulae we have
$2 ZA °° (_1)n$2n
cos(@) = 1= Gp + 3p == D (2n)!
n=0
and -
. 23 0 (_1)nx2n+1

In particular, cos(z) and sin(z) are always real. Clearly the functions
sin and cos are also real-analytic on (—oo, 00), since their power series
converges for every z (e.g. by the ratio test). In particular the sine and
cosine functions are continuous and differentiable.

We list some basic properties of the sine and cosine functions below.
Theorem 20.

(a) For any real number z, we have sin(x)?+cos(x)? = 1. In particular,
we have sin(z) € [-1,1] and cos(z) € [—1,1] for all z € R.

(b) For any real number z, we have sin’(z) = cos(z) and cos'(z) =
— sin(z).

(c) For any real number z, we have sin(—z) = —sin(z) and cos(—z) =
cos(x).

(d) For any real numbers z,y, we have cos(z + y) = cos(x) cos(y) —
sin(z) sin(y) and sin(z + y) = sin(z) cos(y) + cos(z) sin(y).

(e) We have sin(0) = 0 and cos(0) = 1.
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(f) For every real number z, we have €' = cos(z) +isin(z) and e =
cos(z) — isin(x).

Proof. See Week 5 homework. U
Now we describe some other properties of sin and cos.
Lemma 21. There exists a positive number z such that sin(z) = 0.

Proof. Suppose for contradiction that sin(z) # 0 for all z € (0, 00).
Observe that this would also imply that cos(z) # 0 for all z € (0, ),
since if cos(xz) = 0 then sin(2z) = 0 by Theorem 20(d) (why?). Since
cos(0) = 1, this implies by the intermediate value theorem that cos(z) >
0 for all z > 0 (why?). Also, since sin(0) = 0 and sin’(0) = 1 > 0, we
see that sin increasing near 0, hence is positive to the right of 0. By
the intermediate value theorem we again conclude that sin(x) > 0 for
all z > 0 (otherwise sin would have a zero on (0, 00)).

In particular if we define the cotangent function cot(x) := cos(z)/sin(z),
then cot(z) would be positive and differentiable on all of (0, c0). From
the quotient rule and Theorem 20 we see that the derivative of cot(x)
is —1/sin(z)? (why?) In particular, we have cot’'(z) < —1 for all
x > 0. By the fundamental theorem of calculus this implies that
cot(z + s) < cot(x) — s for all z > 0 and s > 0. But letting s — oo
we see that this contradicts our assertion that cot is positive on (0, co)
(why?). O

Let E be the set E := {z € (0,00) : sin(z) = 0}, i.e. E is the set
of roots of sin on (0,00). By Lemma 21, E' is non-empty. Also, since
sin is continuous, E is closed (why? use Theorem 13(d) from Week

2 notes). Thus FE contains all its adherent points, and thus contains
inf(E). Thus if we make the definition

Definition We define 7 to be the number

7= inf{z € (0,00) : sin(z) = 0}

then we have 7 > 0 and sin(7) = 0. By definition of 7, sin cannot
have any zeroes in (0,7), and so in particular must be positive on
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(0,7), (cf. the arguments in Lemma 21 using the intermediate value
theorem). Since cos’'(z) = —sin(z), we thus conclude that cos(z) is
strictly decreasing on (0, 7). Since cos(0) = 1, this implies in particular
that cos(m) < 1; since sin®(m) + cos?(7) = 1 and sin(7) = 0, we thus
conclude that cos(m) = —1.

In particular we have Euler’s famous formula

e™ = cos(m) +isin(m) = —1.

We now conclude with some other properties of sine and cosine.
Theorem 22.

(a) For any real x we have cos(z + 7) = —cos(z) and sin(z + 7) =
—sin(z). In particular we have cos(z + 27) = cos(z) and sin(z + 27) =
sin(z), i.e. sin and cos are periodic with period 27.

(b) If z is real, then sin(z) = 0 if and only if /7 is an integer.
(c) If x is real, then cos(z) = 0 if and only if z /7 is an integer plus 1/2.
Proof. See Week 5 homework. O

We can of course define all the other trigonometric functions: tangent,
cotangent, secant, and cosecant, and develop all the familiar identities
of trigonometry. But we will not do so here (since you presumably
know how to do all this anyway).
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