Math 131BH - Week 3
Textbook pages covered: 143-152

e Sequences of functions

Pointwise convergence versus uniform convergence

Uniform convergence and continuity

Series of functions; Weierstrass M-test

Uniform convergence and integrals

X %k ok ok ok

Sequences of functions

e In the last two weeks we have seen what it means for a sequence
()2 of points in a metric space (X,dx) to converge to a limit
; it means that lim,_,. dx(z™,z) = 0, or equivalently that for every
g > 0 there exists an N > 0 such that dx(z(™,z) < ¢ for all n > N.

e Now, we consider what it means for a sequence of functions (f™)%,
from one metric space (X, dx) to another (Y, dy) to converge. In other
words, we have a sequence of functions f, f ... with each function
f™ : X — Y being a function from X to Y, and we ask what it means
for this sequence of functions to converge to some limiting function
f:X—>Y.

e It turns out that there are several different concepts of convergence
of functions; here we describe the two most important ones, pointwise
convergence and uniform convergence. (There are other types of con-
vergence for functions, such as L' convergence, L? convergence, con-
vergence in measure, almost everywhere convergence, and so forth, but
these are beyond the scope of this course). The two notions are related,
but not identical; the relationship between the two is somewhat anal-
ogous to the relationship between continuity and uniform continuity.



e Once we work out what convergence means for functions, and thus can
make sense of such statements as lim,_,o, f™ = f, we will then ask
how these limits interact with other concepts. For instance, we already
have a notion of limiting values of functions: lim, ,;,..ex f(z). Can we
interchange limits, i.e.

lim i M(z) = lim _lim f™(z)?
Bt ) = L e B T )
As we shall see, the answer depends on what type of convergence we
have for f(™. We will also address similar questions involving inter-
changing limits and integrals, or limits and sums, or sums and inte-
grals.

* % ok % %

Digression: limiting values of functions

e Before we talk about limits of sequences of functions, we should first
discuss a similar, but distinct, notion, that of limiting values of func-
tions.

e Definition Let (X, dx) and (Y, dy) be metric spaces, let E be a subset
of X, and let f : X — Y be a function. If z; € X is an adherent
point of E, and L € Y, we say that f(z) converges to L inY as x
converges to xo in E, or write lim,_,5.zer f(x) = L, if for every € > 0
there exists a > 0 such that dy (f(z),L) < € for all z € E such that
dx(z,z9) < 6.

e Comparing this with our definition of continuity from week 2, we see
that f is continuous at x( if and only if

lim__ f(z) = f(zo).

T—xo;zEX

Thus f is continuous on X if we have

lim f(z) = f(=zo) for all z, € X.

T—xo;x€X

e Often we shall omit the condition z € X, and abbreviate lim,_, ;.. x f(2)
as simply lim, ., f(z) when it is clear what space = will range in.
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One can rephrase this definition in terms of sequences:

Proposition 1. Let (X,dx) and (Y, dy) be metric spaces, let E be
a subset of X, and let f : X — Y be a function. Let zo € X be an
adherent point of £ and L € Y. Then the following two statements
are equivalent.

(a) limz—mo;IEE f(iL') = L.

(b) For every sequence (z(™)°_, in E which converges to z, with respect
to the metric dx, the sequence (f(z(™))2, converges to L with respect
to the metric dy-.

Proof. See Week 3 homework. O

Observe from Proposition 1(b), and from Proposition 4 from Week 1
notes, that a function f(z) can converge to at most one limit L as x
converges to zo. In other words, if the limit lim,_,;,.zcr f(z) exists at
all, then it can only take at most one value.

The requirement that zy be an adherent point of F is necessary for
the concept of limiting value to be useful, otherwise xy will lie in the
exterior of E, the notion that f(x) converges to L as x converges to
in E is vacuous (for ¢ sufficiently small, there are no points z € E so
that d(z, zo) < 6).

Remark. Strictly speaking, we should write dy —lim, ,;.zer f(2) in-
stead of lim,_,;,.0cr f(), since the convergence depends on the metric
dy. However in practice it will be obvious what the metric dy is and
so we will omit the dy— prefix from the notation.

X %k ok ok ok

Pointwise convergence and uniform convergence

e Note: in the examples in this section, we give R (and any subsets of R,
such as [0, 1]) the standard metric d(x,y) := |z — y| unless otherwise
specified.

e The most obvious notion of convergence of functions is pointwise con-
vergence, or convergence at each point of the domain:
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e Definition Let ()% be a sequence of functions from one metric
space (X,dx) to another (Y,dy), and let f : X — Y be another func-

tion. We say that (f(™)22, converges pointwise to f on X if we have

dy — lim f™(z) = f()

n—oo

forall z € X, i.e.
lim dy (f™ (), f(z)) = 0.
n—00

Or in other words, for every x and every € > 0 there exists N > 0 such
that dy (f™(z), f(x)) < € for every n > N. We call the function f the
pointwise limit of the functions f(™.

e Note that f(™(z) and f(z) are points in Y, rather than functions, so we
are using our prior notion of convergence in metric spaces to determine
convergence of functions. Also note that we are not really using the
fact that (X, dx) is a metric space (i.e. we are not using the metric
dx); for this definition it would suffice for X to just be a plain old set
with no metric structure. However, later on we shall want to restrict
our attention to continuous functions from X to Y, and in order to do
so we need a metric on X (and on Y).

e Example Consider the functions f : R — R defined by ™ (z) :=
z/n, while f : R — R is the zero function f(z) := 0. Then f(®
converges pointwise to f, since for each fixed real number = we have
limy, 00 £ (2) = lim, o0 /0 = 0 = f(2).

e From Proposition 4 of Week 1 notes we see that a sequence (™),
of functions from one metric space (X, dx) to another (Y, dy) can have
at most one pointwise limit f (this explains why we can refer to f as
the pointwise limit). However, it is of course possible for a sequence of
functions to have no pointwise limit (can you think of an example?),
just as a sequence of points in a metric space do not necessarily have a
limit.

e Pointwise convergence is a very natural concept, but it has a number
of disadvantages:



¢ Pointwise convergence does not preserve continuity. In other
words, the pointwise limit of continuous functions is not necessarily
continuous. For instance, consider the functions f™ : [0,1] — R
defined by f™(z) := 2", and let f : [0,1] — R be the function defined
by setting f(x) :=1 when x =1 and f(z) := 0 when 0 <z < 1. Then
the functions f(™ are continuous, and converge pointwise to f on [0, 1]
(why? treat the cases + = 1 and 0 < x < 1 separately), however the
limiting function f is not continuous.

Note that the same example shows that pointwise convergence does not
preserve differentiability either.

e Pointwise convergence does not preserve limits. This is a very
similar problem to the previous one: if lim, ,4.0ex f™(2) = L for
every n, and f(™ converges pointwise to f, this does not mean that
lim,_,,.0cr f(z) = L. The counterexample given earlier is also a coun-
terexample here: observe that lim;_,1,z¢p0,1) 2" = 1 for every n, but z"
converges pointwise to the function f defined in the previous paragraph,
and lim,_,1.5¢(0,1) f(#) = 0. In particular, we see that

lim lim  f™(z)# lim lim f®(z).

n—00 T—x0;x€X T—T0;xEX N—00

e Pointwise convergence does not preserve integrals. Suppose we
have a sequence of Rlemann 1ntegrable functions f™ : [a,b] — R on
the interval [a,b]. If f = L for every n, and f™ converges
pointwise to some new functlon f, this does not mean that f f L.
An example comes by setting [a,b] := [0, 1], and letting f ") be the
function f((z) := 2n when z € [1/2n,1/n], and f®™(x) := 0 for all
other values of z. Then f™ converges pointwise to the zero function
f(z) := 0 (why?). On the other hand, f[O,l] f™ =1 for every n, while
f[o,l] f = 0. In particular, we have an example where

lim ) £ lim ™
| a

n—oo [a,b [ ,b] n—oo

One may think that this counterexample has something to do with the
f™ being discontinuous, but one can easily modify this counterexample
to make the f(™ continuous (can you see how?).
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e Another example in the same spirit is the “moving bump” example. Let
f™ : R — R be the function defined by f(z) :=1if z € [n,n + 1]
and f™(z) := 0 otherwise. Then [R f™ = 1 for every n (where
JR f is defined as the limit of f[_ v/ as N goes to infinity). On the

other hand, f(™ converges pointwise to the zero function 0 (why?), and
fR 0 = 0. In both of these examples, functions of area 1 have somehow
“disappeared” to produce functions of area 0 in the limit.

e These examples show that pointwise convergence is too weak a concept
to be of much use. The problem is that while f(™)(z) is converging to
f(z) for each z, the rate of that convergence varies substantially with
x. For instance, consider the first example where f( :[0,1] — R
was the function f(z) := 2™, and f : [0,1] — R was the function
such that f(z) := 1 when =z = 1, and f(z) := 0 otherwise. Then
for each z, f(™(z) converges to f(x) as n — oo; this is the same as
saying that lim, ,., 2™ = 0 when 0 < z < 1, and that lim, 2" =1
when z = 1. But the convergence is much slower near 1 than far away
from 1. For instance, consider the statement that lim,,_,,, 2" = 0 for
all 0 < z < 1. This means, for every 0 < z < 1, that for every &,
there exists an N > 1 such that |z"| < ¢ for all n > N - or in other
words, the sequence 1, x, 22, 2%, ... will eventually get less than ¢, after
passing some finite number N of elements in this sequence. But the
number of elements N one needs to go out to depends very much on
the location of x. For instance, take € := 0.1. If x = 0.1, then we
have |z"| < ¢ for all n > 2 - the sequence gets underneath ¢ after the
second element. But if z = 0.5, then we only get |2"| < ¢ for n > 4 -
you have to wait until the fourth element until you get within ¢ of the
limit. And if z = 0.9, then one only has |2"| < & when n > 22. Clearly,
the closer x gets to 1, the longer one has to wait until £ () will get
within ¢ of f(z), although it still will get there eventually. (Curiously,
however, while the convergence gets worse and worse as x approaches
1, the convergence suddenly becomes perfect when z = 1).

e To put things another way, the convergence of ™ to f is not uniform
in z - the N that one needs to get f(™(z) within € of f depends on z
as well as on . This motivates a stronger notion of convergence.

e Definition Let (f(™)>, be a sequence of functions from one metric
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space (X,dx) to another (Y,dy), and let f : X — Y be another func-
tion. We say that (f(™), converges uniformly to f on X if for every
£ > 0 there exists N > 0 such that dy(f™(z), f(z)) < € for every
n > N and x € X. We call the function f the uniform limit of the
functions f(™.

e Note that this definition is subtly different from the definition for point-
wise convergence. In the definition of pointwise convergence, N was
allowed to depend on z; now it is not.

e It is easy to see that if f(™ converges uniformly to f on X, then it also
converges pointwise to the same function f (see homework). However,
the converse is not true; for instance the functions f™ : [0,1] — R
defined earlier by f(™(z) := 2™ converge pointwise, but do not converge
uniformly (see homework).

e Example. Let f :[0,1] — R be the functions f™ (z) := z/n, and
let f:[0,1] = R be the zero function f(z) := 0. Then it is clear that
f™ converges to f pointwise. Now we show that in fact f{™ converges
to f uniformly. We have to show that for every £ > 0, there exists an
N such that |f™(z) — f(x)| < € for every z € [0,1] and every n > N.
To show this, let us fix an ¢ > 0. Then for any = € [0,1] and n > N,
we have

\f(")(;c) — f(z)|=|z/n—-0=2/n<1/n<1/N.

Thus if we choose N such that N > 1/¢ (note that this choice of N
does not depend on what x is), then we have |f™(z) — f(z)| < ¢ for
alln > N and z € [0, 1], as desired.

e We make one trivial remark here: if a sequence f : X — Y of
functions converges pointwise (or uniformly) to a function f: X — Y,
then the restrictions f™|g : E — Y of f™ to some subset E of X will
also converge pointwise (or uniformly) to f|y. (Why?)

X %k ok ok ok

Uniform convergence and continuity



We now give the first demonstration that uniform convergence is signif-
icantly better than pointwise convergence. Specifically, we show that
the uniform limit of continuous functions is continuous.

Theorem 2. Let (f)% | be a sequence of functions from one metric
space (X,dx) to another (Y, dy), and suppose that this sequence con-
verges uniformly to another function f : X — Y. Let xy be a point
in X. If the functions f(™ are continuous at z, for each n, then the
limiting function f is also continuous at z;.

Proof. See Week 3 homework. O
This has an immediate corollary:

Corollary 3. Let (f()% be a sequence of functions from one metric
space (X,dx) to another (Y, dy), and suppose that this sequence con-
verges uniformly to another function f : X — Y. If the functions f™
are continuous on X for each n, then the limiting function f is also
continuous on X.

There is a slight variant of Theorem 2 which is also useful:

Proposition 4. Let (X,dx) and (Y,dy) be metric spaces, with YV
complete, and let E be a subset of X. Let (f)%, be a sequence
of functions from E to Y, and suppose that this sequence converges
uniformly in £ to some function f : E — Y. Let xy € X be an adherent
point of E, and suppose that for each n the limit lim,_,,.zcp £ (z)
exists. Then the limit lim, ,, ..er f(z) also exists, and is equal the

limit of the sequence (lim,_,4.pcp f™ (2)),; in other words

lim lim  f™(z)= lim f(x).

n—00 z—x0;xEE r—xo;x€E

Proof. See Week 3 homework. O

Finally, we have a version of these theorems for sequences: if 2™ con-
verges to z, and f(™ is a sequence of continuous functions which con-
verges uniformly to f, then f(™(z(™) converges to f(z).



e Proposition 5. Let ( f(”))g":1 be a sequence of continuous functions
from one metric space (X,dx) to another (Y,dy), and suppose that
this sequence converges uniformly to another function f: X — Y. Let
2™ be a sequence of points in X which converge to some limit 2. Then
f®™ (2™ converges (in Y) to f(x).

e Proof. See Week 3 homework. O

e The above proposition sounds very reasonable, but one should cau-
tion that it only works if one assumes uniform convergence; pointwise
convergence is not enough. (See homework).

e Uniform limits of bounded functions are also bounded. Recall that a
function f : X — Y from one metric space (X, dx) to another (Y, dy)
is bounded if there exists a ball By, (3o, R) in Y such that f(z) €
By,ay) (40, R) for all z € X.

e Proposition 6. Let (f(™), be a sequence of functions from one
metric space (X, dx) to another (Y, dy), and suppose that this sequence
converges uniformly to another function f : X — Y. If the functions
f) are bounded on X for each n, then the limiting function f is also
bounded on X.

e Proof. See Week 3 homework. O

X %k ok ok ok

The metric of uniform convergence

e We have now developed at least four, apparently separate, notions of
limit in this course: (a) limits lim,_ . (™ of sequences of points in
a metric space; (b) limiting values lim,_, ;e f(z) of functions at a
point; (c) pointwise limits f of functions f(; and (d) uniform limits f
of functions f(™.

e This proliferation of limits may seem rather complicated. However,
we can reduce the complexity slightly by noting that (d) is in fact a
special case of (a). The catch is that because we are now dealing with
functions instead of points, the convergence is not in X or in Y, but
rather in a new space, the space of functions from X to Y.



Definition. Let (X, dx) and (Y, dy) be metric spaces. We let B(X;Y)
denote the space of bounded functions from X to Y:

B(X;Y):={f|f: X — Y is a bounded function}.
We define a metric dy, : B(X;Y) x B(X;Y) — R by defining

doo(f,9) := sup dy(f(z), g(z)) = sup{dy(f(2),9(z)) : v € X}

z€eX

for all f,g € B(X;Y). This metric is sometimes known as the sup
norm metric or the L metric. We will also use dp(x;v) as a synonym
for d.

Notice that the distance do(f, g) is always finite because f and g are
assumed to be bounded on X.

Example. Let X := [0,1] and Y = R. Let f : [0,1] — R and
g : [0,1] = R be the functions f(z) := 2z and g(z) := 3z. Then f
and g are both bounded functions and thus live in B([0,1];R). The
distance between them is

do(f,9) = sup |2z —3z| = sup [z|=1.
z€[0,1] z€[0,1]

This space turns out to be a metric space (see Homework). Convergence

in this metric turns out to be identical to uniform convergence:

Proposition 7. Let (X, dx) and (Y, dy) be metric spaces. Let (™),
be a sequence of functions in B(X;Y'), and let f be another function
in B(X;Y). Then (f™)2, converges to f in the metric dp(x;v) if and
only if (™), converges uniformly to f.

Proof. See Week 3 homework. O

Now let C(X;Y) be the space of bounded continuous functions from
X toY:

C(X;Y):={f € B(X;Y): f is continuous}.
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e This set C(X;Y) is clearly a subset of B(X;Y). Corollary 3 asserts
that this space C'(X;Y) is closed in B(X;Y) (why?). Actually, we can
say a lot more:

e Theorem 8. Let (X,dyx) be a metric space, and let (Y,dy) be a
complete metric space. The space (C(X;Y), dp(x;v)|coxyvyxex;yy) is a
complete subspace of (B(X;Y),dp(x;v)). In other words, every Cauchy
sequence of functions in C(X;Y) converges to a function in C'(X;Y).

e Proof. See Week 3 homework. O

* % k % %

Series of functions; the Weierstrass M-test

e Having discussed sequences of functions, we now discuss infinite series
Y o2y [ of functions. Now we shall restrict our attention to functions
f: X — R from a metric space (X, dx) to the real line R (which we of
course give the standard metric); this is because we know how to add
two real numbers, but don’t necessarily know how to add two points in
a general metric space Y. Functions whose range is R are sometimes
called real-valued functions.

e Finite summation is, of course, easy: given any finite collection f(), ... f()
of functions from X to R, we can define the finite sum >~ f@ : X —
R by

e Example. If f : R — R is the function fI(z) :=z, f@ : R —
R is the function f®(z) := 22, and f® : R — R is the function
fO(z) := 2®, then f := 30| f@ is the function f : R — R defined
by f(z) :=z + 22 + 2.

e It is clear that finite sums of bounded functions are bounded. It is also
easy to show that finite sums of continuous functions are continuous
(see homework).

e Now to add infinite series.
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Definition Let (X, dx) be a metric space. Let (f()% be a sequence
of functions from X to R, and let f be another function from X to R.
If the partial sums 27]:[:1 f™ converge pointwise to f on X as N — oo,
we say that the infinite series Y - | f () converges pointwise to f, and
write f =Y " f ("), If the partial sums 27]:]:1 f™ converge uniformly
to fon X as N — oo, we say that the infinite series ) -~ | f ) converges
uniformly to f, and again write f = > 7 f™. (Thus when one sees
an expression such as f =Y > f (") one should look at the context to
see in what sense this infinite series converges).

Note that a series » >, f™ converges pointwise to f on X if and
only if >°° f®™(z) converges to f(z) for every z € X. (Thus if
Yoo f (") does not converge pointwise to f, this does not mean that
it diverges pointwise; it may just be that it converges for some points
x but diverges at other points x.)

If a series Y -, ™ converges uniformly to f, then it also converges
pointwise to f; but not vice versa, as the following example shows.

Example - geometric series formula. Let f™ : (-1,1) — R
be the sequence of functions f(z) := 2. Then Y_°° f™ converges
pointwise, but not uniformly, to the function z/(1—z) (see Homework).

It is not always clear when a series Y, f (") converges or not. How-
ever, there is a very useful test that gives at least one test for uniform
convergence.

Definition If f : X — R is a bounded real-valued function, we define
the sup norm || f||e of f to be the number

[flloo = sup{[f(2)] : = € X}

Thus, for instance, if f : (=2,1) — R is the function f(z) := 2z, then
Iflloc = supq{|2z| : x € (—2,1)} = 4 (why?). Notice that when f is
bounded then || f||s will always be a non-negative real number.

Weierstrass M-test Let (X, d) be a metric space, and let (™), be
a sequence of bounded real-valued continuous functions on X such that
the series Y > || /]|« is absolutely convergent. (Note that this is a
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series of plain old numbers, not of functions). Then the series _°° | f(®
converges uniformly to some function f on X, and that function f is
also continuous.

Proof. See Week 3 homework. O

To put the Weierstrass M-test succinctly: absolute convergence of sup
norms implies uniform convergence of functions.

Example - geometric series revisited. Let 0 < r < 1 be a real
number, and let f™ : [—r, 7] — R be the series of functions f™(z) :=
z”. Then each f™ is continuous and bounded, and |||, = 7"
(why?). Since the series Y~ r™ is absolutely convergent (e.g. by the
ratio test), we thus see that f™ converges uniformly in [—7,7] to some
continuous function; in the homework we see that this function must
in fact be the function f : [-r,7] — R defined by f(z) := /(1 — ).
In other words, the series ) - 2™ is pointwise convergent, but not
uniformly convergent, on (—1,1), but is uniformly convergent on the
smaller interval [—r,r] for any 0 < r < 1.

The Weierstrass M-test is especially useful in relation to power series,
which we will encounter in Week 5.

X %k sk ok ok

Uniform convergence and integration

We now connect uniform convergence with Riemann integration.

Theorem 9. Let [a,b] be an interval, and for each integer n > 1,
let f™ : [a,b] — R be a Riemann-integrable function. Suppose f™
converges uniformly on [a,b] to a function f : [a,b] — R. Then f is
also Riemann integrable, and

lim ) = f.

"0 Janb) [a,0]
Proof. We shall use some facts from 131AH about upper and lower

Riemann integrals; the reader may consult the Week 9 notes from my
131AH class for these facts.
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We first show that f is Riemann integrable on [a,b]. This is the same
as showing that the upper and lower Riemann integrals of f match:

Lo/ = Janf

Let € > 0. Since f(™ converges uniformly to f, we see that there exists
an N > 0 such that |f™(z) — f(z)] < e for all n > N and z € [a, b).
In particular we have

f(z) —e < f(z) < fM(2) +¢

for all z € [a, b]. Integrating this on [a, b] we obtain

Z[a,b](f(n) o= / [a,b]f = 7[a,b]f : 7[a,b](f(n) +e).

Since f™ is assumed to be Riemann integrable, we thus see

™) —e(b—a [ ™) +£(b - a).
(/[a,b]f) (b )s/ r< [ i< ™ tep-a

[a,b] [a7b] [aab]

In particular, we see that

0 < 7[&1)]]” - 1 [sx0-0,

Since this is true for every £ > 0, we obtain [ o] f= T[a b f as desired.

The above argument also shows that for every ¢ > 0 there exists an
N > 0 such that

f®— [ f1<2(b-a)
[a,b] [a,b]

for all n > N. Since ¢ is arbitrary, this shows that lim,_, f[a b fn) =
f[a,b] f as desired. O

To rephrase Theorem 9: we can rearrange limits and integrals (on
compact intervals [a, b]),

fim [ fm = / lim £,
"0 Jas] [a,) "7
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provided that the convergence is uniform. (In the beginning of these
notes we saw that this statement is not necessarily true of the conver-
gence is merely pointwise).

There is an analogue of this Theorem for series:

Corollary 10 Let [a,b] be an interval, and let ()%, be a sequence
of Riemann integrable functions on [a, b] such that the series y oo, f®
is uniformly convergent. Then we have

N f(n):/ N o).
; [a,b] [a,b];

Proof. See Week 3 homework. O

This Corollary works particularly well in conjunction with the Weier-
strass M -test.

Example. We already know the identity
Z 2" =z/(1 - x)

for x € (—1,1), and the convergence is uniform (by the Weierstrass
M-test) on [—r,r| for any 0 < r < 1. By adding 1 to both sides we

obtain
o0

Y a"=1/(1-x)

n=0
and the converge is again uniform. We can thus integrate on [0, 7] and
use Corollary 10 to obtain

o0

1
E / " dw =/ dx.
510 o l—2

n=

The left-hand side is Y02/ r"*!/(n+1). If we accept for now the use of
logarithms (we will justify this use in later weeks), the anti-derivative
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of 1/(1 — z) is —log(1 — z), and so the right-hand side is —log(1 — 7).
We thus obtain the formula

o0

—log(l—7r) = Zr”“/(n +1)

n=0

forall0 <r < 1.
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