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Subsequences

We review the notion of a subsequence from Math 131 AH. Suppose that
(x(™)22_ is a sequence of points in a metric space (X, d). Suppose that
ny, N9, N3, . . . 1S an increasing sequence of integers which are at least as
large as m, thus

m<ng <ng<ng<....

Then we call the sequence (z(% ))Jo-‘;l a subsequence of the original se-

quence (z(™)%_ .

Examples: the sequence ((5,%))52; in R? is a subsequence of the
sequence ((=,£))2°, (in this case, n; := j%). The sequence 1,1,1,1,...

n? n=1

is a subsequence of 1,0,1,0,1,....
If a sequence converges, then so does all of its subsequences:

Lemma 1. Let ()% be a sequence in (X, d) which converges to

some limit 3. Then every subsequence (ac(”i ));?‘;1 of that sequence also
converges to xg.
Proof. See Week 2 homework. [l



e On the other hand, it is possible for a subsequence to be convergent
without the sequence as a whole being convergent. For example, the

sequence 1,0,1,0,1,... is not convergent, even though certain subse-
quences of it (such as 1,1,1,... converges).
* k ok *k %

Cauchy sequences and complete metric spaces

e Next, we review the notion of a Cauchy sequence from Math 131AH.
Informally speaking, a Cauchy sequence is a sequence which may or
may not be converging to some final limit, but whose elements are
definitely converging to each other. The formal definition is as follows:

e Definition. Let (z(™)%  be a sequence of points in a metric space
(X,d). We say that this sequence is a Cauchy sequence iff for every
£ > 0, there exists an N > m such that d(z(), z*)) < ¢ for all j, k > N.

e This should agree with the definitions of Cauchy sequences you may
have seen in other courses, such as Math 131AH. As for examples of
Cauchy sequences, every convergent sequence is a Cauchy sequence:

e Lemma 2. Let (z(™)%  be a sequence in (X,d) which converges to

n=m

some limit zo. Then (2(™)2 is also a Cauchy sequence.
e Proof. See Week 2 homework. d

e Also, every subsequence of a Cauchy sequence is also a Cauchy sequence
(why)? However, not every Cauchy sequence converges. An example
is the sequence

3,3.1,3.14,3.141, 3.1415, . ..

in the metric space (Q,d) (the rationals Q with the usual metric
d(z,y) := |z — y|). While this sequence is convergent in R (it con-
verges to m), it does not converge in Q (since 7 ¢ Q, and a sequence
cannot converge to two different limits). So in certain metric spaces,
Cauchy sequences do not necessarily converge.

e However, if even part of a Cauchy sequence converges, then the entire
Cauchy sequence must converge (to the same limit):



Lemma 3. Let (™) be a Cauchy sequence in (X, d). Suppose that
there is some subsequence (x(”i));?‘;l of this sequence which converges

to a limit 2 in X. Then the original sequence (2(™)%_  also converges
to xg.

Proof. See Week 2 homework. O

As we have seen, some spaces, such as (Q, d), contain Cauchy sequences
which do not converge. However, others do not:

Theorem 4. Let (R,d) be the real line with the standard metric
d(z,y) := |z — y|. Then every Cauchy sequence in R is convergent.

Proof. See Theorem 30 of Week 3/4 notes to my 131AH class. Alter-
natively, read on. O

Inspired by this, we make a definition.

Definition. A metric space (X,d) is said to be complete iff every
Cauchy sequence in (X, d) is in fact convergent in (X, d).

Thus Theorem 4 states that the reals (R, d) are complete. The rationals
(Q, d), on the other hand, are not complete.

Complete metric spaces have some nice properties. For instance, they
are intrinsically closed: no matter what space one places them in, they
are always closed sets. More precisely:

Proposition 5.

(a) Let (X,d) be a metric space, and let (Y,d|y«y) be a subspace of
(X,d). If (Y,d|yxy) is complete, then Y must be closed in X.

(b) Conversely, suppose that (X,d) is a complete metric space, and Y
is a closed subset of X. Then the subspace (Y, d|y«y) is also complete.

Proof. See Week 2 homework. O

In contrast, an incomplete metric space such as (Q,d) may be con-
sidered closed in some spaces (for instance, Q is closed in Q) but not
in others (for instance, Q is not closed in R). Indeed, it turns out
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that given any incomplete metric space (X, d), there exists a comple-
tion (X,d), which is a larger metric space containing (X, d) which is
complete, and such that X is not closed in X (indeed, the closure of X
in (X, d) will be all of X). For instance, the completion of Q is R. We
will not discuss completions further in this course, and refer the reader
to Math 121, although we remark that the procedure for creating the
completion X of an incomplete metric space X is actually a generaliza-
tion of the procedure of creating the reals R from the rationals Q using
formal limits of Cauchy sequences (as described in my 131AH notes).
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Compact metric spaces

We now come to one of the most useful notions in point set topology,
that of compactness. We begin by recalling a useful theorem from Math
131AH.

Definition. A sequence (z(™)%° in a metric space (X, d) is said to be
bounded iff there exists a ball B(z,r) in (X, d) such that 2™ € B(z,r)
for allm > m. Similarly, a subset F of a metric space (X, d) is said to be
bounded iff there exists a ball B(z,r) in (X, d) such that E C B(z,r).
If a set or sequence is not bounded, it is said to be unbounded.

Thus for instance, in the real line R with the standard metric d, the
set [1,2) is bounded, but the set [0, 00) is not. (Can you prove these
claims rigorously?).

Bolzano-Weierstrass theorem. Let (R, d) be the real line with the
standard metric. Then every bounded sequence in (R, d) has at least
one convergent subsequence.

Proof. See Week 6 notes of my Math 131AH class. U
This quickly extends to higher dimensions:

Corollary 6. Let (R",d) be a Euclidean space with either the Eu-
clidean metric d = dj2 or the taxicab metric d;i. Then every bounded
sequence in (R", d) has at least one convergent subsequence.

Proof. See Week 2 homework. O



This property of every sequence having a convergent subsequence is so
important that we give it a name.

Definition. A metric space (X,d) is said to be compact iff every
sequence in (X, d) has at least one convergent subsequence.

It is not easy to be compact: at a bare minimum, one must be both
complete and bounded:

Proposition 7. Let (X, d) be a compact metric space. Then (X, d) is
both complete and bounded.

Proof. See Week 2 homework. O

It is also useful to talk about compact sets, rather than compact metric
spaces.

Definition. Let (X,d) be a metric space, and let Y be a subset of
X. We say that Y is compact iff the subspace (Y, d|y«y) of (X,d) is
compact.

From Proposition 7 and Proposition 5(a), we thus immediately obtain

Corollary 8. Let (X, d) be a metric space, and let Y be a compact
subset of X. Then Y is closed and bounded.

The converse to this Corollary is true in R":

Heine-Borel theorem. Let (R",d) be a Euclidean space with either
the Euclidean metric or the taxicab metric. Let E be a subset of R".
Then E is compact if and only if it is closed and bounded.

Proof. See Week 2 homework. O

However, the Heine-Borel theorem is not true for more general met-
rics. For instance, the integers Z with the discrete metric is closed
(indeed, it is complete) and bounded, but not compact, since the se-
quence 1,2,3,4,...1s in Z but has no convergent subsequence (why?).
(One can generalize the Heine-Borel theorem if one replaces the con-
cept of boundedness with a stronger one, that of total boundedness. We
will not do so here, however, and refer the reader to Math 121 for more
information).



e A key property of compact sets is the following, rather strange-sounding
statement: every open cover of a compact set has a finite subcover.

e Theorem 9. Let (X,d) be a metric space, and let Y be a compact
subset of X. Let (V,)aca be a collection of open sets in X, and suppose
that

Y C Uva.

(i.e. the collection (V,)aeca coversY). Then there exists a finite subset
F of A such that

Y C Uva.

acEF

e Proof (Optional). We assume for contradiction that there does not
exist any finite subset F' of A for which Y C |, cp Va-

Let y be any element of Y. Then y must lie in at least one of the sets
V,. Since each V, is open, there must therefore be an » > 0 such that
Bxa)(y,7) C Vo. Now let 7(y) denote the quantity

r(y) :=sup{r € (0,00) : Bxq)(y,7) C V, for some o € A}.

By the above discussion, we know that r(y) > 0 for all y € Y. Now,
let ry denote the quantity

ro ;= inf{r(y) : y € Y}.

Since 7(y) > 0 for all y € Y, we have ry > 0. There are two cases:
7o = 0 and ry > 0.

e Case 1: ry = 0. Then for every integer n > 1, there is at least one
point y in Y such that r(y) < 1/n (why?). We thus choose, for each
n > 1, a point y™ in Y such that r(y™) < 1/n (we can do this because
of the axiom of choice). In particular we have lim,_, 7(y™) = 0, by
the squeeze test. The sequence (y™)2, is a sequence in Y; since Y is
compact, we can thus find a subsequence (y(”i));?‘;l which converges to
a point yp € Y.



e As before, we know that there exists some a € A such that y, €
Va, and hence (since V,, is open) there exists some ¢ > 0 such that
B(yo,e) C V,. Since y(™ converges to Yo, there must exist an N > 1
such that y™ € B(yo,e/2) for all n > N. In particular, by the triangle
inequality we have B(y™,/2) C B(yo,¢), and thus B(y™,/2) C V,,.
By definition of 7(y(™), this implies that r(y™) > /2 for all n > N.
But this contradicts the fact that lim, . 7(y™) = 0.

e Case 2: ry > 0. In this case we now have r(y) > ro/2 for ally € Y.
This implies that for every y € Y there exists an @ € A such that
B(y,r0/2) € Vo (why?).

We now construct a sequence y, y® .. . by the following recursive
procedure. We let y*) be any point in Y. The ball B(y(™",rq/2) is
contained in one of the V,, and thus cannot cover all of Y, since we would
then obtain a finite cover, a contradiction. Thus there exists a point 3
which does not lie in B(y",ry/2), so in particular d(y®,y™M) > ry/2.
Choose such a point y®. The set B(y",rq/2) U B(y®,ry/2) cannot
cover all of Y, since we would then obtain two sets V,, and V,, which
covered Y, a contradiction again. So we can choose a point 4 which
does not lie in B(y™, ry/2)UB(y?),7¢/2), so in particular d(y®, yV) >
ro/2 and d(y®,y®) > ry/2. Continuing in this fashion we obtain a
sequence (y™)%°, in Y with the property that d(y®),y%)) > r,/2 for
all £ > j. In particular the sequence (y("));’f’:1 is not a Cauchy sequence,
and in fact no subsequence of (y(™)2_; can be a Cauchy sequence either.
But this contradicts the assumption that Y is compact (by Lemma 2).
OdJ

e It turns out that Theorem 9 has a converse: if Y has the property that
every open cover has a finite sub-cover, then it is compact. (This is
actually not all that hard to prove, but we will not do so here; a proof
can be found in Math 121). In fact, this property is often considered the
more fundamental notion of compactness than the sequence-based one.
(For metric spaces, the two notions, that of compactness and sequential
compactness, are equivalent, but for more general topological spaces, the
two notions are slightly different. This however is beyond the scope of
this course).



e Theorem 9 has an important corollary: that every nested sequence of
non-empty compact sets is still non-empty.

e Corollary 10. Let (X, d) be a metric space, and let K;, Ky, K3, ... be
a sequence of non-empty compact subsets of X such that

KiDKy,DK3;D....
Then the intersection () -, K, is non-empty.
e Proof. See Week 2 homework. U

e We close this section by listing some miscellaneous properties of com-
pact sets.

e Theorem 11. Let (X, d) be a metric space.

e (a) If Y is a compact subset of X, and Z C Y, then Z is compact if
and only if Z is closed.

e (b) If Y3,...,Y, are a finite collection of compact subsets of X, then
their union Y; U...UY,, is also compact.

e (c) Every finite subset of X is compact.
e Proof. See Week 2 homework. O
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Continuous functions

e You may recall the concept of a continuous function f : R — R from
Math 131AH. We now generalize this concept to that of a continuous
function f: X — Y from any metric space to any other metric space.

e Definition. Let (X, dx) be a metric space, and let (Y, dy) be another
metric space, and let f : X — Y be a function. If 2o € X, we say
that f is continuous at xq iff for every € > 0, there exists a 6 > 0 such
that dy (f(x), f(zo)) < & whenever dx(z,z9) < 0. We say that f is
continuous iff it is continuous at every point z € X.



You should check this definition against the definition of continuity you
learnt in Math 131AH and confirm that they are indeed consistent.

Continuous functions are also sometimes called continuous maps. Math-
ematically, there is no distinction between the two terminologies.

If f: X — Y is continuous, and K is any subset of X, then the
restriction f|x : K =Y of f to K is also continuous (why?).

Continuous functions map convergent sequences to convergent sequences:

Theorem 12. Let (X, dx) be a metric space, and let (Y, dy) be another
metric space. Let f : X — Y be a function, and let 2o € X be a point
in X. Then the following two statements are equivalent:

(a) f is continuous at x.

(b) Whenever (z(™)%_, is a sequence in X which converges to z with
respect to the metric dx, the sequence (f (™))%, converges to f(zo)
with respect to the metric dy.

Proof. See Week 2 homework. O

There is another classification of continuous functions, that the inverse
image of an open set is always open:

Theorem 13. Let (X, dy) be a metric space, and let (Y, dy) be another
metric space. Let f : X — Y be a function. Then the following four
statements are equivalent:

(a) f is continuous.

(b) Whenever (z(™)2, is a sequence in X which converges to some
o

point zy € X with respect to the metric dx, the sequence (f (™))%,
converges to f(xzo) with respect to the metric dy-.

(c) Whenever V is an open set in Y, the set f~1(V):={zx € X : f(z) €
V'} is an open set in X.

(d) Whenever F is a closed set in Y, the set f~'(F) :={r € X : f(z) €
F'} is a closed set in X.



Proof. See Week 2 homework. O

A quick corollary is that the composition of two continuous functions
is continuous:

Corollary 14. Let (X,dx), (Y,dy), and (Z,dz) be metric spaces.
Iff:X —Yandg:Y — Z are continuous functions, then the
composition go f : X — Z, defined by g o f(z) := g(f(z)), is also
continuous.

Proof. See Week 2 homework. O

It may seem strange that in Theorem 13(c), that continuity ensures
that the inverse image of an open set is open. One may guess instead
that the reverse should be true, that the forward image of an open set
is open; but this is not true; see the homework.

X %k sk ok ok

Continuity and compactness

In this section (and in the rest of the notes), whenever we refer to
a Fuclidean space R", we assume that n > 1 is an integer, and we
give R" the Euclidean metric d;2, unless otherwise specified. Similarly,
we give the real line R the standard metric d(z,y) := |z — y| unless
otherwise specified.

Continuous functions interact well with compact sets.

Theorem 15. Let f : X — Y be a continuous map from one metric
space (X, dx) to another (Y,dy). Let K C X be any compact subset
of X. Then the image f(K) :={f(z):z € K} of K is also compact.

Proof. See Week 2 homework. O
Combining this with the Heine-Borel theorem, we obtain

Corollary 16. Let K be a closed and bounded subset of R". Let
f: K — R™ be a continuous map from K to the Euclidean space R™.
Then the image f(K) is also closed and bounded. In particular, the
function f is bounded on K.
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This corollary has an important consequence.

Definition. Let f : X — R be a function, and let 5 € X. We say
that f attains its mazimum at o if we have f(xy) > f(x) forallz € X
(i.e. f is larger (or equal to) at xy than at any other point in z). We
say that f attains its minimum at x, if we have f(zy) < f(z) for all
zeX.

Maximum principle. Let K be a closed and bounded subset of R",
and let f : K — R be a continuous function. Then f attains its
maximum at some point Z,,., € K, and also attains its minimum at
some point T, € K.

Proof. See Week 2 homework. O

You may have already encountered a one-dimensional special case of
this maximum principle in 131AH.

(The remainder of this section is optional.) Another advantage of con-
tinuous functions on compact sets is that they are uniformly continuous.

Definition. Let f : X — Y be a map from one metric space (X, dx)
to another (Y, dy). We say that f is uniformly continuous if, for every
e > 0, there exists a 6 > 0 such that dy(f(z), f(z')) < & whenever
z,x' € X are such that dx(z,z') < 0.

Clearly every uniformly continuous function is continuous. The con-
verse is not true (can you think of a counterexample?), unless the do-
main is compact:

Theorem 17. If f : X — Y is a continuous map from one metric
space (X, dx) to another (Y, dy), and X is compact, then f is uniformly
continuous.

Proof Fix ¢ > 0. For every x5 € X, the function f is continuous
at zo. Thus there exists a d(zg) > 0, depending on z,, such that
dy (f(z), f(zo)) < €/2 whenever dx(z,z) < 6(xy). In particular, by
the triangle inequality this implies that dy (f(z), f(z')) < € whenever
T € B(x,4x)(%0,0(x0)/2) and dx(z', ) < 6(x0)/2. (Why?).
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e Now consider the (possibly infinite) collection of balls { Bx,ay)(0,0(20)/2) :
zo € X}. Each ball is of course open, and the union of all these
balls covers X, since each point zy in X is contained in its own ball
Bx,ax)(0,0(x0)/2). Hence, by Theorem 9, there exists a finite num-
ber of points x1,...,2, such that the balls Bixay)(x;,d(x;)/2) for
j=1,...,n cover X:

X € | Bxax) (@5, 8(25)/2).

i=1

Now let ¢ := minj_, §(z;)/2. Since each of the J(x;) are positive,
and there are only a finite number of j, we see that § > 0. Now
let z,z’ be any two points in X such that dx(z,2') < 6. Since the
balls B(x,ay)(%;,0(x;)/2) cover X, we see that there must exist 1 <
j < n such that € Bxay)(;,0(x;)/2). Since dx(z,z') < 6, we
have dx(z,2') < 6(z;)/2, and so by the previous discussion we have
dy (f(z), f(z")) < e. We have thus found a § such that dy (f(z), f(z')) <
e whenever d(z,z') < 0, and this proves uniform continuity as desired.
U
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Continuity and connectedness

e We now describe another important concept in metric spaces, that of
connectedness.

e Definition Let (X, d) be a metric space. We say that X is disconnected
iff there exist disjoint non-empty open sets V and W in X such that
VUW = X. (Equivalently, X is disconnected if and only if X contains
a non-empty proper subset which is simultaneously closed and open).
We say that X is connected iff is not disconnected.

e Example. Consider the set X := [1,2] U [3,4], with the usual met-
ric. This set is disconnected because the sets [1,2] and [3, 4] are open
relative to X (why?).

e Intuitively, a disconnected set is one which can be separated into two
disjoint open sets; a connected set is one which cannot be separated in
this manner.
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We defined what it means for a metric space to be connected; we can
also define what it means for a set to be connected.

Definition. Let (X, d) be a metric space, and let Y be a subset of X.
We say that Y is connected iff the metric space (Y, d|yxy) is connected,
and we say that Y is disconnected iff the metric space (Y,d|yxy) is
disconnected.

On the real line, connected sets are easy to describe.

Theorem 18. Let X be a subset of the real line R. Then the following
statements are equivalent.

(a) X is connected.

(b) Whenever z,y € X and z < y, the interval [z,y] is also contained
in X.

Proof. First we show that (a) implies (b). Suppose that X is con-
nected, and suppose for contradiction that we could find points z < y
in X such that [z,y] is not contained in X. Then there exists a real
number z < z < y such that z € X. Thus the sets (—00,2) N X and
(z,00) N X will cover X. But these sets are non-empty (because they
contain = and y respectively) and are open relative to X, and so X is
disconnected, a contradiction.

Now we show that (b) implies (a). Let X be a set obeying the property
(b). Suppose for contradiction that X is disconnected. Then there exist
disjoint non-empty sets V', W which are open relative to X, such that
VUW = X. Since V and W are non-empty, we may choose an x € V
and y € W. Since V and W are disjoint, we have x # y; without loss
of generality we may assume x < y. By property (b), we know that
the entire interval [z,y] is contained in X.

Now consider the set [z, y]NV. This set is both bounded and non-empty
(because it contains z). Thus it has a supremum

z = sup([z,y]NV).
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Clearly z € [z,y|, and hence z € X. Thus either z € V or z €
W. Suppose first that z € V. Then z # y (since y € W and V is
disjoint from W). But V is open relative to X, which contains [z, y],
so there is some ball By(g)q)(2,7) which is contained in V. But this
contradicts the fact that z is the supremum of [z, y] N V. Now suppose
that z € W. Then z # z (since x € V and V is disjoint from W).
But W is open relative to X, which contains [z,y], so there is some
ball B 4),.4)(2,7) which is contained in W. But this again contradicts
the fact that z is the supremum of [z,y] N V. Thus in either case we
obtain a contradiction, which means that X cannot be disconnected,
and must therefore be connected. U

e From Theorem 18, we see in particular that R is connected, as are
any intervals (a,b), [a,b], (a,b], [a,b), as well as point sets {a}, and
half-infinite intervals (a, +00), [a,+00), (—00,a), (—o0,a]. Together
with the empty set, these in fact form the only connected subsets of R
(why?).

e Continuous functions map connected sets to connected sets:

e Theorem 19 Let f : X — Y be a continuous map from one metric
space (X, dx) to another (Y, dy). Let E be any connected subset of X.
Then f(E) is also connected.

e Proof. See Week 2 homework. O
e An important corollary of this result is the Intermediate value theorem.

e Intermediate value theorem. Let f : X — R be a continuous
map from one metric space (X,dx) to the real line. Let E be any
connected subset of X, and let a, b be any two elements of E. Let y be
a real number between f(a) and f(b), i.e. either f(a) <y < f(b) or
f(a) >y > f(b). Then there exists ¢ € E such that f(c) =y.

e Proof. See Week 2 homework. O
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