Math 131BH - Week 10
Textbook pages covered: 314-324

The Lebesgue integral
Properties of the Lebesgue integral
Comparison with the Riemann integral

Dominated convergence theorem

* %k ok >k ok

Integration of simple functions

In last week’s notes, we defined the notion of a simple function - a
measurable function which takes finitely many values. We now show
how to integrate these functions, at least when the simple function is
non-negative. Then we will integrate measurable non-negative func-
tions, and finally integrate general measurable functions (or at least
the absolutely integrable ones).

Definition Let Q be a measurable subset of R", and let f : 2 — R
be a simple function which is non-negative; thus f is measurable and
the image f(2) is finite and contained in [0,00). We then define the
Lesbegue integral fQ f of fon Q by

/Qf:: S aml{z e Qs f() = A).

AEF(Q);A>0

We also write [, f as [, f dm (to emphasize the role of Lebesgue
measure m) or use a dummy variable such as z, e.g. [, f(z) dz.

Example. Let f : R — R be the function which equals 3 on the
interval [1,2], equals 4 on the integral (2,4), and is zero everywhere
else. Then

/f::3><m([1,2])+4><m((2,4)):3><1+4x2:11.
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Or if g : R — R is the function which equals 1 on [0, 00) and is zero
everywhere else, then

/nglxm([o,oo))zlx—i-oo:—l-oo.

Thus the simple integral of a simple function can equal +oo. (The
reason why we restrict this integral to non-negative functions is to
avoid ever encountering the indefinite form +oo + (—00)).

Note that this definition of integral corresponds to one’s intuitive notion
of integration (at least of non-negative functions) as the area under the
graph of the function (or volume, if one is in higher dimensions).

Another formulation of the integral for non-negative simple functions
is as follows.

Lemma 1. Let © be a measurable subset of R", and let F1,..., En
are a finite number of disjoint measurable subsets in €. Let c¢1,...,cn
be non-negative numbers (not necessarily distinct). Then we have

N n
[ S enn =3 emi(E).
@1 j=1

Proof. We can assume that none of the c¢; are zero, since we can
just remove them from the sum on both sides of the equation. Let
f:= Ejvzl cjXg;- Then f(z) is either equal to one of the ¢; (if z € Ej)
or equal to 0 (if z ¢ U;v:1 E;). Thus f is a simple function, and
f() ={0}U{c; : 1 <j < N}. Thus, by the definition,

/sz Y wm{zeQ: fm) =)

Ae{ej1<j<N}
AE{c;:1<j<N} 1<j<Nigj=A
But by the finite additivity property of Lebesgue measure, this is equal

to
ooox DY m(E)

Ae{ej:1<j<N}  1<j<Nigj=A



> > om(E).

Ae{ej:1<j<N} 1<G<Nicj=A
Each j appears exactly once in this sum, since c; is only equal to exactly

one value of A. So the above expression is equal to 3, ..y ¢;m(Ej) as
desired. 0

Some basic properties of Lebesgue integration of non-negative simple
functions:

Proposition 2. Let {2 be a measurable set, and let f : 2 — R and
g : 2 = R be non-negative simple functions.

(a) We have 0 < [, f < oo. Furthermore, we have [, f = 0 if and only
ifm({x € Q: f(zx) #0}) =0.

(b) We have [(f +9) = [, f+ [o9-
(¢) For any positive number ¢, we have [,cf =c [, f.
(d) If f(z) < g(z) for all z € Q, then we have [, f < [, g.

We make a very convenient notational convention: if a property P(x)
holds for all points in €2, except for a set of measure zero, then we say
that P holds for almost every point in 2. Thus (a) asserts that [, f =0
if and only if f is zero for almost every point in (2.

Proof. From Lemma 23 from last week’s notes, or from the formula

[ = Z AX{zeQ: f(z)=A}
A€ fF(M\{0}

we can write f as a combination of characteristic functions, say

N
f= Z CiXE;»
j=1

where Ey,...,Ey are disjoint subsets of {1 and the c; are positive.

Similarly we can write
M
9= Z deXF,
k=1

where Fi, ..., Fy are disjoint subsets of (2 and the dj are positive.
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e (a) Since [, f = Zjvzl c;m(E;) it is clear that the integral is between
0 and infinity. If f is zero almost everywhere, then all of the F; must
have measure zero (why?) and so [, f = 0. Conversely, if [, f =0,
then Zjvzl ¢;m(E;) = 0, which can only happen when all of the m(E})

are zero (since all the c¢; are positive). But then [J;_, F; has measure
zero, and hence f is zero almost everywhere in ).

o (b) Write By := Q\J;_, E; and co := 0, then we have Q = Ey U E; U
.U EN and
N
f= ZCjXEj-
j=0

Similarly if we write F := Q\ U,]cvil F}, and dy := 0 then

M
9= Z dk X F -
k=0

Since 2 = EyU...UEy = FyU...U Fy, we have

N M
f=2_2 cixmon,
=0 k=0
and
M N
9= Z deXE;nF,
k=0 j=0
and hence
fra= Y. (+d)xsn.

0<j<N;0<k<M

By Lemma 1, we thus have

/(f + g) = Z (Cj + dk)m(E] N Fk)
@ 0<j<N;0<k<M
On the other hand, we have

/Qf= Y ogm(E)= Y ¢m(E;NF)

0<j<N 0<j<N;0<k<M



and similarly

/Qg = Z dym(Fy) = Z dym(E; N Fy)

0<k<M 0<j<N;0<k<M
and the claim (b) follows.

e (c) Since cf = Z;VZI ccjXg;, we have [, cf = Z;vzl ce;m(E;). Since
Jof= Z;vzl ¢;m(E;), the claim follows.

e (d) Write h := g— f. Then h is simple and non-negative and g = f +h,
hence by (b) we have [,g= [, f+ [, h. But by (a) we have [,h >0,
and the claim follows. O

* Kk Kk

Integration of non-negative measurable functions

e We now pass from the integration of non-negative simple functions to
the integration of non-negative measurable functions. We will allow
our measurable functions to take the value of +o00 sometimes.

e Definition. Let f: 2 — R and g : {2 — R be functions. We say that
[ majorizes g, or g minorizes f, iff we have f(z) > g(z) for all z € Q.

e We sometimes use the phrase “f dominates g” instead of “f majorizes
7

g .

e Definition. Let {2 be a measurable subset of R", and let f : Q —
[0,00] be measurable and non-negative. Then we define the Lebesgue
integral [, f of f on Q to be

/ f=sup{ / s : s is simple and non-negative, and minorizes f}.
Q Q

e The reader should compare this notion to that of a lower Riemann
integral from my Math 131AH notes. Interestingly, we will not need to
match this lower integral with an upper integral here.

e Note that if €' is any measurable subset of 2, then we can define fQ, f
as well by restricting f to €, thus [, f = [ flo-
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We have to check that this definition is consistent with our previous
notion of Lebesgue integral for non-negative simple functions; in other
words, if f : 2 — R is a non-negative simple function, then the value
of [, f given by this definition should be the same as the one given in
the previous definition. But this is clear because f certainly minorizes
itself, and any other non-negative simple function s which minorizes f
will have an integral [, s less than or equal to [, f, thanks to Propo-
sition 2(d).

Also, note that fn f is always at least 0, since 0 is simple, non-negative,
and minorizes f. Of course, fo could equal +oo.

Some basic properties of the Lebesgue integral on non-negative mea-
surable functions (which supercede Proposition 2):

Proposition 3. Let {2 be a measurable set, and let f : Q — [0, o]
and g : Q — [0, 0o] be non-negative measurable functions.

(a) We have 0 < [, f < oco. Furthermore, we have [, f = 0 if and only
if f(x) =0 for almost every z € (.

(b) For any positive number ¢, we have [,cf =c [, f

(c) If f(z) < g(z) for all z € Q, then we have [, f < [, g

(d) If f(z) = g(x) for almost every z € Q, then [, f = [, g

(e) If Q' C Q is measurable, then [, f = [ fxo < [, f-

Proof. See Week 9 homework. O

Proposition 3(d) is quite interesting; it says that one can modify the
values of a function on any measure zero set (e.g. you can modify a
function on every rational number), and not affect its integral at all. Tt
is as if no individual point, or even a measure zero collection of points,
has any “vote” in what the integral of a function should be; only the
collective set of points has an influence on an integral.

Note that we do not yet try to interchange sums and integrals. From
the definition it is fairly easy to prove that [,(f+g) > [, f+ [, g, but
to prove equality requires more work and will be done later.
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e As we have seen in previous weeks notes, we cannot always interchange
an integral with a limit (or with limit-like concepts such as supremum).
However, with the Lebesgue integral it is possible to do so if the func-
tions are increasing:

e Lebesgue monotone convergence theorem. Let () be a measurable
subset of R", and let (f,,)>°; be a sequence of non-negative measurable
functions from €2 to R which are increasing in the sense that

0 < fi(z) < folz) < f3(z) < ... for all z € Q.

(Note we are assuming that f,(z) is increasing with respect to n; this
is a different notion from f,(x) increasing with respect to x). Then we

have
0§/ﬂf1§/ﬂf2§/ﬂf3§
/nglpfn—sup/fn-

e Proof. The first conclusion is clear from Proposition 3(c). Now we
prove the second conclusion. From Proposition 3(c) again we have

[ [ s

for every n; taking suprema in n we obtain

/nglpfm > sup/ fn

which is one half of the desired conclusion. To finish the proof we have

to show
/supfm < sup/ fn-
o m

From the definition of [, sup,, fm, it will suffice to show that

/SSSUP/fn
Q n Q

for all simple non-negative functions which minorize sup,,, fu,.

and
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Fix s. We will show that

(1—8)/98§8171lp/9fn

for every 0 < € < 1; the claim then follows by taking limits as € — 0.

Fix e. By construction of s, we have

s(z) < sup fu(z)

n

for every x € 2. Hence, for every z € Q there exists an N (depending

on z) such that
In(z) > (1 —¢€)s(x).

Since the f,, are increasing, this will imply that f,(z) > (1 —¢)s(z) for
all n > N. Thus, if we define the sets F,, by

E,:={z€Q: fo(z) > (1 —¢)s(z)}
then we have E; C E; C E3 C ... and |J,—, E, = Q.

From Proposition 3(cdf) we have

1_6/n5_/n1_88</fznf" /fn

so to finish the argument it will suffice to show that

sup/ s:/s
n n Q

. . . . . N
Since s is a simple function, we may write s = >,
measurable F; and positive ¢;. Since

/QS= écjm(F)

cjxr, for some

and

/s—/ ZC]XFJnEn ZCJ (F;NE,)



it thus suffices to show that

sup m(F; N E,) = m(Fj)

for each j. But this follows from Homework 1(a) of Assignment 8. [
This theorem is extremely useful. For instance, we can now do addition:

Lemma 4. Let {2 be a measurable subset of R", and let f : 2 — [0, o0]
and g : Q — [0, c0] be measurable functions. Then [,(f +g) = [, f+

Joy-

Proof. By Lemma 24 of last week’s notes, there exists a sequence
0 <5 <59 <...< f of simple functions such that sup,, s, = f, and
similarly a sequence 0 < t; <ty < ... < g of simple functions such that
sup,, t, = ¢. Since the s, are increasing and the ¢, are increasing, it is

then easy to check that s,+t, is also increasing and sup,, (s, +t,) = f+g
(why?). By the monotone convergence theorem we thus have

/f=sup/sn
Q n Q
/g=sup/tn
Q n Q

/Q(f+9)=Slyllp/Q(8n+tn).

But by Proposition 1(b) we have [,(sp +tn) = [y8n + [yt By
Proposition 1(d), fQ s, and fQ t, are both increasing in n, so

sgp(/Q 5n+/ﬂtn) = (Sgp/ﬂsn)ﬂsgp/ntn)

and the claim follows. O

Of course, once one can interchange an integral with a sum of two
functions, one can handle an integral and any finite number of functions
by induction. More surprisingly, one can handle infinite sums as well
of non-negative functions:



Corollary 5. If Q2 is a measurable subset of R", and g1, ¢o, ... are a
sequence of non-negative functions from Q to [0, oo], then

o o
/an_:lgn:nz_:l/ggn-

Proof. Apply the monotone convergence theorem with fy := Zgzl Jn-
d

Note that we do not need to assume anything about the convergence of
the above sums; it may well happen that both sides are equal to +oc.
However, we do need to assume non-negativity; see homework.

One could similarly ask whether we could interchange limits and inte-
grals; in other words, is it true that

/ lim f, = lim [ f,.
Qn—>oo n—oo 0

Unfortunately, this is not true, as the following “moving bump” exam-
ple shows. For each n = 1,2,3..., let f, : R — R be the function
fn = Xinn+1)- Then lim, o fo(z) = 0 for every z, but R f, =1 for
every n, and hence lim,, fR fn =1 %# 0. In other words, the limit-
ing function lim,,_,, f, can end up having significantly smaller integral
than any of the original integrals. However, the following very useful
lemma, of Fatou shows that the reverse cannot happen - there is no way
the limiting function has larger integral than the (limit of the) original
integrals:

Fatou’s lemma Let €2 be a measurable subset of R", and let fi, fo,...
be a sequence of non-negative functions from 2 to [0, cc]. Then

/lim inf f, <lim inf /fn
0 n—oo n—oQ 0
Proof. Recall that

lim inf f, = Sgp%i fm)
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and hence by the monotone convergence theorem

/lim inf f, =sup/(1nf fm)-
Q n—00 n Jo m>
By Proposition 3(c) we have

/Q;gafm /fg

for every j > n; taking infima in j we obtain
f fin) < inf .
[ Gnt gy < [

/ lim mf fn < sup 1nf / f; =lim inf / fa
Q n Jj>n n—oo o
as desired. O

Thus

e Note that we are allowing our functions to take the value +o00 at some
points. It is even possible for a function to the value +oc but still have
a finite integral; for instance, if F is a measure zero set, and f: 2 - R
is equal to +00 on E but equals 0 everywhere else, then fQ f =0 by
Proposition 3(a). However, if the integral is finite, the function must
be finite almost everywhere:

e Lemma 6. Let {2 be a measurable subset of R", and let f : 2 — [0, 0]
be a non-negative measurable function such that [, f is finite. Then
f is finite almost everywhere (i.e. the set {x € Q : f(z) = +oo} has
measure zero).

e Proof. See Week 9 homework. O

X %k sk ok ok

Integration of absolutely integrable functions

e We have now completed the theory of the Lebesgue integral for non-
negative functions. Now we consider how to integrate functions which
can be both positive and negative. However, we do wish to avoid the
indefinite expression +o00 + (—00), so we will restrict our attention to a
subclass of measurable functions - the absolutely integrable functions.
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Definition. Let € be a measurable subset of R". A measurable func-
tion f: Q — R* is said to be absolutely integrable if the integral [, |f|
is finite.

Of course, |f]| is always non-negative, so this definition makes sense
even if f changes sign. Absolutely integrable functions are also known
as L'(Q) functions.

If f:Q — R"is a function, we define the positive part f*: Q — [0, o]
and negative part f~ : Q — [0, 00] by the formulae

f+ = ma’X(f: 0)’ f_ = _min(f: 0)

From Corollary 18 from last week’s notes we know that f* and f~
are measurable. Observe also that f* and f~ are non-negative, that

f=1"=f7 and [f[=fT+f7. (Why?).

Definition. Let f : 2 — R* be an absolutely integrable function. We
define the Lebesgue integral fQ f of f to be the quantity

o=kl

Note that since f is absolutely integrable, [, f and [, f~ are less than
or equal to [, |f| and hence are finite. Thus [, f is always finite; we
are never encountering the indeterminate form +o0o — (4+00).

Note that this definition is consistent with our previous definition of the
Lebesgue integral for non-negative functions, since if f is non-negative
then f© = f and f~ = 0. Clearly, we also have the useful triangle

inequality
[ns [ [r =]

(why is this true?).
Some other properties of the Lebesgue integral:

Proposition 7. Let €2 be a measurable set, and let f : @ — R and
g : 2 = R be absolutely integrable functions.
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e (a) For any real number ¢ (positive, zero, or negative), we have that cf
is absolutely integrable and [, cf = c [, f-

e (b) The function f + g is absolutely integrable, and [,,(f +g) = [, f+

Jag-

o (c) If f(x) < g(z) for all z € €, then we have [, f < [, 9.
o (d) If f(z) = g(z) for almost every z € Q, then [, f = [, 9.
e Proof. See Week 9 homework. O

e As mentioned in the previous section, one cannot necessarily inter-
change limits and integrals, lim [ f, = [lim f,,, as the “moving bump
example” showed. However, it is possible to exclude the moving bump
example, and successfully interchange limits and integrals: if we know
that the functions f,, are all majorized by a single absolutely integrable:

e Lebesgue dominated convergence theorem. Let (2 be a mea-
surable subset of R", and let f{, fo,... be a sequence of measurable
functions from 2 to R* which converge pointwise. Suppose also that
there is an absolutely integrable function F' :  — [0, 00] such that
|fo(z)] < F(z) for all z € Q and all n =1,2,3,.... Then

/ lim f, = lim [ f,.
Qn—>oo n—o0 0

e Proof. Let f : Q@ — R* be the function f(z) := lim, , fn(z); this
function exists by hypothesis. By Lemma 21 from last week’s notes,
f is measurable. Also, since |f,(z)| < F(z) for all n and all z € Q,
we see that each f, is absolutely integrable, and by taking limits we
obtain |f(z)| < F(z) for all z € €, so f is also absolutely integrable.
Our task is to show that lim,_, [ fn = [ f-

e The functions F'+ f,, are non-negative and converge pointwise to F'+ f.
So by Fatou’s lemma
n—oo

/F+f§liminf/F+fn
Q Q
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and thus

/f<11mnlggo/fn

But the functions F' — f, are also non-negative and converge pointwise
to F'— f. So by Fatou’s lemma again

/F—fgliminf/F—fn.
0 n—)ooQ

Since the right-hand side is fQ F — limsup,,_, fﬂ fn (why did the lim
inf become a lim sup?), we thus have

f > lim sup /fn

n—oo

Thus the lim inf and lim sup of fQ fn are both equal to fQ f, as desired.
O

Finally, we record a lemma which is not particularly interesting in itself,
but will have some useful consequences later in these notes.

Definition. Let 2 be a measurable subset of R", and let f : 2 — R be
a functigl (not necessarily measurable). We define the upper Lebesgue
integral [, f to be

/ f:=inf{ / g : g is an absolutely integrable function
Q Q

from € to R that majorizes f}
and the lower Lebesgue integral fo to be

/ f=sup{ / g : g is an absolutely integrable function
Jq Q

from € to R that minorizes f}.

It is easy to see that f f< fo (why? use Proposition 7(c)). When

f is absolutely 1ntegrable then equality occurs (why?). The converse is
also true:
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e Lemma 8. Let €2 be a measurable subset of R", and let f : 2 — R be
a function (not necessarily measurable). Let A be a real number, and

suppose TQ f= i 0 f = A. Then f is absolutely integrable, and

frTaL s

e Proof. By definition of upper Lebesgue integral, for every integer
n > 1 we may find an absolutely integrable function f; : Q@ — R
which majorizes f such that

./HSA+L
Q n

Similarly we may find an absolutely integrable function f, : & — R
which minorizes f such that

[rrca-t
Q n

Let F* := inf, f;f and F~ := sup, f,,. Then F'* and F~ are mea-
surable (by Lemma 21) and absolutely integrable (because they are
squeezed between the absolutely integrable functions f;” and f;, for
instance). Also, F* majorizes f and F~ minorizes f. Finally, we have

/F+§/fn+§A+l
Q Q n

for every n, and hence
/ FT < A.
Q

[F=a
Q

but F* majorizes F~, and hence [, F* > [ F~. Hence we must have

/F+:/F‘:A
Q Q
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In particular

/F+—F:O.
Q

By Proposition 3(a), we thus have F*(z) = F~(z) for almost every
x. But since f is squeezed between F'~ and F'*, we thus have f(x) =
F*(z) = F~(z) for almost every x. In particular, f differs from the
absolutely integrable function F'* only on a set of measure zero and is
thus easily shown to be measurable (note that any subset of a measure
zero set is also measurable with measure zero - why?) and absolutely

as desired. O

X %k sk ok ok

Comparison with the Riemann integral

e We have spent a lot of effort constructing the Lebesgue integral, but
have not yet addressed the question of how to actually compute any
Lebesgue integrals, and whether Lebesgue integration is any different
from the Riemann integral (say for integrals in one dimension). Now we
show that the Lebesgue integral is a generalization of the Riemann inte-
gral. To clarify matters, we shall temporarily distinguish the Riemann
integral from the Lebesgue integral by writing the Riemann integral

[, fasR. [, f.

e Our objective here is to prove

e Proposition 9. Let I C R be an interval, and let f : I — R be a
Riemann integrable function. Then f is also absolutely integrable, and

f[f:R'fIf'

e Proof. (Optional) Write A := R. [, f. Since f is Riemann integrable,
we know that the upper and lower Riemann integrals are equal to A.
Thus, for every € > 0, there exists a partition P of I into smaller
intervals J such that

—e< i < < <
A—e< ) inffl@) <A< |Jlsupfla) < A+te,
JeP JeP
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where |J| denotes the length of J. Note that |J| is the same as m(J),
since J is a box.

Let f7: I — R and f : I — R be the functions

fo (@)= inf f(z)xs(2)
JeP

and
fH (@) =" sup f(z)xs(2);
JcP et

these are simple functions and hence measurable and absolutely inte-
grable. By Lemma 1 we have

[ £ =3 Wlint 1(@)

JcP
and
/ £ =3 J]sup f(2)
I zeJ
JcP
and hence

A—egffggAs/fngJra.
I I

Since f majorizes f, and f- minorizes f, we thus have

A—sg/ f§7QfSA+e
J q

for every ¢, and thus o
-]
4 Q Q

and hence by Lemma 8, f is absolutely integrable with [ [ =A as
desired. 0

Thus every Riemann integrable function is also Lebesgue integrable, at
least on bounded intervals, and we no longer need the R. | ; J notation.
However, the converse is not true. Take for instance the function f :
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[0,1] — R defined by f(x) := 1 when z is rational, and f(z) := 0 when
x is irrational. Then it is easy to see that the upper Riemann integral of
fon0,1]is 1, and the lower Riemann integral is 0, so f is not Riemann
integrable on f. On the other hand, f is the characteristic function of
the set Q N [0, 1], which is countable and hence measure zero. Thus f
is Lebesgue integrable and f[o,1] f = 0. Thus the Lebesgue integral can
handle more functions than the Riemann integral; this is one of the
primary reasons why we use the Lebesgue integral in analysis. (The
other reason is that the Lebesgue integral interacts well with limits,
as the Lebesgue monotone convergence theorem, Fatou’s lemma, and
Lebesgue dominated convergence theorem already attest. There are no
comparable theorems for the Riemann integral).

X %k ok ok ok

Fubini’s theorem (optional)

In one dimension we have shown that the Lebesgue integral is connected
to the Riemann integral. Now we will try to understand the connection
in higher dimensions. To simplify the discussion we shall just study
two-dimensional integrals, although the arguments we present here can
easily be extended to higher dimensions.

We shall study integrals of the form fRz f- Note that once we know

how to integrate on R?, we can integrate on measurable subsets Q of
R? since [, f can be rewritten as fR2 fxa-

Let f(z,y) be a function of two variables. In principle, we have three
different ways to integrate f on R?. First of all, we can use the two-
dimensional Lebesgue integral, to obtain fRz f. Secondly, we can fix
x and compute a one-dimensional integral in y, and then take that
quantity and integrate in z, thus obtaining [R (R f(z,y) dy) dz. Sec-
ondly, we could fix y and integrate in z, and then integrate in y, thus

obtaining [R (/R f(z,y) dz) dy.

Fortunately, if the function f is absolutely integrable on f, then all
three integrals are equal:

Fubini’s theorem. Let f : R> — R* be an absolutely integrable
function. Then there exists absolutely integrable functions F': R -+ R

18



and G : R — R such that for almost every z, f(x,y) is absolutely

integrable in y with
= / f(z,y) dy,

and for almost every y, f(z,y) is absolutely integrable in x with

/ f(z,y) dz.
Finally, we have

Jo P do= [ 1= [ G

Very roughly speaking, Fubini’s theorem says that

oL s dnydo= [ = [ (]t d) dy

This allows us to compute two-dimensional integrals by splitting them
into two one-dimensional integrals. The reason why we do not write
Fubini’s theorem this way, though, is that it is possible that the in-
tegral fR f(z,y) dy does not actually exist for every z, and similarly
fR f(z,y) dz does not exist for every y; Fubini’s theorem only asserts
that these integrals only exist for almost every x and y. For instance, if
f(z,y) is the function which equals 1 when x > 0 and y = 0, equals —1
when z < 0 and y = 0, and is zero otherwise, then f is absolutely inte-
grable on R? and fRz f =0 (since f equals zero almost everywhere in

R?), but JR f(z,y) dy is not absolutely integrable when z = 0 (though
it is absolutely integrable for every other z).

The proof of Fubini’s theorem is quite complicated and we will only
give a sketch here. We begin with a series of reductions.

Roughly speaking (ignoring issues relating to sets of measure zero), we
have to show that

S e an o= [ s

together with a similar equality with x and y reversed. We shall just
prove the above equality, as the other one is very similar.
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e First of all, it suffices to prove the theorem for non-negative functions,
since the general case then follows by writing a general function f as a
difference f* — f~ of two non-negative functions, and applying Fubini’s
theorem to f* and f~ separately (and using Proposition 7(ab)). Thus
we will henceforth assume that f is non-negative.

e Next, it suffices to prove the theorem for non-negative functions f sup-
ported on a bounded set such as [N, N| x [N, N| for some positive
integer N. Indeed, once one obtains Fubini’s theorem for such func-
tions, one can then write a general function f as the supremum of such
compactly supported functions as

J = sup fX[—N,N|x[-N,N]»
N>0
apply Fubini’s theorem to each function fx[-n ~)x[-~,n] separately, and
then take suprema using the monotone convergence theorem. Thus we
will henceforth assume that f is supported on [-N, N| x [-N, N].

e By another similar argument, it suffices to prove the theorem for non-
negative simple functions supported on [—N, N| x [N, N], since one
can use Lemma 23 from last week’s notes to arise f as the supremum
of simple functions (which must also be supported on [—N, N]), apply
Fubini’s theorem to each simple function, and then take suprema using
the monotone convergence theorem. Thus we may assume that f is a
non-negative simple function supported on [—N, N] x [N, N|.

e Next, we see that it suffices to prove the theorem for characteristic
functions supported in [—N, N] x [-N, N]. This is because every sim-
ple function is a linear combination of characteristic functions, and so
we can deduce Fubini’s theorem for simple functions from Fubini’s the-
orem for characteristic functions. Thus we may take f = yg for some
measurable £ C [—N, N]x[—N, N]. Our task is then to show (ignoring
sets of measure zero) that

/[_N,N]( /[_N,N] xe(z,y) dy) dv =m(E).
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It will suffice to show the upper Lebesgue integral estimate

7[_N,N} (7[—N,N]XE(x’ y) dy) dz < m(E).

We will prove this estimate later. Once we show this for every set E,
we may substitute E with [—N, N| x [-N, N]\E and obtain

7 (7 (1 — xe(x,y)) dy) do < 4AN?* — m(E).
SRSy

But the left-hand side is equal to

[ ooev- [ oy dy)ds
[=N,N] £ _[-N,N]

which is in turn equal to

AN — / (/ xi(z,y) dy) d
S NN LN

and thus we have

l[N N}(Z[N N]XE(x, y) dy) dz > m(E).

In particular we have

/[—NN](/[_N,N]XE(”’?J) dy) dz > m(E)

and hence by Lemma 8 we see that T[_ N N]XE(x,y) dy is absolutely
integrable and

/[_ . (7[_N7N]XE(% y) dy) dz = m(E).

A similar argument shows that

/[_N,N] (Z[_N N}XE(% y) dy) dz = m(E)
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and hence

/ (/ xe(z,y) dy — / xe(x,y)) dz =0.
[_N’N} [—N,N] —[—N,N}

Thus by Proposition 3(a) we have

/ xe(r,y) dy = / xe(z,y) dy
< _[-N,N] [=N,N]

for almost every x € [—N, N|. Thus xg(z,y) is absolutely integrable
in y for almost every z, and f[f NN Xe(z,y) is thus equal (almost ev-
erywhere) to a function F(z) such that

/[_N . F(z) de =m(E)

as desired.

It remains to prove the bound

7[_N,N} (7[_N7N]XE(~T5 y) dy) dz < m(E).

Let ¢ > 0 be arbitrary. Since m(E) is the same as the outer mea-
sure m*(E), we know that there exists an at most countable collection

(Bj)jers of boxes such that E C |J,.; B; and

Zm(Bj) <m(E)+e.

jeJ

Each box B; can be written as B; = I; X IJ’- for some intervals I; and
IJ’-. Observe that

m(B) =505 = [ 151de= [ ([ ayaa

J J J

—[ () g ddy=[ ([ sl dody
[-N,N] J[—N,N] [-N,N] J[-N,N]
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Adding this over all j € J (using Corollary 5) we obtain

> m(B;) = / (/ > xs;(z,y) dz)dy.
jeJ [=N,N] J[=N.N] je g
In particular we have
[ S oy < m(E)+
[_N’N} [_N7N] jEJ
But } .. ; Xp; majorizes xg (why?) and thus

/ (/ xe(7,y) dr)dy < m(E) +e.
[—N,N] [—N,N]

But ¢ is arbitrary, and so we have

[ et ) do < ()

as desired. This completes the proof of Fubini’s theorem.
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