Math 131BH - Week 1
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Overview of course

This course is a continuation of Math 131AH, Honors real analysis. In
that course we rigorously studied the foundations of calculus of one
variable: the real number system, limits of sequences and series, con-
tinuity, differentiation, and the Riemann integral. In this course we
shall continue these studies, but now we will be working in more gen-
eral contexts. For instance, we will be studying convergence, limits and
continuity, not just in the real numbers as in 131AH, but in more gen-
eral settings known as metric spaces. In particular, we will be able to
use these concepts in several dimensions, which then leads to notions of
derivatives and integrals in several variables. The notion of convergence
of series was studied in 131AH; we shall return to this notion again, but
now we will be summing functions instead of numbers. In particular
we will study two important classes of series of functions: power series
and Fourier series. This in particular allows us to rigorously introduce
many familiar functions, such as exp, sin, log, etc., all of which play a
basic role in modern mathematics.

Many of these notions were already covered in Math 33B, but we will
be reviewing them in much greater depth than in that course. There
is also some overlap with other upper-division courses such as Math
121 (Introduction to Topology) and Math 133 (Introduction to Fourier
Analysis).



e In the last three weeks of the course, we will begin addressing the
question of what a volume of a set in several dimensions (e.g. in R?)
really means; it turns out that this is actually a rather subtle concept,
and the Riemann integral begins to run into difficulties when trying
to satisfactorily answer this question. An example: consider the set
{(z,y,2) € R*: 0 < z,y,z < 1;z,y, z irrational }, i.e. all the points in
the unit cube with irrational co-ordinates. What is the volume of this
set? We shall develop a more powerful version of the Riemann integral,
known as the Lebesgue integral, which gives a satisfactory answer to the
question of how to integrate functions, and how to compute volumes of
sets such as the one described above.
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Metric spaces

e Recall from Math 131AH that we know what it means for a sequence
(xn)22,, of real numbers to converge to another real number z; this

means that for every e > 0, there exists an N > m such that |[z—z,| < e
for all n > N. When this is the case, we write lim,_,, =, = .

e Intuitively, when a sequence (x,)$°, . converges to a limit x, this means
that somehow the elements x, of that sequence will eventually be as
close to x as one pleases. One way to phrase this more precisely is to
introduce the distance function d(x,y) between two real numbers by
d(z,y) := |z — y|. (Thus for instance d(3,5) = 2, d(5,3) = 2, and
d(3,3) = 0). Then we have

e Lemma 1. Let (z,)%°,, be a sequence of real numbers, and let z
be another real number. Then (z,),, converges to z if and only if
limy, o0 d(2n,2) = 0.

e Proof. See Week 1 homework. O

e One would now like to generalize this notion of convergence, so that
one can take limits not just of sequences of real numbers, but also
sequences of complex numbers, or sequences of vectors, or sequences of
matrices, or sequences of functions, even sequences of sequences. One
way to do this is to redefine the notion of convergence each time we



deal with a new type of object. As you can guess, this will quickly
get tedious. A more efficient way is to work abstractly, defining a very
general class of spaces - which includes such standard spaces as the
real numbers, complex numbers, vectors, etc. - and define the notion
of convergence on this entire class of spaces at once. (A space is just
the set of all objects of a certain type - the space of all real numbers,
the space of all 3 x 3 matrices, etc. Mathematically, there is not much
distinction between a space and a set, except that spaces tend to have
much more structure than what a random set would have. For instance,
the space of real numbers comes with operations such as addition and
multiplication, while a general set would not).

It turns out that there are two very useful classes of spaces which do
the job. The first class is that of metric spaces, which we will study
here. There is a more general class of spaces, called topological spaces,
which are also very important, but we will not deal with these in this
course; you will have to go to Math 121, Introduction to Topology, to
learn more about them.

Roughly speaking, a metric space is any space X which has a concept
of distance d(z,y) - and this distance should behave in a reasonable
manner. More precisely, we have

Definition A metric space (X, d) is a space X of objects (called points),
together with a distance function or metric d : X x X — [0, 00), which
associates to each pair =,y of points in X a non-negative real number
d(z,y) > 0. Furthermore, the metric must satisfy the following four
axioms:

(i) For any = € X, we have d(z,z) = 0.
(ii) (Positivity) For any distinct z,y € X, we have d(z,y) > 0.
(iii) (Symmetry) For any z,y € X, we have d(z,y) = d(y, z).

(iv) (Triangle inequality) For any z,y, z € X, we have d(z, 2) < d(z,y)+
d(y, 2).

In many cases it will be clear what the metric d is, and we shall abbre-
viate (X, d) as just X.



e Remark. The conditions (i) and (ii) can be rephrased as follows: for
any z,y € X we have d(z,y) = 0 if and only if x = y. (Why is this
equivalent to (i) and (ii)?).

e Example. (The real line) Let R be the real numbers, and let d :
R x R — [0,00) be the metric d(z,y) := |z — y| mentioned earlier.
Then (R, d) is a metric space. (We leave it to the reader to verify all
the properties. The triangle inequality is the trickiest. See also the
Week 2 notes from my Math 131AH course.)

e Example. (The integers) Let Z be the integers, and let d|yz 7 :
Z x Z — [0,00) be the metric function d|z 7z (z,y) := |z — y|; i.e.
d|g..7 is the restriction of the real line metric d : R x R — [0, 00) to
Z x Z. Thus for instance d(1,4) = 3 and d(6,2) = 4. Then (Z,d|z, 7)
is also a metric space; this is what we call a subspace of the larger
metric space (R, d). (More generally, if (X, d) is a metric space, and YV’
is a subset of X, then (Y,d|yxy) is also a metric space, and is called
a subspace of (X, d), or the restriction of the metric space (X,d) to Y,
or the metric space on Y induced by (X,d).) Note that if the larger
space (X,d) obeys the axioms (i)-(iv), then the subspace (Y,d|yxy)
will automatically obey these axioms also. (Why?)

e Example. (Euclidean spaces) Let n > 1 be a natural number, and
let R™ be the space of n-tuples of real numbers:

R" = {(z1,29,...,2,) : 1,...,2, € R}.

(Equivalently, one can define R" inductively using Cartesian products,
as R' := R, and R""! := R" x R for all n > 1). We define the
Euclidean metric (also called the [? metric) dz : R* x R* — R by

n

dp (21, Ta, - 20), (Y1, Y2s - -, Un)) = V(X1 —Y1)2 + o (T — )2 = (Z(xi—yi)Q)l/Q.

=1

Thus for instance, if n = 2, then dp2((1, 6), (4,2)) = v/32 + 42 = 5. This
metric corresponds to the geometric distance between the two points
(1,2, .-+, %), (Y1,Y2,---,Yn) as given by Pythagoras’s theorem. (We
remark however that while geometry does give some very important



examples of metric spaces, it is possible to have metric spaces which
have no obvious geometry whatsoever. Some examples are given be-
low). The verification that (R",d) is indeed a metric space can be seen
geometrically (for instance, the triangle inequality now asserts that the
length of one side of a triangle is always less than or equal to the sum of
the lengths of the other two sides), but can also be proven algebraically
(see exercises).

Example. (Taxicab metric) Again let n > 1, and let R" be as
before. But now we use a different metric d;, the so-called tazicab
metric (or ' metric), defined by

dp (1, o, o3 T0), (Y1, Y2y - - -5 Un)) = |T1—Y1 |+ - A |Tn—Yn| = Z |z —v; |-
i=1

Thus for instance, if n = 2, then d;((1,6),(4,2)) = 5+ 2 = 7. This
metric is called the taxi-cab metric, because it models the distance a
taxi-cab would have to traverse to get from one point to another if
the cab was only allowed to move in cardinal directions (north, south,
east, west) and not diagonally. As such it is always at least as large as
the Euclidean metric, which measures distance “as the crow flies”, as it
were. (Can you see algebraically why d;: is always greater than or equal
to dp2? Try squaring both sides). We claim that the space (R",d;1) is
also a metric space. We shall only verify one of the properties, namely
the triangle inequality (iv); we leave the other three properties to the
reader. Let x = (x1,...,2,), ¥y = (Y1,---,Yn), and z = (21,...,2,) be
three points in R". We have to show that

dll(x7 Z) S dl1 (37, y) + dll (y7 Z)
We expand this as
n n n
Z|$z — 7| < Z|$z — il +Z|yi — .
i=1 i=1 i=1

But by the triangle inequality for R, we have |x;—z;| < |z;—v:|+|yi— 2]
forall i =1,...,n, and the claim follows.



e The taxi-cab metric is useful in several places, for instance in the theory
of error correcting codes. A string of n binary digits can be thought
of as an element of R", for instance the binary string 10010 can be
thought of as the point (1,0,0,1,0) in R®. The taxi-cab distance be-
tween two binary strings is then the number of bits in the two strings
which do not match, for instance d;:(10010,10101) = 3. The goal of
error-correcting codes is to encode each piece of information (e.g. a
letter of the alphabet) as a binary string in such a way that all the
binary strings are as far away in the taxicab metric from each other as
possible; this minimizes the chance that any distortion of the bits due
to random noise can accidentally change one of the coded binary strings
to another, and also maximizes the chance that any such distortion can
be detected and correctly repaired.

e There are in fact [P metrics for every positive real number p, and there
is also an [*° metric, but we will not discuss those in this course.

e Example. (Discrete metric) Let X be an arbitrary set (finite or
infinite), and define the discrete metric dgsc by setting dgisc(z,y) := 0
when z = y, and dgis.(x,y) := 1 when z # y. Thus, in this metric, all
points are equally far apart. One can easily verify that (X, dgs.) is a
metric space for any set X (why?).

e Example. (Geodesics) Let X be the sphere {(z,y,2) € R® : 2% +
y?+ 2% =1}, and let d((=x, y, 2), (', 9", 2')) be the length of the shortest
curve in X which starts at (z,y, z) and ends at (z/, 4/, 2’). (This curve
turns out to be an arc of a great circle; we will not prove this here,
as it requires calculus of variations, which is beyond the scope of this
course). This makes X into a metric space; the reader should be able
to verify (without using any geometry of the sphere) that the triangle
inequality is more or less automatic from the definition.

e Example. (Shortest paths) Examples of metric spaces occur all the
time in real life. For instance, X could be all the computers currently
connected to the internet, and d(z, y) is the shortest number of connec-
tions it would take for a packet to travel from computer  to computer
y; for instance, if x and y are not directly connected, but are both
connected to z, then d(x,y) = 2. Assuming that all computers in the



internet can ultimately be connected to all other computers (so that
d(z,y) is always finite), then (X, d) is a metric space (why?). Games
such as “six degrees of separation” are also taking place in a similar
metric space (what is the space, and what is the metric, in this case?).
Or, X could be Los Angeles, and d(z,y) could be the shortest time it
takes to drive from z to y (although this space might not satisfy axiom
(iii) in real life!).

Now that we have metric spaces, we can define convergence in these
spaces.

Definition Let m be an integer, (X,d) be a metric space and let
(x(™)%_ be a sequence of points in X (i.e. for every natural num-
ber n > m, we assume that z(™ is an element of X). Let = be a point
in X. We say that (z(™)  converges to x with respect to the metric
d, if and only if the limit lim,_, d(z(™, z) exists and is equal to 0. In
other words, (z(™)22 ~ converges to x with respect to d if and only if
for every € > 0, there exists an N > m such that d(2™,z) < ¢ for all

n > N. (Why are these two definitions equivalent?)

Note that this definition is consistent with Lemma 1, in that it gener-
alizes our existing notion of convergence of sequences of real numbers.
In many cases, it is obvious what the metric d is, and so we shall often
just say “(x(™)°%  converges to z” instead of “(x(™)%  converges to
x with respect to the metric d” when there is no chance of confusion.
We also sometimes write “z(™ — z as n — o0” instead.

Of course, there is nothing special about the subscript n; it is a dummy
variable. Saying that (z(™)32  converges to z is exactly the same
statement as saying that (z(¥))%°  converges to x, for example; and
sometimes it is convenient to change subscripts, for instance if the
variable n is already being used for some other purpose. Similarly, it is
not necessary for the sequence (™ to be denoted using the superscript
(n); the above definition is also valid for sequences z,,, or functions f(n),
or indeed of any expression which depends on n and takes values in X.
Finally, the starting point m of the sequence is unimportant for the
purposes of taking limits; if (™) = converges to z, then (z(™)
also converges to z for any m' > m. (Why?)

m/’



e Example We work in the Euclidean space R* with the standard Eu-
clidean metric d;2. Let (™), denote the sequence z(™ := (1/n,1/n)
in R?, i.e. we are considering the sequence (1, 1), (1/2,1/2), (1/3,1/3),....
Then this sequence converges to (0,0) with respect to the Euclidean
metric dj2, since

[1 1 V2
i (n) = I 4 = Yo _
nlg{)lo dp2(z'™,(0,0)) 7}1_1)1010 o + o nlg{)lo - 0.

The sequence (z(™)%; also converges to (0, 0) with respect to the taxi-
cab metric d;1, since

1 1 2

lim dp (z™, (0,0)) = lim = + — = lim =

n—00 n—00 7 n n—o0 71

=0.

However, the sequence (2(™)%; does not converge to (0,0) in the dis-
crete metric dg;s., since

lim dgise(z™, (0,0)) = lim 1 =1 # 0.

n—oo n—oo

Thus the convergence of a sequence can depend on what metric one
uses. (Perhaps one can think of a real-life example comparing, say, the
automobile metric and the pedestrian metric in Los Angeles).

e In the case of the above three metrics - Euclidean, taxicab, and discrete
- it is in fact rather easy to test for convergence.

e Proposition 2. Let R" be a Euclidean space, and let (z*))%°  be

a sequence of points in R". We erte AQNES (x( Ve x%k)), ie.
for j =1,2,...,n, x *) € R is the j* co-ordinate of z®¥) € R". Let
= (x1,...,x ) be a pomt in R". Then the following three statements

are equivalent:
e (a) (z)  converges to x with respect to the Euclidean metric dj2.
e (b) (™))% converges to = with respect to the taxicab metric dj:.

e (c) Forevery 1 < j < n, the sequence (xgk)) %, converges to ;. (Notice

that this is a sequence of real numbers, not of points in R").



Proof. See Week 1 homework. O

In other words, a sequence converges in the Euclidean or taxicab metric
if and only if each of its components converges individually. Because of
the equivalence of (a) and (b), we say that the Euclidean metric and the
taxicab metric on R" are equivalent. (There are infinite-dimensional
analogues of the Euclidean and taxicab metrics which are not equiva-
lent, but that is a matter beyond the scope of this course).

For the discrete metric, convergence is much harder: the sequence must
be eventually constant in order to converge.

Proposition 3. Let X be any set, and let dgs. be the discrete metric
on X. Let (™) be a sequence of points in X, and let  be a point
in X. Then (z(™)%_ converges to x with respect to the discrete metric
dgise if and only if there exists an N > m such that z" = z for all
n > N.

Proof. See Week 1 homework. O

We now prove a basic fact about converging sequences; they can only
converge to at most one point at a time.

Proposition 4. Let (X, d) be a metric space, and let (z(™)>  be a
sequence in X. Suppose that there are two points z, 2’ € X such that
()22 converges to = with respect to d, and (z(™)2 also converges
to 2’ with respect to d. Then we have z = z'.

Proof. See Week 1 homework. O

Because of the above Proposition, it is safe to introduce the following
notation: if (™) converges to z in the metric d, then we write
d — lim,_,o 2™ = z, or simply lim,_,o 2™ = z when there is no
confusion as to what d is. For instance, in the example of (%, %), we

have 11 11
dz — lim (—,—) =dp — lim (—, —) = (0,0),

n—oc N n n—oc N n

but dgise—lim,_o0(2, 1) is undefined. Thus the meaning of d—lim, o, 2™

can depend on what d is; however Proposition 4 assures us that once d



is fixed, there can be at most one value of d — lim,,_,o, (™. (Of course,
it is still possible that this limit does not exist; some sequences are not
convergent).

e It is even possible for a sequence to converge to one point using one met-
ric, and another point using a different metric, although such examples
are usually quite artificial. For instance, let X := [0, 1], the closed in-
terval from 0 to 1. Using the usual metric d, we have d —lim,, _, % = 0.
But now suppose we “swap” the points 0 and 1 in the following man-
ner. Let f : [0,1] — [0,1] be the function defined by f(0) := 1,
f(1) :==0, and f(z) := z for all z € (0,1), and then define d'(z,y) :=
d(f(x), f(y)). Then (X,d') is still a metric space (why?), but now
d — limn_)oo% = 1. Thus changing the metric on a space can greatly
affect the nature of convergence (also called the topology) on that space.

X %k ok ok ok

Some point-set topology of metric spaces

e We have now defined the operation of convergence on metric spaces.
We now define a couple other related notions, including that of open
set, closed set, interior, exterior, boundary, and adherent point. The
study of these notions (and a few others, some of which we will discuss
next week) is known as point-set topology, although we will only skim
the theory of topology, leaving the finer detail to Math 121.

o We first need the notion of a metric ball, or more simply a ball.

e Definition Let (X, d) be a metric space, let zy be a point in X, and
let » > 0. We define the ball Bx q)(2o,7) in X, centered at z,, and
with radius r, in the metric d, to be the set

Bixa)(2o,7) :={z € X : d(z,x0) <r}.

When it is clear what the metric space (X, d) is, we shall abbreviate
Bx,a)(wo,r) as just B(zo,).

e Example. In R? with the Euclidean metric dj2, the ball B(R2 42) ((0,0),1)
'y

is the open disc

B(R2,dl2)((0, 0),1) = {(z,y) € R* : 2> + 3% < 1}.

10



However, if one uses the taxi-cab metric d;; instead, then we obtain a
diamond:

Bl (0,0),1) = {(z,) € R?: la + [y| < 1}
If we use the discrete metric, the ball is now reduced to a single point:

B(Rz,ddisc)((o’ 0)’ 1) = {(0? 0)}7

although if one increases the radius to be larger than 1, then the ball
now encompasses all of R?. (Why?)

Example. In R with the usual metric d, the ball B g d)(5, 2) is the
open interval (3,7).

Note that the smaller the radius r, the smaller the ball B(z, 7). How-
ever, B(zg,r) always contains at least one point, namely the center xy,
as long as r stays positive, thanks to axiom (i). (We don’t consider
balls of zero radius or negative radius since they are rather boring,
being just the empty set).

Using metric balls, one can now take a set £ a metric space, and classify

three types of points in X: interior, exterior, and boundary points of
E.

Definition Let (X, d) be a metric space, let F be a subset of X, and
let xg be a point in X. We say that zy is an interior point of E if
there exists a radius r > 0 such that B(zg,7) C E. We say that
xo is an exterior point of F if there exists a radius » > 0 such that
B(zg,7) N E = (. We say that zy is a boundary point of E if it is
neither an interior point nor an exterior point of F.

The set of all interior points of F is called the interior of E and is
sometimes denoted int(E). The set of exterior points of E is called the
exterior of E and is sometimes denoted ext(E). The set of boundary
points of E' is called the boundary of E and is sometimes denoted OF.

Note that if zy is an interior point of E, then z; must actually be
an element of F, since balls B(zg,r) always contain their center x.

11



Conversely, if z; is an exterior point of E/, then g cannot be an element
of E. In particular it is not possible for zy to simultaneously be an
interior and an exterior point of E. If zy is a boundary point of F,
then it could be an element of E, but it could also not lie in E; we give
some examples below.

Example. We work on the real line R with the standard metric d.
Let E be the half-open interval E = [1,2). The point 1.5 is an interior
point of F, since one can find a ball (for instance B(1.5,0.1)) centered
at 1.5 which lies in E. The point 3 is an exterior point of F, since one
can find a ball (for instance B(3,0.1)) centered at 3 which is disjoint
from F. The points 1 and 2 however, are neither interior points nor
exterior points of F, and are thus boundary points of £. Thus in this
case int(E) = (1,2), ext(E) = (—o0,1) U (2,00), and 0F = {1,2}.
Note that in this case one of the boundary points is an element of F,
while the other is not.

Example. When we give a set X the discrete metric dg;s., and E is
any subset of X, then every element of F is an interior point of F,
every point not contained in E' is an exterior point of E, and there are
no boundary points. (Why?).

Definition Let (X, d) be a metric space, let F be a subset of X, and
let ¢ be a point in X. We say that xy is an adherent point of FE if for
every radius r > 0, the ball B(xg,r) has a non-empty intersection with
FE. The set of all adherent points of FE is called the closure of E' and is
denoted E.

The following proposition links the notions of adherent point with in-
terior and boundary point, and also to that of convergence.

Proposition 5. Let (X,d) be a metric space, let E be a subset of
X, and let zy be a point in X. Then the following statements are
equivalent.

(a) zo is an adherent point of E.

(b) xy is either an interior point or a boundary point of E.

12
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(c) There exists a sequence (z,)3

respect to the metric d.

in E which converges to z, with

Proof. See Week 1 homework. O

As remarked earlier, the boundary of a set £ may or may not lie in E.
Depending on how the boundary is situated, we may call a set open,
closed, or neither:

Definition Let (X, d) be a metric space, and let F be a subset of X.
We say that E is closed if it contains all of its boundary points, i.e.
OF C E. We say that E is open if it contains none of its boundary
points, i.e. 0OENE = (). If E contains some of its boundary points but
not others, then it is neither open nor closed.

Example. We work in the real line R with the standard metric d.
The set (1,2) does not contain either of its boundary points 1, 2 and
is hence open. The set [1,2] contains both of its boundary points 1, 2
and is hence closed. The set [1,2) contains one of its boundary points
1, but does not contain the othe boundary point 2, but not the other,
so is neither open nor closed.

It is possible for a set to be simultaneously open and closed, if it has
no boundary. For instance, in a metric space (X, d), the whole space
X has no boundary (every point in X is an interior point - why?), and
so X is both open and closed. The empty set () also has no boundary
(every point in X is an exterior point - why?), and so is both open and
closed. In many cases these are the only sets that are simultaneously
open and closed, but there are exceptions. For instance, using the
discrete metric dg;s., every set is both open and closed! (why?)

Now we list some more properties of open and closed sets.
Proposition 6 Let (X, d) be a metric space.

(a) Let E be a subset of X. Then E is open if and only if £ = int(E).
In other words, F is open if and only if for every x € E, there exists
an r > 0 such that B(z,r) C E.

13



e (b) Let E be a subset of X. Then E is closed if and only if E contains
all its adherent points. In other words, E is closed if and only if for
every convergent sequence (x,)22, in E, the limit lim, . x, of that
sequence also lies in F.

e (c) For any zo € X and r > 0, then the ball B(zy,r) is an open set.
The set {x € X : d(x,z9) < r} is a closed set. (This set is sometimes
called the closed ball of radius r centered at z).

d) Any singleton set {xo}, where zy € X, is automatically closed.

(

(e) If E'is a subset of X, then FE is open if and only if X'\ E is closed.
(X\E :={z € X : 2 ¢ E} is the complement of F in X).
(

f) If E1,..., E, are a finite collection of open sets in X, then E; N EyN
...NE, is also open. If Fy,..., F, is a finite collection of closed sets in
X, then F} U FoU...U F, is also closed.

o (g) If {Es}aca is a collection of open sets in X (where the index set A
could be finite, countable, or uncountable), then the union J . 4 Fu :=
{r € X : z € E,forsome a € A} is also open. If {F,}aca is a
collection of closed sets in X, then the intersection () .4 Fo := {7 €
X :z € F, for all @ € A} is also closed.

e (h) If E is any subset of X, then int(E) is the largest open set which
is contained in E; in other words, int(E) is open, and given any other
open set V C E, we have V C 4nt(FE). Similarly E is the smallest
closed set which contains F; in other words, F is closed, and given any
other closed set K O E, K D E.

e Proof. See Week 1 homework. O

* % k % %

Relative topology

e When we defined notions such as open and closed sets, we mentioned
that such concepts depended on the choice of metric one uses. For
instance, on the real line R, if one uses the usual metric d(z,y) = |z—y|,
then the set {1} is not open, however if instead one uses the discrete
metric dg;s., then {1} is now an open set (why?).

14



e However, it is not just the choice of metric which determines what is
open and what is not - it is also the choice of ambient space X. Here
are some examples.

e Example Consider the plane R? with the Euclidean metric dj2. Inside
the plane, we can find the z-axis X := {(z,0) : z € R}. The metric dp2
can be restricted to X, creating a subspace (X, dp|xxx) of (R?, d;).
(This subspace is essentially the same as the real line (R, d) with the
usual metric; the precise way of stating this is that (X, dp|xxx) is
isometric to (R,d). We will not pursue this concept further in this
course, however). Now consider the set

E:={(z,0): -1<z <1}

which is both a subset of X and of R2. Viewed as a subset of R?, it

is not open, because the point 0, for instance, lies in £ but is not an

interior point of E. (Any ball Bp:  (0,7) will contain at least one
y&p2

point that lies outside of the x-axis, and hence outside of E. On the
other hand, if viewed as a subset of X, it is open; every point of E
is an interior point of E with respect to the metric space (X, dp2|xxx)-
For instance, the point 0 is now an interior point of E, because the ball

Bx q,|xyx(0,1) is contained in E (in fact, in this case it is E).

e Example Consider the real line R with the standard metric d, and
let X be the interval X := (—1,1) contained inside R; we can then
restrict the metric d to X, creating a subspace (X, d|xxx) of (R,d).
Now consider the set [0,1). This set is not closed in R, because the
point 1 is adherent to [0,1) but is not contained in [0,1). However,
when considered as a subset of X, the set [0,1) now becomes closed;
the point 1 is not an element of X and so is no longer considered an
adherent point of [0,1), and so now [0,1) contains all of its adherent
points.

e To clarify this distinction, we make a definition.

e Definition. Let (X, d) be a metric space, let Y be a subset of X, and
let E' be a subset of Y. We say that F is relatively open with respect to
Y if it is open in the metric space (Y, d|yxy). Similarly, we say that £
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is relatively closed with respect to Y if it is closed in the metric space
(K d‘YxY)-

The relationship between open (or closed) sets in X, and relatively
open (or relatively closed) sets in Y, is the following.

Proposition 7 Let (X, d) be a metric space, let Y be a subset of X,
and let E be a subset of Y.

(a) E is relatively open with respect to Y if and only if E =V NY for
some set V' C X which is open in X.

(b) E is relatively closed with respect to Y if and only if E = K NY
for some set K C X which is closed in X.

Proof. We just prove (a), and leave (b) to the exercises. First suppose
that E' is relatively open with respect to Y. Then, E is open in the
metric space (Y,d|yxy). Thus, for every z € E, there exists a radius
r > 0 such that the ball B(yqj,,,)(z,7) is contained in E. This radius
r depends on z; to emphasize this we write r, instead of r, thus for
every x € E the ball B(y,gjy,y)(,7) is contained in E.

Now consider the set

V= U B(X’d)(.T, Tm).

zeE

This is a subset of X. By Proposition 6(cg), V is open. Now we prove
that £ = V NY. Certainly any point x in E lies in V NY, since it
lies in Y and it also lies in B(x 4)(,7;), and hence in V. Now suppose
that y is a point in V NY. Then y € V, which implies that there exists
an € E such that y € B(xq(x,7,). But since y is also in Y, this
implies that y € B(y,4y.y)(%,7s). But by definition of r,, this means
that y € E, as desired. Thus we have found an open set V' for which
E =V NY as desired.

Now we do the converse. Suppose that £ = V NY for some open
set V; we have to show that F is relatively open with respect to Y.
Let = be any point in E; we have to show that z is an interior point
of E in the metric space (Y,d|yxy). Since x € E, we know z € V.
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Since V' is open in X, we know that there is a radius » > 0 such
that B(x 4 (x,) is contained in V. Since E = V' NY’, this means that
Bx,a)(z,7) NY is contained in E. But B(x g (z,r) Ny is exactly the
same as B(y,q),,,)(®,7) (Why?), and so0 B(y,q),,,)(x,r) is contained in
E. Thus z is an interior point of E in the metric space (Y, d|yxy), as
desired.

e The corresponding claims for closed sets are left to the exercises. [
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