Mathematics 131BH
Terence Tao
Second Midterm, May 23, 2003

Instructions: Try to do all five problems; they are all of equal value. There is plenty of
working space, and a blank page at the end. On the first page you will be supplied a list of
standard definitions for easy reference.

Unless otherwise specified, you may use all the results from the class notes, textbook, or any
other source; you do not need to give precise theorem numbers or page numbers (e.g. saying
“by a theorem from the notes” will suffice). You are encouraged to be verbose in your proofs
and explanations; a chain of equations with no explanation given may be insufficient for full
credit.

You may enter in a nickname if you want your midterm score posted.

Good luck!
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Reference sheet

This reference page contains some definitions from the Week 4-7 notes which are relevant to
the midterm questions.

e Compactly supported functions. Let [a,b] be an interval. A function f : R - R
is said to be supported on [a, b] iff f(z) =0 for all = & [a,b]. We say that f is compactly
supported iff it is supported on some interval [a, b]. If f is continuous and supported on
[a, b], we define the improper integral ffooo f to be ffooo f= f[a,b] f

e Convolution. Let f : R - R and g : R = R be continuous, compactly supported
functions. We define the convolution f * g : R — R of f and g to be the function

frgla) = /_ " fwgla —y) dy.

e Fourier series. For any function f € C(R/Z;R), and any integer n € Z, we define
the nt" Fourier coefficient of f, denoted f(n), by the formula

f(n) = (f,ea) = (z)e~2mn g,
[0,1]

The function f : Z — C is called the Fourier transform of f.

e Periodic functions. A function f : R — C is Z-periodic, if we have f(z + k) = f(z)
for every integer k. The space of complex-valued continuous Z-periodic functions is
denoted C(R/Z;C).



Problem 1. Let f € C(R/Z;C) be a continuous, 1-periodic function. Suppose also that f
is differentiable, and f’ is also in C(R/Z;C). Show that f/(n) = 2winf(n) for every integer
n. (Hint: use integration by parts).

By definition, we have
fim)= [ f'@e™" do.
[0,1]

Using the integration by parts formula
/ o' (z)v(z) de = u(z)v(z)|2=h — / w(z)v'(z) d
[0,1] [0,1]

with u(z) := f(z) and v(z) := €727 (note that both of these functions are continuously
differentiable, and so the integration by parts formula is valid), we have

fl T e—27rinz dx = f x e—27rinz zzl _ T _Zﬂ,z-ne—%rz'nz) dx
z=0
[0,1] [0,1]

S0
f!(n) = f(1)e~2™" — £(0)e® + 2min (z)e=2mine dy.
[0,1]
But since f is 1-periodic, f(1) = f(0). Also, e727" = 0 = 1. Thus the first two terms
cancel, and the third term is equal to 2winf(n), as desired.

Remark. It is also possible to proceed via the Fourier-Plancherel theorem, but to make
the argument below rigorous requires much more smoothness on f than is currently assumed
(e.g. one may need f to be three times continuously differentiable). The idea is as follows.
Starting with the Fourier inversion formula

f@= 3 fneala)

one can differentiate both sides with respect to z. If one can interchange the derivative and
integral, we will obtain

fl@)y= Y e ().
But
i 2mine

e (z) = e = 2mine

2N — 2minen

and so

fl(z) = Z f(n)2rine, ().



But from the Fourier inversion formula applied to f', we have

fllw)="3" Fnen().

n=—oo

The claim should then follow by equating Fourier coefficients. (One can modify Corollary
5 from Week 6 notes to show that any given function can have at most one set of Fourier
coefficients; if Y 00 cpen and > 00 dpep, both converge to the same function f, then

tn = dy = f(n).

Unfortunately, the above proof is not rigorous because one has to justify a number of steps, in
particular the interchanging of the derivative and integral. This can be done using Corollary
2 of Weeks 4/5 notes, but only if we know that f(n)2rn is an absolutely convergent series.
This turns out to be true for three (!) times continuously differentiable functions, but not
necessarily true for others.




Problem 2. Obtain a power series for arctan : R — (—7/2,7/2) centered at the origin;
indicate the radius of convergence, and justify your reasoning (You may use without proof

the assertion that arctan is differentiable and that - arctan(z) = ﬁ)

Starting with the geometric series

1
—— =l+z+2*+...
11—z
which converges for all |z| < 1, we replace by —z? to obtain
1
——=1-at 2t -2 ...
1+ 22

which converges whenever | — z%| < 1, i.e. when |z| < 1. The radius of convergence of this
series is 1 (as can be seen by e.g. the ratio test). In particular, it converges uniformly on
[—r,7] for any 0 < 7 < 1. We can then integrate from 0 to r to obtain

/ L dm—r—ﬁ—}—i—
[OT]1+;L'2 3 5

But by the fundamental theorem of calculus we have

1
/[0,7‘] 52 dz = arctan(r) — arctan(0) = arctan(r).

Thus we have the power series expansion

7.3 T5

t =r—— 4+ —— ...
arctan(r) = r 3 + 3
for all 0 < r < 1. This formula also clearly works for r = 0. For —1 < r < 0, we replace the

integral on [0,7] by the negative integral on [r, 0], and note that

and

1
_ /[T’O] T2 dx = —(arctan(0) — arctan(r)) = arctan(r)

so we still have
3 >
arctan()—r—gﬁ——— Z

n 2n+1

2n+1

when —1 < r < 0. Thus this formula is valid for all —1 <r<l.

To compute the radius of convergence of this series, we may use for instance the ratio test.
Observe that
(=)D /@ + 1) + 1)| 2n+1

li = li =
n60 [(=1)nr2nt1 /(20 + 1))] g = Il




so the series converges when |r| < 1 and diverges when |r| > 1. Hence the radius of conver-
gence is 1.

Remark: Using this power series expansion, the identity arctan(1l) = I, and Abel’s theorem,

one can deduce the famous formula

s
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Problem 3. Let #: R — R? be a differentiable function, and let 7 : R — R be the function
r(t) := ||#(t)||, where ||Z|| denotes the length of Z as measured in the usual {2 metric. Let ¢
be a real number. Show that if r(¢g) # 0, then r is differentiable at to, and

Z'(to) - Z(to)

r'(to) = o)

(Hint: Use the chain rule).

Let f: R® — R be the function f(Z) := |||, or in other words

f(x1;$27$3) = V ',L.% +$§ +.'L'§

Then 7(t) can be written as r(t) = ||Z(¢)|| = f(Z(¢)), i.e. r = foZ. Since r(to) is assumed to
be non-zero, Z(ty) is non-zero, and so f is differentiable at #(to) (note that z? + z3 + z% is
differentiable everywhere, and ,/y is differentiable for y # 0), so the chain rule applies, and
we have

7' (to) = f'(Z(t0))Z (to)-

Since the partial derivatives

of T
of )
of z5

Ors [z} + 13 + 13
are continuous away from the origin, we have

1
Veitzitzl
z
fl($17$2’$3) = m%-l-;g-i-w%
Veitzitzl
so if we write f(t()) = (1‘1 (t()),.’L'Q (to),fL’g (to)), we have
1 (to) 21 (fo) + @2(to)75(to) + 23(to) 75 (to)
Vi (to) + 75 (to) + 25 (to)
Z(to) - &' (to)
llz' (o)l

Z'(to) - Z(to)
’I‘(to)

F'(&(to)) ' (to) =

as desired.



Alternate proof: Observe that
r(t)? = 1Z@))* = Z(t) - Z(2).
By the product rule, we thus see that r? is differentiable at t, and
(r*)' (to) = Z(to) - &' (to) + Z'(to) - F(to) = 2&'(to) - Z(to)-

Since r2 is differentiable at to, and r2(#y) is non-zero, we thus see that r is also differentiable
at to (this follows from the single-variable calculus chain rule, since r is the square root of 2,
and the square root function is differentiable away from zero). In particular, by the product
rule or chain rule we have

(r?)!(to) = 2r(to)r' (to)-

Equating this with the previous equation we obtain the result.




Problem 4. Let f : R = R and g : R = R be continuous, compactly supported functions.
Suppose that f is supported on the interval [0, 1], and g is constant on the interval [0, 2] (i.e.
there is a real number ¢ such that g(z) = ¢ for all z € [0,2]). Show that the convolution f *g
is constant on the interval [1,2].

Let z be any number in [1,2]. We compute

fro@ = [ rwa-y) d.
—0o0
Since f is supported on [0,1], so is f(y)g(z — y), and we can rewrite the above integral as

[xg(z) = fW)g(z —y) dy.
[0,1]

But if z € [1,2] and y € [0,1], then z —y € [0, 2], and hence g(z —y) = ¢ by hypothesis. Thus
fro@=| fwed.
[0,1]

The right-hand side does not depend on z; thus f x g is constant on the interval [1,2].

Remark. This result is closely related to both Lemma 6 of Weeks 4/5 notes, and also the
remark on page 12 of Week 6 notes regarding convolution with trigonometric polynomials.




Problem 5. Let f : [0,1] — R be a continuous function, and suppose that f[o 1] f(z)z™ dz =
0 for all non-negative integers n = 0,1,2,.... Show that f must be the zero function f =
0. (Hint: First show that f[o 1] f(z)P(z) dz = 0 for all polynomials P. Then, using the

Weierstrass approximation theorem, show that f[o 1] f(@)f(z) de =0.)

First let P be any polynomial, thus P(z) = co+c1z+cox? +. ..+ c,z™ for some non-negative
integer n and some real numbers cg, ¢1, - .., c,. Now compute

[0,1]

f(z)P(z) dox = /[0 . f(z) cha:j dx

:ch/ f(x)z? dszc]O:O
j=0 [0,1] §=0

by hypothesis. Note that we can interchange the sum and integral without difficulty because
the sum is finite.

Now we use the Weierstrass approximation theorem. Pick any £ > 0. Since f is continuous
on [0,1], we know that there exists a polynomial P(z) on [0,1] such that |P(z) — f(z)| < ¢
for all z € [0,1], in other words

P(z)—e< f(z) < P(z)+¢

for all z € [0,1]. Multiplying by f(z) (and being careful, because f(z) could be negative),
we obtain

f(@)P(x) —elf(2)] < f(2)f(z) < f(2)P(2) + | f(2)]

for all = € [0,1]. Integrating over [0, 1], we obtain

f(2)P(z) do—e / f@lde< [ f@f@de< [ f@)P@) dote / ()| da.

[0,1] [0,1] [0,1] [0,1] [0,1]

But we have just proved that f[o 1] f(x)P(z) dx = 0, hence we have

_ 2
: /[O’l]lf(w)ldws @< / 1f (@) da.

[0,1]
But this is true for any e, and f[o ;1 1f(@)] dz and f[o 0t (x)? dx do not depend on &; hence
we must have
f(z)? dz = 0.
[0,1]

But this implies that f = 0, either by modifying Lemma 2(ii) of Week 6 notes, or observing
that if f was not identically 0, then there must be some point z for which f(z) # 0, say
|f(z)] = ¢ > 0, then by continuity there would be some ball B(z,r) N [0,1] around z for

10



which | f| was larger than ¢/2 (say), which implies that f[o 1 f(x)? is strictly greater than 0,
contradiction.

Remark. The quantity [ f(z)z" dz is sometimes called the n'* moment of f. The above
problem thus asserts if a (continuous) function has all its moments vanishing, then it must
itself vanish. A corollary of this is that if two continuous functions f, g have identical
moments, i.e. [ f(z)z" dz = [ g(z)z" dz for all f, g, then they must themselves be identical
(to see this, apply the above result to f — g). Thus, in principle, one can work out what a
function should be just by examining its moments.
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