Mathematics 131BH
Terence Tao
First Midterm, Apr 25, 2003

Instructions: Try to do all five problems; they are all of equal value. There is plenty of
working space, and a blank page at the end. On the first page you will be supplied a list of
standard definitions for easy reference.

Unless otherwise specified, you may use all the results from the class notes, textbook, or any
other source; you do not need to give precise theorem numbers or page numbers (e.g. saying
“by a theorem from the notes” will suffice). You are encouraged to be verbose in your proofs
and explanations; a chain of equations with no explanation given may be insufficient for full
credit.

You may enter in a nickname if you want your midterm score posted.

Good luck!
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Reference sheet

This reference page contains some definitions from the Week 1-4 notes which are relevant to
the midterm questions.

e Boundedness. A function f : X — Y from one metric space (X,dx) to another
(Y,dy) is bounded if there exists a ball B(y,q,)(yo, R) in Y such that f(z) € B(y,q4,)(%0, R)
for all z € X.

e Compactness. A metric space (X, d) is said to be compact iff every sequence in (X, d)
has at least one convergent subsequence. If Y is a subset of X, we say that Y is compact
iff the subspace (Y, d|yxy) of (X,d) is compact.

e Disconnectedness. Let (X,d) be a metric space. We say that X is disconnected iff
there exist disjoint non-empty sets V and W in X such that VUW = X. If Y is
a subset of X, we say that Y is disconnected iff the subspace (Y,d|yxy) of (X,d) is
disconnected.

e Discrete metric. If X is any set, the discrete metric dg;sc : X x X — [0,00) on X is
defined by setting dg;sc(z,y) := 0 when z =y, and dg;sc(z,y) := 1 when z # y.

e Metric spaces. A metric space (X,d) is a space X of points, together with a metric
d: X x X — [0,00), which obeys the following axioms: (i) For any z € X, we have
d(z,z) = 0. (ii) (Positivity) For any distinct x,y € X, we have d(z,y) > 0. (iii)
(Symmetry) For any z,y € X, we have d(z,y) = d(y, z). (iv) (Triangle inequality) For
any z,y,z € X, we have d(z, z) < d(z,y) + d(y, 2)-

e Pointwise convergence. Let (f(™)%, be a sequence of functions from one metric
space (X,dx) to another (Y,dy), and let f : X — Y be another function. We say that
(f(M)22 | converges pointwise to f on X if we have

lim_dy(f(z), f(2)) =0
for all z € X.

e Uniform boundedness. A sequence of function (f,)2; from one metric space
(X,dx) to another (Y,dy) is uniformly bounded iff there exists a ball B(y,qy)(yo, R)
in Y such that f,(z) € B(y,q,)(y0, R) for all z € X and all positive integers n.

e Uniform convergence. Let (f(™)%, be a sequence of functions from one metric
space (X, dx) to another (Y,dy), and let f : X — Y be another function. We say that
(f ("))ff’:l converges uniformly to f on X if for every € > 0 there exists N > 0 such that
dy (f™(z), f(x)) < € for every n > N and z € X.



Problem 1. Let (2,)%2, and (y,)52; be two sequences in a metric space (X,d). Suppose
that (z,)22, converges to a point z € X, and (y,)%2, converges to a point y € X. Show

that lim,_,o d(xy,yn) = d(z,y). (Hint: use the triangle inequality several times).

Note: to do this problem it is quite helpful to draw a picture. The problem is similar to Q6
from Assignment 1. The key issue here is how to use the triangle inequality. Note that z,y, z
are three points in (X, d), then there are three useful ways to invoke the triangle inequality:
d(z,z) < d(z,y) +d(y, 2), d(z,y) < d(z,2) +d(z,y), and d(y, z) < d(y,z) + d(z, z). However,
not all of them will be equally useful. Generally speaking, the triangle inequality is useful
when trying to estimate one long side by the sum of two shorter sides, but it is not as helpful
to try to estimate the short side by the sum of the two long sides.

Let € > 0 be any real number. We have to show that there exists an N > 0 such that
|d(@n,yn) — d(z,y)| <e for alln > N

or in other words that
d(x,y) +e< d(xnayn) < d(:c,y) +e.

Since z, converges z, we know that there exists an N; such that d(z,,z) < £/2 for all
n > Nj. Similarly there exists an N such that d(y,,y) < €/2 for all n > N,. Thus if we
define N = max(N1, N2), then we have d(z,,z) < /2 and d(y,,y) < e/2for alln > N. In
particular we have by the triangle inequality that

d(Zn,Yn) < d(@n, ) +d(z,y,) < d(zy, ) +d(z,y)+d(y,yn) < 5/2+d(may)+5/2 =d(z,y)+e

which is one half of the bounds that we need. The other half comes from doing the above
bounds in reverse:

d(z,y) < d(z,zp)+d(Tn,y) < d(z,zp)+d(Tn, Yn)+d(Yn,y) < €/24d(zpn, yn)+e/2 = d(@p, yn)+e
so that d(z,y) — e < d(zn,yn) as desired.

A cautionary note when dealing with inequalities: it is not safe to subtract two inequalities,
thus for instance a < b and ¢ < d do not imply a —c < b —d.




Problem 2. Let E and F be two compact subsets of R (with the standard metric d(z,y) =
|z — y|). Show that the Cartesian product E x F := {(z,y) : ¢ € E,y € F} is a compact
subset of R? (with the Euclidean metric dj2).

This question is similar to Q5 of Assignment 2.

First Proof. Let ((2n,¥n))52; be a sequence in E x F. We need to show that this sequence
has a subsequence which converges in £ x F.

The sequence (x,,)52; lies in E. Since E is compact, we thus have a subsequence ()5,

which converges in E, say to the point x € E. Then (wnj,ynj);?';l is a subsequence of
((Xn,yn))S>,. However this sequence is not yet guaranteed to converge, because only the
first component so far is known to converge.

The next step is to look at the sequence (ynJ)]"‘;1 This sequence lives in F', and so it must
have a convergent subsequence (y"u )72, that converges to some element y € F. Note also
that (zn,, )72, is a subsequence of (z,,)72; and thus must also converge to z € F' (Lemma 1 of
Week 2 notes). Thus the sequence ((zn;, ,Yn;, )72, converges to (z,y) € E x F' (Proposition
2 of Week 1 notes). This is a subsequence of ((z,,¥yn))5>, and so we are done.

There are many ways to go wrong in the above argument; for instance many of you produced
a convergent sequence such as ((Zn;,Ym;))321 or ((Zn;,¥;))721, which are not subsequences
of ((Tn,Yn))nz1-

Second Proof. We use the Heine-Borel theorem. We know that E and F' are separately closed
and bounded, so it suffices to show that E x F'is also closed and bounded.

First we show that E x F' is closed. Let (x,y) be an adherent point of E x F, i.e. it is the
limit of some sequence ((Z,,yn))5%; in E x F. Then the sequence (z,)52; is a sequence in
E which converges to z, and (y,)52, is a sequence in F' which converges to y. Thus z is
adherent to E and y is adherent to F. Since E, F are closed, this means that x € E and
y € F, and thus (z,y) € E x F. Thus E x F contains all of its adherent points and thus is
closed.

Now we show that E x F' is bounded. Since E is bounded it is contained in some ball B(xq, ),
i.e. in some interval (zg —r,zo + 7). Similarly F' is contained in some interval (yo — s, %0 + $)-
Thus E x F lies in the rectangle (zg —r, o +7) X (yo — $,yo +8). Thus for any (z,y) € EX F,
we have |z — zo| < r and |y — yo| < s, which implies that

dlz((x7y)7 (.’L‘(),yo)) = \/|1‘ _370'2 + |y - :l/0|2 < \/7'2 + 82.

Thus E x F is contained inside the ball Bg, ((z0,%0), Vr? + 52), and is bounded.




Problem 3. Let (X, dg;sc) be a metric space with the discrete metric. Let E be a subset of
X whicl . ] ! g hat E is di 1

Let x be any element of E, and consider the two sets V := {z} and W := E —{z}. Clearly V
is non-empty; since E contains at least two elements, W is also non-empty. Also by definition
we have VNW =0 and VUW = E. To conclude the proof that FE is disconnected, we have
to verify that V and W are both open in E.

Actually, we can show the stronger statement that every subset of E is open in E. Indeed, if
F is a subset of E, and z € F, then the ball By, ., (x,1/2) = {z} is also contained in F,
and thus every point in F' is an interior point. Thus every set is open, and we are done.

It is also possible to proceed using the alternative definition of disconnectedness as containing
a proper non-empty subset which is both open and closed; the point is that in the discrete
metric every set is both open and closed. We leave the verification of this to the reader.




Problem 4. Let (X,dx) a metric space, and for every integer n > 1, let f,: X - R be a
real-valued function. Suppose that f,, converges pointwise to another function f : X — R
on X (in this question we give R the standard metric d(z,y) = |z —y|). Let h: R > R be a
continuous function. Show that the functions h o f,, converge pointwise to ho f on X, where
ho fn : X = R is the function ho f,(z) := h(f.(z)), and similarly for ho f.

We have to show that for every z € X, the sequence (h o f,(2))22, converges to ho f(z).
But because we already know that f, converges pointwise to f, this implies that (fn(z))52,
converges to f(z). Since h is continuous, this implies that (h(fn(x)))52, converges to h(f(z)))

(Theorem 12 of Week 2), as desired.




Problem 5. Let f, : X — Y be a sequence of bounded functions from one metric space
(X,dx) to another metric space (Y,dy). Suppose that f, converges uniformly to another
function f : X — Y. Suppose that f is a bounded function. Show that the sequence f, is
uniformly bounded (see Reference Sheet).

This question is similar to Q6(a) of Assignment 3. Note that that homework question shows
that the hypothesis that f is bounded is in fact redundant.

Since f,, converges uniformly to f, we know in particular that there exists an N > 0 such that
dy (fn(z), f(z)) <1foralln > N and z € X. Also, since f is bounded, there exists a ball
By, (yo, ) such that f(z) € By, (yo,7) for all z € X. (Note that we are not assuming Y to
be the real line, and so we cannot just write things like | f(z)| < M; that only makes sense for
real-valued functions). In other words, we have dy (f(z),y0) < r for all z € X. By the triangle
inequality, we thus have dy (f,(x),y0) < r+1 for all z € X. Thus f,(x) € By, (yo,r +1) for
alln > N.

This would give that the f, are all uniformly bounded, except that we haven’t dealt with the
cases where n < N. However, we also know that each function f,, is individually bounded,
thus for each n there is a ball By (yn,rs) such that f,(z) € Bay (yn,ms) for all z € X.
Thus we have dy (fn(z),y,) < rp, for all z € X; by the triangle inequality, this implies that
dy (fn(x),y0) < rr + d(Yn,yo)- Thus if we define

R = max(r + 1,maxr,, + d(yn,y0))
n<N

then we have dy (fn(x),y0) < R for all n < N, and also dy (f,(z),y0) < R for all n > N.
Note that R is a finite real number since it is just the max of a finite number of reals. Thus
all of the functions f,(z) take values in By, (yo, R), and so the sequence (f,)%2, is uniformly
bounded.




