Math 131AH - Week 9
Textbook pages: 120-133.
Topics covered:
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Piecewise constant functions

Upper and lower Riemann sums

Riemann integrability of continuous functions
Riemann integrability of monotone functions
Piecewise continuous functions

Other properties of the Riemann integral
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Integration

In the last week’s notes we reviewed differentiation - one of the two
pillars of single variable calculus. The other pillar is, of course, inte-
gration, which we will turn to next. (Strictly speaking, we will turn to
the definite integral, the integral of a function on a fixed interval, as
opposed to the indefinite integral, otherwise known as the antideriva-
tive. These two are of course linked by the Fundamental theorem of
calculus, of which more will be said later).

For us, the definite integral will start with an interval I which could
be open, closed, or half-open, and a function f: I — R, and give us a
number [, f; we can expand this integral as [, f(z) dz (of course, we
could replace x by any other dummy variable), or if I has endpoints a
and b, we shall also write this integral as fab f or f: f(z) da.



e To actually define this integral |, ; f is somewhat delicate (especially if
one does not want to assume any axioms concerning geometric notions
such as area), and not all functions f are integrable. It turns out that
there are in fact two ways to define this integral: the Riemann integral,
which we will do here and which suffices for most applications, and the
Lebesgue integral, which supercedes the Riemann integral and works for
a much larger class of functions. (There is also the Riemann-Steiltjes
integral, which generalizes the Riemann integral [, f(z) de with a more
general type of integral [, f(z) dg(z), but we will only briefly discuss
that generalization here, and refer the reader to the textbook for more
detail).

e Our strategy in defining the Riemann integral is as follows. We begin by
first defining a notion of integration on a very simple class of functions
- the piecewise constant functions. These functions are quite primitive,
but their advantage is that integration is very easy for these functions,
as is verifying all the usual properties. Then, we handle more general
functions by approximating them by piecewise constant functions.
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Partitions

e We need a certain amount of machinery to begin with.

e Definition Let X be a subset of R. We say that X is connected iff the
following property is true: whenever z,y are elements in X such that
x < y, the interval [z, y] is a subset of X (i.e. every number between x
and y is also in X).

e (Note: In Math 121 (Introduction to topology) you will find another,
much more powerful, notion of connectedness, which generalizes this
one-dimensional notion, but the definition here will suffice for this
course).

e Examples. The set [1,2] is connected, because if z < y both lie in
[1,2], then 1 < z < y < 2, and so every element between = and y also
lies in [1,2]. A similar argument shows that the set (1,2) is connected.
However, the set [1,2] U [3,4] is not connected (why?). The real line is



connected (why?). The empty set, as well as singleton sets such as {3},
are connected, but for rather trivial reasons (these sets do not contain
two elements z,y for which z < y).

Definition A generalized interval is a subset I of R which is either an
interval (i.e. a set of the form [a, b], (a,b), [a,b), or (a,b]); a point {a};
or the empty set ().

Lemma 1 Let X be a subset of the real line. Then the following two
statements are equivalent:

(a) X is bounded and connected.
(b) X is a generalized interval.
Proof. See Week 9 homework. O

Corollary 2 If I and J are generalized intervals, then the intersection
I N Jis also a generalized interval.

Proof. See Week 9 homework. O

For instance, the intersection of the generalized intervals [2, 4] and [4, 6]
is {4}, which is also a generalized interval. The intersection of (2,4)
and (4,6) is 0.

We now give each generalized interval a length.

Definition If I is a generalized interval, we define the length of I,
denoted |I| as follows. If I is one of the intervals [a,b], (a,b), [a,b),
or (a,b] for some real numbers a < b, then we define |I| := b — a.
Otherwise, if I is a point or the empty set, we define |I| = 0.

For instance, the length of [3,5] is 2, as is the length of (3,5); mean-
while, the length of {5} or the empty set is 0.

Definition Let I be a generalized interval. A partition of I is a finite
set P of generalized intervals contained in I, such that every x in I lies
in exactly one of the generalized intervals J in P.



Note that a partition is a set of generalized intervals, while each gener-
alized interval is itself a set of real numbers. Thus a partition is a set
consisting of other sets.

Examples The set P = {{1},(1,3),[3,5), {5}, (5, 8], 0} of generalized
intervals is a partition of [1, 8], because all the generalized intervals in
P lie in [1, 8], and each element of [1, 8] lies in exactly one generalized
interval in P. Note that one could have removed the empty set from
P and still obtain a partition. However, the set {[1,4],[3, 5]} is not a
partition of [1,5] because some elements of [1,5] are included in more
than one generalized interval in the set. The set {(1,3),(3,5)} is not a
partition of (1,5) because some elements of (1, 5) are not icluded in any
generalized interval in the set. The set {(0, 3),[3,5)} is not a partition
of (1,5) because some intervals in the set are not contained in (1, 5).

Now we come to a basic property about length: it is finitely additive.

Theorem 3. Let I be a generalized interval, n be a natural number,
and let P be a partition of I of cardinality n. Then

HED I

JeP

Proof. We prove this by induction on n. More precisely, we let P(n)
be the property that whenever I is a generalized interval, and whenever
P is a partition of I with cardinality n, that [I| =% _p|J]|.

The base case P(0) is trivial; the only way that I can be partitioned
into an empty partition is if [ is itself empty (why?), at which point
the claim is easy. The case P(1) is also very easy; the only way that
can be partitioned into a singleton set {J} is if J = I (why?), at which
point the claim is again very easy.

Now suppose inductively that P(n) is true for some n > 1, and now
we prove P(n ++). Let I be a generalized interval, and let P be a
partition of I of cardinality n + 1.

If I is the empty set or a point, then all the intervals in P must also be
either the empty set or a point (why?), and so everybody has length
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zero and the claim is trivial. Thus we will assume that [ is an interval
of the form (a,b), (a,b], [a,b), or [a, b].

Let us first suppose that b € I, i.e. I is either (a,b] or [a,b]. Since
b € I, we know that one of the intervals K in P contains b. Since K
is contained in I, it must therefore be of the form (c,b], [c,b], or {b}
for some real number ¢, with a < ¢ < b (in the latter case K = {b},
we set ¢ := b). In particular, this means that the set I — K is also a
generalized interval of the form |[a, ¢, (a,c), (a,c|, [a,c) when ¢ > a, or
a point or empty set when a = c. Either way, we easily see that

(| = K|+ [I - K|.

On the other hand, since P form a partition of I, then P — { K} forms
a partition of I — K (why?). By the induction hypothesis, we thus have

-K= Y 1l

JeP—{K}

Combining these two identities (using the laws of addition for finite
sets, see Proposition 10 of Week 5 notes) we obtain

=1

JeP

as desired.

Now suppose that b ¢ I, i.e. I is either (a,b) or [a,b). Then one of
the intervals K also is of the form (c,b) or [c,b) (see homework). In
particular, this means that the set I — K is also a generalized interval
of the form [a, ], (a,c¢), (a,c], [a,c) when ¢ > a, or a point or empty
set when a = c. The rest of the argument then proceeds as above. [

There are two more things we need to do with partitions. One is to
say when one partition is finer than another, and the other is to talk
about the common refinement of two partitions.

Definition Let I be a generalized interval, and let P and P’ be two
partitions of 7. We say that P’ is finer than P (or equivalently, that P
is coarser than P') if for every J in P’, there exists a K in P such that
JCK.



e Example. The partition {[1, 2), {2}, (2, 3), [3, 4]} is finer than {[1, 2], (2, 4]}
(why?). Both partitions are finer than {[1,4]} (which is the coarsest
partition of all). Note that there is no such thing as a “finest” partition,
since all partitions are assumed to be finite.

e Definition Let I be a generalized interval, and let P and P’ be two
partitions of I. We define the common refinement P#P' of P and P’
to be the set

P#P' :={KNJ:Ke€Pand J € P'}.

e Example. Let P := {[1,3),[3,4]} and P’ := {[1,2],(2,4]} be two
partitions of [1,4]. Then P#P' is the set {[1, 2], (2, 3),[3,4], 0} (why?).

e Lemma 4. Let I be a generalized interval, and let P and P’ be two
partitions of I. Then P#P’ is also a partition of I, and is both finer
than P and finer than P’.

e Proof. See Week 9 homework. O
Piecewise constant functions

e We can now describe the class of “simple” functions for which we can
integrate very easily.

e Definition Let X be a subset of R, and let f : X — R be a function.
We say that f is constant iff there exists a real number ¢ such that
f(z) =cforallz € X. If E is a subset of X, we say that f is constant
on E if the restriction f|g of f to E is constant, in other words there
exists a real number ¢ such that f(x) = ¢ for all z € E. We refer to ¢
as the constant value of f on FE.

e Note that if E is a non-empty set, then a function f which is constant
on f can have only one constant value; it is not possible for a function to
always equal 3 on E while simultaneously always equaling 4. However,
if F' is empty, every real number c is a constant value for f on E (why?).

e Definition Let [ be a generalized interval, let f : I — R be a function,
and let P be a partition of I. We say that f is piecewise constant with
respect to P if for every J € P, f is constant on J.
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Example. The function f : [1,6] — R defined by

7 if1<zr<3

4 ifx=3
F@ =95 3<s<s6
2 ifxz=6

is piecewise constant with respect to the partition {[1, 3), {3}, (3,6), {6}}
of [1,6]. Note that it is also piecewise constant with respect to some
other partitions as well; for instance, it is piecewise constant with re-

spect to the partition {[1,2), {2}, (2,3), {3}, (3,5),[5,6), {6}, 0}.

Definition Let I be a generalized interval, and let f : I — R be a
function. We say that f is piecewise constant on I if there exists a
partition P of I such that f is piecewise constant with respect to P.

Example The function used in the previous example is piecewise con-
stant on [1,6]. Also, every constant function on a generalized interval
I is automatically piecewise constant also (why?).

Lemma 5. Let I be a generalized interval, let P be a partition of
I, and let f : I — R be a function which is piecewise constant with
respect to P. Let P’ be a partition of I which is finer than P. Then f
is also piecewise constant with respect to P'.

Proof. See Week 9 homework. O

The space of piecewise constant functions is closed under algebraic
operations:

Lemma 6. Let I be a generalized interval, and let f : I — R and
g : I — R be piecewise constant functions on I. Then the functions
f+g9, f—g, max(f,g) and fg are also piecewise constant functions
on I. (Note: max(f,g) : I — R is the function max(f,g)(z) =
max(f(z),g(x))). If g does not vanish anywhere on I (i.e. g(z) # 0 for
all z € I) then f/g is also a piecewise constant function on /.

Proof. See Week 9 homework. O

* % k % %

Integration of piecewise constant functions
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e We are now ready to integrate piecewise constant functions. We begin
with a temporary definition of an integral with respect to a partition.

e Definition. Let I be a generalized interval, let P be a partition of 1.
Let f: I — R be a function which is piecewise constant with respect
to P. Then we define the piecewise constant integral p.c. f[P] fof f
with respect to the partition P by the formula

p.c./ f= cy|d|,
P Z

I1eP
where for each J in P, we let ¢; be the constant value of f on J.

e Note that this definition may seem potentially ill-defined, because if J
is empty then every number c; can be the constant value of f on J, but
fortunately in such cases |J| is zero and so the choice of ¢; is irrelevant.
The notation p.c. f[P] f is rather artificial, but we shall only need it
temporarily, en route to a more useful definition. Note that since P is
finite, the sum ), p c;[J| is always well-defined (it is never divergent
or infinite).

e Example. Let f :[1,4] — R be the function
2 f1<zr<3
flxy=¢ 4 ifz=3
6 if3<zxr<4

and let P := {[1,3), {3}, (3,4]}. Then
pe. /P f = enallL, 3) |+ {3} e (3, 4]] = 2x2+4x046x1 = 10,
(K]

Alternatively, if we let P’ := {[1,2),[2,3),{3}, (3,4],0} then

p.C. /[P’] f=cupllls2)] + cp3)[2,3)] + e {3} + e (3, 4]] + col0]

=2x142x14+4x0+6x1+4c¢cyx0=10.



Note that the piecewise constant integral corresponds intuitively to
one’s notion of area, given that the area of a rectangle ought to be
the product of the lengths of the sides. (Of course, if f is negative
somewhere, then the “area” c¢;|J| would also be negative).

This example suggests that this integral does not really depend on what
partition you pick, so long as your function is piecewise constant with
respect to that partition. That is indeed true:

Proposition 7. Let I be a generalized interval, and let f : I — R
be a function. Suppose that P and P’ are partitions of I such that f
is piecewise constant both with respect to P and with respect to P’.

Then p.c. f[P] f=pc f[P'] f.
Proof. See Week 9 homework. O

Because of this proposition, we can now make the following definition:

Definition. Let I be a generalized interval, and let f : I — R be
a piecewise constant function on I. We define the piecewise constant
integral p.c. [, f by the formula

p.c./If ‘= p.c. /[P] 1

where P is any partition of I with respect to which f is piecewise
constant. (Note that Proposition 7 tells us that the precise choice of
this partition is irrelevant).

Example If f is the function given in the previous example, then
p.c. f[l,4] f=10.

We now give some basic properties of the piecewise constant integral.

Theorem 8 (Laws of integration, piecewise constant version).
Let I be a generalized interval, and let f : I — R and g : I — R be
piecewise constant functions on I.

(a) We have p.c. [,(f+g)=pc [, f+pc [, 9.



(b) For any real number ¢, we have p.c. [,(cf) = c(p.c. [, f)-
(c) We have p.c. [,(f — g) = pc. [, f —pe. [, g.

(d) If f(z) > 0 for all z € I, then p.c. [, f > 0.

(e) If f(z) > g(x) for all z € I, then p.c. [, f > p.c. [, g.

f) If f is the constant function f(x) = ¢ for all z in I, then p.c. [, f =
clI].

(g) Let J be a generalized interval containing I (i.e. I C J), and let
F : J — R be the function

_f flx) ifzel
F@y_{o ifor gl

Then F is piecewise constant on J, and p.c. [, F = p.c. [; f.

(h) Suppose that {J, K} is a partition of I into two generalized interval
J and K. Then the functions f|, : J — R and f|x : K — R are
piecewise constant on J and K respectively, and we have

p.c./ffzp.c./Jf\J—Fp.c./Kf\K.

Proof. See Week 9 homework. O

This concludes our integration of piecewise constant functions. We now
turn to the question of how to integrate bounded functions.

X %k ok ok ok

Upper and lower Riemann integrals

Now let f : I — R be a bounded function defined on a generalized
interval I. We want to define the Riemann integral [, f. To do this we
first need to define the notion of upper and lower Riemann integrals
J,f and [ ,f- These notions are related to the Riemann integral in
much the same way that the lim sup and lim inf of a sequence are
related to the limit of that sequence.
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e Definition. Let f: I — R and g : I — R. We say that g majorizes f
on I if we have g(z) > f(z) for all z € I, and that g minorizes of f on
Iif g(z) < f(z) for all x € I.

e The idea of the Riemann integral is to try to integrate a function by
first majorizing or minorizing that function by a piecewise constant
function (which we already know how to integrate).

e Definition. Let f : I — R be a bounded function defined on a
generalized interval I. We define the upper Riemann integral [ [ by
the formula

/ f = inf{p.c. / g : g is a piecewise constant function on I which majorizes f}
I I

and the lower Riemann integral [ s f by the formula

/ f = sup{p.c. / g : g is a piecewise constant function on I which minorizes f}.
J g I

e Lemma 9. Let f : I — R be a function on a generalized interval [
which is bounded by some real number M, ie. —M < f(z) < M for
all z € I. Then we have

~Ml1| < Lf < 7If < M|

In particular, both the lower and upper Riemann integrals are real
numbers.

e Proof. The function g : I — R defined by g(z) = M is constant,
hence piecewise constant, and majorizes f; thus [, f < p.c. [, g = M|I|
by definition of upper Riemann integral. A similar argument gives
-M|I| < fIf. Finally, we have to show that fIf < [,f- Letyg
be any piecewise constant function majorizing f, and let h be any
piecewise constant function minorizing f. Then g majorizes h, and
hence p.c. [, h < p.c. [, g. Taking suprema in h, we obtain that flf <

p.c. [, g. Taking infima in g, we thus obtain flf < Tlg, as desired. [

11



We now know that the upper Riemann integral is always greater than
or equal to the lower Riemann integral. If the two integrals match,
then we can define the Riemann integral:

Definition. Let f : I — R be a bounded function on a generalized
interval I. If flf = flf, then we say that f is Riemann integrable on

I and define _
/If:=11f=/1f-

If the upper and lower Riemann integrals are unequal, we say that f is
not Riemann integrable.

Compare this to the relationship between the lim sup, lim inf, and limit
of a sequence a,; the lim sup is always greater than or equal to the lim
inf, but they are only equal when the sequence converges, in which case
they are both equal to the limit of that sequence.

Note that we do not consider unbounded functions to be Riemann in-
tegrable; an integral involving such functions is known as an improper
integral. It is possible to still evaluate such integrals using more sophis-
ticated integration methods (such as the Lebesgue integral), but this
will be deferred until Math 131B.

The Riemann integral generalizes the piecewise constant integral:

Lemma 10. Let f : I — R be a piecewise constant function on
a generalized integral I. Then f is Riemann integrable, and [, f =

pc. | .
Proof. See Week 9 homework. O

One special case of Lemma 10: if I is a point or the empty set, then
[; f =0 for all functions f : I — R (note that all such functions are
automatically constant).

Thus every piecewise constant function is Riemann integrable. How-
ever, the Riemann integral is more general, and can integrate a wider
class of functions; we shall see this shortly.

12



e The above definition may seem strange, compared to the Riemann sum
definition you may have been exposed to in lower-division. However,
the two definitions turn out to be equivalent; this is the purpose of the
next section.

* % ok % %

Connection with Riemann sums

e In this section we relate the above definition to Riemann sums.

e Definition Let f : I — R be a bounded function on a generalized
integral I, and let P be a partition of I. We define the upper Riemann
sum U(f,P) and the lower Riemann sum L(f,P) by

U(f,P)= 3 (sup f(z)J]

eJ
JeP:J+0 ’

and
L(f;P):= ) (inf f(@)]J]

JeP.J+0

e The restriction J # () is required because the quantities inf,c; f(x) and
sup,e f(z) are infinite (or negative infinite) if J is empty.

e We now connect these Riemann sums to the upper and lower Riemann
integral.

e Lemma 11. Let f : I — R be a bounded function on a generalized
interval I, and let g be a function which majorizes f and which is
piecewise constant with respect to some partition P of I. Then

p-C-/Ig >U(f,P).

Similarly, if A is a function which minorizes f and is piecewise constant,
with respect to P, then

p.c./jh < L(f,P).

13



e Proof. See Week 9 homework. O

e Proposition 12. Let f: I — R be a bounded function on a general-
ized interval I. Then

/ f=inf{U(f,P) : P is a partition of I}
T

and
/ f =sup{L(f,P) : P is a partition of I}
L

e Proof. See Week 9 homework. O

X %k ok ok ok

Basic properties of the Riemann integral

e Theorem 13 (Laws of integration). Let I be a generalized interval,
and let f : I -+ R and g : I —+ R be Riemann integrable functions on
1.

e (a) The function f + g is Riemann integrable, and we have [,(f+g) =
Lif+ 9

e (b) For any real number ¢, the function cf is Riemann integrable, and

we have [,(cf) = c(/[; f)-
e (c) The function f — g is Riemann integrable, and we have [,(f —g) =

Lif=J9

o (d) If f(x) > 0for all z € I, then [, f > 0.

o (e) If f(x) > g(z) forall z € I, then [, f > [, g.

o (f) If f is the constant function f(z) = cfor all z in I, then [, f = c|I|.
(

e (g) Let J be a generalized interval containing I (i.e. I C J), and let
F:J — R be the function

_f flx) fzel
F(f”)'_{o if o g I

Then F is Riemann integrable on J, and [, F' = [, f.

14



(h) Suppose that {J, K} is a partition of I into two generalized interval
J and K. Then the functions f|; : / — R and f|x : K — R are
Riemann integrable on J and K respectively, and we have

/Ifz/Jf|J+/Kf|K.

Proof. See Week 9 homework. O

A remark on Lemma 10: Because of this proposition, we will not refer to
the piecewise constant integral p.c. [ ; again, and just use the Riemann
integral | I

A remark on Theorem 13(h): We often abbreviate [, f|; as [, f, even
though f is really defined on a larger domain than just J.

X %k ok ok ok

Riemann integrability of continuous functions

We have already said a lot about Riemann integrable functions, but
we have not yet actually produced any such functions other than the
piecewise constant ones. Now we rectify this by showing that a large
class of useful functions are Riemann integrable.

Theorem 14. Let I be a generalized interval, and let f be a function
which is uniformly continuous on I. Then f is Riemann integrable.

Proof. From Proposition 8 of Week 7 /8 notes we see that f is bounded.
Now we have to show that fzf =[,f.

If I is a point or the empty set then the Theorem is trivial, so let us
assume that I is an interval, say one of the four intervals [a, b], (a,b),
(a,b], or [a,b).

Let ¢ > 0 be arbitrary. By uniform continuity, there exists a § > 0
such that | f(z) — f(y)| < € whenever z,y € I are such that |z —y| < d.
By the Archimedean principle, there exists an integer N > 0 such that
(b—a)/N <.

15



Note that we can partition I into N intervals Ji, ..., Jy, each of length
(b —a)/N (how? One has to treat each of the cases [a, b], (a,b), (a,b],
[a, b) slightly differently). By Proposition 12, we thus have

/ <30 (up @)l

-1 x€Jy

and

so in particular

/s /f<ZS“Pf ) = inf f(z))I .

However, we have |f(z) — f(y)| < ¢ for all z,y € J, since |Ji| =
(b—a)/N < 6. In particular we have

flz) < fly)+eforall z,y € J.

Taking suprema in z, we obtain

sup f(z) < f(y) + ¢ for all y € Jy,

T€Jy,

and then taking infima in y we obtain

sup £(2) < inf f(y)+e

z€Jy,

Inserting this bound into our previous inequality, we obtain

7ﬁ—[ﬁs§¥%h

but by Theorem 3 we thus have

71f—Lf <e(b—a).

But £ > 0 was arbitrary, while (b— a) is fixed. Thus f - f f cannot
be positive. By Lemma 9 and the definition of Riemann 1ntegrab1]1ty
we thus have that f is Riemann integrable. O
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e Combining Theorem 14 with Theorem 9 from Week 7/8 notes, we thus
obtain

e Corollary 15. Let [a,b] be a closed interval, and let f : [a,b] — R be
continuous. Then f is Riemann integrable.

e Note that this theorem is not true if [a, b] is replaced by any other sort of
interval, since it is not even guaranteed then that continuous functions
are bounded. For instance, the function f : (0,1) — R defined by
f(z) := 1/x is continuous but not Riemann integrable. However, if we
assume that a function is both continuous and bounded, we can recover
Riemann integrability:

e Proposition 16. Let I be a generalized interval, and let f : I — R
be both continuous and bounded. Then f is Riemann integrable on I.

e Proof. If I is a point or an empty set then the claim is trivial; if I is
a closed interval the claim follows from Corollary 15. So let us assume
that I is of the form (a,b], (a,b), or [a,b) for some a < b.

e We have a bound M for f, so that —M < f(x) < M forallxz € I. Now
let 0 < € < (b—a)/2 be a small number. The function f when restricted
to the interval [a+¢, b—¢] is continuous, and hence Riemann integrable
by Corollary 15. In particular, we can find a piecewise constant function
h:la+e,b—¢] - R which majorizes f on [a + ¢, b — €] such that

/ h < / f+e.
la+e,b—¢] la+e,b—¢]

Defining h : I — R by

il(x) = { h(z) ifzrxelat+eb—¢l

M ifxel\la+eb—¢]

Clearly h is piecewise constant on I and majorizes f; by Theorem 8 we
have

/ﬁ:sM+/ h+sM§/ f+ (@M +1)e.
I [a+e,b—e] late,b—¢]

17



In particular we have

71f < /[mb_s] f+ @M+ 1.

A similar argument gives

Zlf - /[a+s,bg] f—@M+1)e

/If—llf§(4M+2)a.

But ¢ is arbitrary, and so we can argue as in the proof of Theorem 14
to conclude Riemann integrability. O

and hence

This gives a large class of Riemann integrable functions already; the
bounded continuous functions. But we can expand this class a little
more.

Definition. Let I be a generalized interval, and let f : I — R. We
say that f is piecewise continuous on I iff there exists a partition P of
I such that f|; is continuous on J for all J € P.

Example The function f : [1,3] — R defined by

2?2 ifl<z<?2
Flz)=¢ 7 ifz=2
r if2<x<3

is not continuous on [1, 3], but it is piecewise continuous on [1, 3] (since
it is continuous when restricted to [1,2) or {2} or (2, 3], and those three
generalized intervals partition [1, 3]).

Proposition 17. Let I be a generalized interval, and let f : I — R be
both piecewise continuous and bounded. Then f is Riemann integrable.

Proof. By hypothesis, there exists a partition P of I such that f|; is
continuous on J for all J € P. In particular f|; is both continuous and
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bounded on J, hence Riemann integrable on J. If we then define the
function Fy: I — R by

mm%ﬁmgﬁj

then F; is Riemann integrable on I, by Theorem 13(g). But then

observe that
f=>_Fs
JeP

(ie. f(z) = > ,cp Fi(z) for all z € I). By an induction argument
using Theorem 13(a) we thus see that f is Riemann integrable on I as
desired. 0

X %k ok ok ok

Riemann integrability of monotone functions

In addition to piecewise continuous functions, another wide class of
functions is Riemann integrable.

Proposition 18. Let [a,b] be a closed interval and let f : [a,b] = R
be a monotone function. Then f is Riemann integrable on [a, b].

Note from Week 8 homework that there exist monotone functions which
are not piecewise continuous, so this Proposition is not subsumed by
Proposition 17.

Proof. Without loss of generality we may take f to be monotone
increasing (instead of monotone decreasing). From Assignment 7 we
know that f is bounded. Now let N > 0 be an integer, and partition
[a,b] into N half-open intervals {[a + %5%j,a + %2(j +1)) : 0 < j <
N — 1} of length (b — a)/N, together with the point {b}. Then by
Proposition 12 we have

[1<XC sw '

j=0 z€lat+byth,a+ 5% (i+1))
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(the point {b} clearly giving only a zero contribution). Since f is mono-
tone increasing, we thus have

b—a

/Ifggf(ﬁb_Ta(jH)) )

Similarly we have

Lf 23S Gl
Thus we have
[1-] s S (fa+ 0 1) - flas =t
R RS

Using telescoping series (see Midterm 2) we thus have

[ 1= 1< Glar Gt -t 0 = 0 Fa) "

But N was arbitrary, so we can conclude as in the proof of Theorem
14 to conclude that f is Riemann integrable. O

e By arguing as in Proposition 16 we thus have

e Corollary 19. Let I be a generalized interval, and let f : I — R be
both monotone and bounded. Then f is Riemann integrable on 1.

e One can then define piecewise monotone functions in analogy with
piecewise continuous functions, and conclude that all bounded piece-
wise monotone functions are Riemann integrable, but we will not bother
to spell this out in detail here.

* % k % %

A non-Riemann integrable function

e We conclude these notes with an example of a function which is bounded
but not Riemann integrable.
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Let f:[0,1] = R be the function

1 ifzreqQ
f@”_{o ifr ¢ Q
As we have seen in earlier notes, this function is not continuous any-
where at [0, 1]. It turns out that it is not Riemann integrable, either.

Let P be any partition of [0, 1]. For any J € P, observe that if J is not
a point or the empty set, then

sup f(z) =

zedJ

(by Proposition 25 of Week 2). In particular we have
(sup f(z))|J| = |]|

z€eJ

(note this is also true when J is a point, since both sides are zero). In
particular we see that

(LR = Y =01 =1
JeP:J+0

by Theorem 3 (note that the empty set does not contribute anything

to the total length). In particular we have [ [0,1] f =1, by Proposition
12.

A similar argument gives that

sup f(z) =

Tz€J
for all J (other than points or the empty set), and so
L(f,P)= Y 0=0.
JeP.J£0

In particular we have f f = 0, by Proposition 12. Thus the upper

and lower Riemann 1ntegrals do not match, and so this function is not
Riemann integrable.
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e (Optional discussion) As you can see, it is only rather “artificial” bounded
functions which are not Riemann integrable. Because of this, the Rie-
mann integral is good enough for a large majority of cases. There
are ways to generalize or improve this integral, though. One of these
is the Lebesgue integral, which we will cover in 131B. Another is the
Riemann-Stieltjes integral [, fda, where o : I — R is a monotone
increasing function. This integral is defined just like the Riemann inte-
gral, but with one twist: instead of taking the length |J| of generalized
intervals J, we take the a-length a|J], defined as follows. If J is a
point or the empty set, then «[J] := 0. If J is an interval of the form
[a,b], (a,b), (a,b], or [a,b), then a[J] := a(b) — a(a). Note that in the
special case where « is the identity function a(z) := z, then a[J] is
just the same as |J|. However, for more general monotone functions «,
the a-length «fJ] is a different quantity from |J|. Nevertheless, we can
still do much of the above theory, but replacing |J| by a[J] throughout;
see the textbook for a more thorough discussion.
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