Math 131AH - Weeks 7-8
Textbook pages: 89-93, 97-98, 103-106, 109-110 (Optional reading: 94-97).
Topics covered:

e Maximum principle

e Intermediate value theorem

e Uniform continuity

e Differentiability

e Properties of differentiable functions
e Mean-value theorem

e Inverse function theorem
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The maximum principle

e In last week’s notes we introduced the notion of continuity. Recall that
if X is a subset of R and zy € X, a function f : X — R is said to be
continuous at xy iff we have limy ,,0.2ex f(z) = f(zo). Equivalently,
a function f is continuous at z, iff whenever (z,)%, is a sequence
of numbers in X converging to xq, then (f(z,))32, also converges to
f(zo). Another equivalent definition is that a function f is continuous
at zo iff, for every ¢ > 0, there exists a 6 > 0 such that f(z) is e-close
to f(xy) whenever x € X is d-close to zy. (See Proposition 10 from
last week’s notes).

e We say that a function f : X — R is continuous iff it is continuous at
every point xo in X. As we saw in last week’s notes, a large number
of functions are continuous. We now show that continuous functions
enjoy a number of other useful properties, especially if their domain is a
closed interval. This shall mainly be because of the Bolzano-Weierstrass
theorem proven in last week’s notes.



Definition. Let X be a subset of R, and let f : X — R be a function.
We say that f is bounded from above if there exists a real number M
such that f(z) < M for all x € X. We say that f is bounded from
below if there exists a real number M such that f(xz) > —M for all
x € X. We say that f is bounded if there exists a real number M such
that |f(z)] < M for all z € X.

Note that a function is bounded if and only if it is bounded both from
above and below. (Why? Note that one part of the “if and only if” is
slightly trickier than the other).

Not all continuous functions are bounded. For instance, the function
f(z) := z on the domain R is continuous but unbounded (why?),
although it is bounded on some smaller domains, such as [1,2]. The
function f(z) := 1/z is continuous but unbounded on (0,1) (why?),
though it is continuous and bounded on [1, 2] (why?).

However, if the domain of the continuous function is a closed and
bounded interval, then we do have boundedness:

Lemma 1. Let a < b be real numbers, and let f : [a,0] — R be a
function continuous on [a, b]. Then f is bounded.

Proof. Suppose for contradiction that f is not bounded. Thus for
every real number M there exists an element x € [a,b] such that
|f(@)[ > M.

In particular, for every natural number n, we can find an element z,, €
[a,b] for which |f(z,)| > n. Fix such a sequence (z,)5%,. (Note:
strictly speaking, fixing such a sequence requires the aziom of choice
in set theory. It is possible to prove this lemma without the axiom of
choice; however we will not go into this somewhat delicate issue, and
just use the axiom of choice in all our arguments.) This sequence lies in
[a, b], and so by the Bolzano-Weierstrass theorem (see last week’s notes)
there exists a subsequence (z,;)%2, which converges to some limit L,
where ng < n; < ng < ...is an increasing sequence of natural numbers.
In particular, we see that n; > j for all j € N (why? use induction).

Since all the z,,; lie in [a, b], and L is the limit of the z,,;, we see that L
is adherent to [a,b] (Lemma 5 from last week’s notes), and thus must
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also lie in [a, b] (see Lemma 4 from last week’s notes). In particular, L
lies in the domain of f. Since f is continuous, it is continuous at L,
and in particular we see that

hm f(zn;) = f(L).

j—00
In particular, the sequence (f(xn;))52, is convergent, hence bounded.
On the other hand, we know from construction that |f(zy,;)| > n; > j
for all j, and hence this sequence (f(zy,))?2, is not bounded, contra-
diction. 0

Note two things about this proof. Firstly, it shows how useful the
Bolzano-Weierstrass theorem is. Secondly, it is an indirect proof; it
doesn’t say how to find the bound for f, but it shows that having f
unbounded leads to a contradiction.

We now improve this lemma to say something more.

Definition. Let f : X — R be a function, and let zo € X. We say
that f attains its mazimum at o if we have f(xg) > f(x) forallz € X
(i.e. the value of f at the point z; is larger than or equal to the value

of f at any other point in X). We say that f attains its minimum at
xg if we have f(z¢) < f(z).

Note that if a function attains its maximum somewhere, then it must
be bounded from above (why?). Similarly if it attains its minimum
somewhere, then it must be bounded from below.

Maximum principle. Let a < b be real numbers, and let f : [a, b] —
R be a function continuous on [a,b]. Then f attains its maximum at
some point Ty, € [a,b], and also attains its minimum at some point
Tmin € [a, b].

(Strictly speaking, “maximum principle” is a misnomer, since the prin-
ciple also concerns the minimum. Perhaps a more precise name would
have been “extremum principle”).

Proof. We shall just show that f attains its maximum somewhere;
the proof that it attains its minimum also is similar but is left to the
reader.



e From Lemma 1 we know that f is bounded, thus there exists an M
such that —M < f(z) < M for each x € [a,b]. Now let E denote the
set

E :={f(z):z € [a,b]}.

(In other words, E := f([a,b])). By what we just said, this set is a
subset of [—M, M]. It is also non-empty, since it contains for instance
the point f(a). Hence by the least upper bound principle, it has a
supremum sup(E) which is a real number.

e Write m := sup(FE). By definition of supremum, we know that y < m
for all y € F; by definition of F, this means that f(z) < m for all
x € [a,b]. Thus to show that f attains its maximum somewhere, it will
suffice to find an Z,,4; € [a,b] such that f(Zmez) = m (why will this
suffice?).

e Let n > 1 be any integer. Then m — 1 < m = sup(E). Since sup(E)
is the least upper bound for £, m — % cannot be an upper bound for
FE, thus there exists a y € E such that m — % < y. By definition of F,
this implies that there exists an z € [a, b] such that m — = < f(z).

e We now choose a sequence (z,)%; by choosing, for each n, x, to be
an element of [a, b] such that m — = < f(z,). (Again, this requires the
axiom of choice; however it is possible to prove this principle without
the axiom of choice. For instance, you will see a better proof of this
proposition using the notion of compactness in Math 121). This is a
sequence in [a,b]; by the Bolzano-Weierstrass theorem, we can thus
find a subsequence (z,;)?2,, where n; < ny < ..., which converges to
some limit z,,,,. As in Lemma 1, we know that xz,,,, is adherent to
[a, b] and hence lies in [a, b]. Since (z,,;)32, converges t0 Tmas, and f is
continuous at x,,.;, we have as before that

lim f(zn,;) = f(Zmaas)-
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On the other hand, by construction we know that

1 1
Y>m——>m— -,
fzn;) >m » >m ;



and so by taking limits of both sides we see that

f(xmaw) = lim f(xn]) > limm— - =m.
Jj—0o0 J—00 j

On the other hand, we know that f(z) < m for all z € [a,b], so in

particular f(Zme;) < m. Combining these two inequalities we see that

f(Zmaz) = m as desired. O

e Note that the maximum principle does not prevent a function from at-
taining its maximum or minimum at more than one point. For instance,
the function f(z) := z? on the interval [—2, 2] attains its maximum at
two different points, at —2 and at 2.

e Let us write sup,(, 5 f(7) as short-hand for sup{f(z) : = € [a,b]}, and
similarly define infycfq4 f(z). The maximum principle thus asserts
that m := sup,c(,; f(v) is a real number and is the mazimum value
of f on [a,b], i.e. there is at least one point Zy,, in [a,b] for which
f(Zmaz) = m, and for every other z € [a,b], f(Zmaez) is less than or
equal to m. Similarly inf,cp, 3 f(2) is the minimum value of f on [a, b].

e We now know that on a closed interval, every continuous function is
bounded and attains its maximum at least once and minimum at least
once. The same is not true for open or infinite intervals; see Week 7
homework.

e A final remark; you may encounter a rather different “maximum prin-
ciple” in complex analysis (Math 132) or partial differential equations
(Math 136), involving analytic functions and harmonic functions re-
spectively, instead of continuous functions. Those maximum principles
are not directly related to this one (though they are also concerned
with whether maxima exist, and where the maxima are located).
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The intermediate value theorem

e We have just shown that a continuous function attains both its max-
imum value sup,ep,4 f(#) and its minimum value infyeop f(z). We
now show that f also attains every value in between. To do this, we
first prove a very intuitive theorem:



Intermediate value theorem. Let a < b, and let f : [a,b] — R be
a continuous function on [a,b]. Let y be a real number between f(a)
and f(b), i.e. either f(a) <y < f(b) or f(a) >y > f(b). Then there
exists ¢ € [a, b] such that f(c) = y.

Proof. We have two cases: f(a) < y
We will assume the former, that f(a) <
similarly and is left to the reader.

< f(b) or f(a) 2y > f(b).
y < f(b); the latter is proven

If y = f(a) or y = f(b) then the claim is easy (just set ¢ = a or ¢ = b),
so we will in fact assume that f(a) <y < f(b).

Let E denote the set

E:={z €a,b]: f(z) <y}

Clearly FE is a subset of [a, b], and is hence bounded. Also, since f(a) <
y, we see that a is an element of E, so E is non-empty. By the least
upper bound principle, the supremum

¢ :=sup(E)

is thus finite. Since F is bounded by b, we know that ¢ < b; since F
contains a, we know that ¢ > a. Thus we have ¢ € [a, b]. To complete
the proof we now show that f(c¢) = y. The idea is to work from the
left of ¢ to show that f(c) < y, and to work from the right of ¢ to show
that f(c) > y.

Let n > 1 be an integer. The number ¢ — I is less than ¢ = sup(E)

and hence cannot be an upper bound for E. Thus there exists a point,
call it x,,, which lies in £ and which is greater than ¢ — % Also z, < ¢
since ¢ is an upper bound for E. Thus

c—— <z, <c
n

By the squeeze test we thus see that lim, ,, z, = ¢. Since f is con-
tinuous at ¢, this implies that lim,_,, f(z,) = f(c). But since z, lies
in E for every n, we have f(z,) < y for every n. By the comparison
principle we thus have f(c) < y. In particular we have ¢ # b since

f(0) > f(c).



e Since ¢ # b and ¢ € [a, b], we must have ¢ < b. In particular there is an
N > 0 such that c+ % < b for all n > N (since ¢+ % converges to c as
n — o0). Since c¢ is the supremum of F and ¢ + % > ¢, we thus have
c+= ¢ Eforalln > N. Since ¢+ + € [a, b], we thus have f(c+1) >y
for alln > N. But ¢+ % converges to ¢, and f is continuous at c,
thus f(c) > y. But we already knew that f(c) < y, thus f(c) =y, as
desired. O

e The intermediate value theorem says that if f takes the values f(a) and
f(b), then it must also take all the values in between. Note that if f is
not assumed to be continuous, then the intermediate value theorem no
longer applies. For instance, if f : [—1,1] — R is the function

-1 ifz<0
f(‘”)'_{ 1 ifz>0

then f(—1) = —1, and f(1) = 1, but there is no ¢ € [—1, 1] for which
f(¢) = 0. Thus if a function is discontinuous, it can “jump” past
intermediate values; however continuous functions cannot do so.

e Note that a continuous function may take an intermediate value multi-
ple times. For instance, if f : [-2,2] — R is the function f(z) := z3—=,
then f(—2) = —6 and f(2) = 6, so we know that there exists a
¢ € [—2,2] for which f(¢) = 0. In fact, in this case there exists three
such values of ¢: we have f(—1) = f(0) = f(1) = 0.

e The intermediate value theorem gives another way to show that one
can take n'* roots of a number. For instance, to construct the square
root of 2, consider the function f : [0,2] — R defined by f(z) = 2°.
This function is continuous, with f(0) = 0 and f(2) = 4. Thus there
exists a ¢ € [0,2] such that f(c) =2, i.e. ¢* =2. (This argument does
not show that there is just one square root of 2, but it does prove that
there is at least one square root of 2).

e Corollary 2. Let a < b, and let f : [a,b] — R be a continuous function
on [a,b]. Let M := sup,e(,y f(z) be the maximum value of f, and let
m = infyepa f(z) be the minimum value. Let y be a real number
between m and M (i.e. m < y < M). Then there exists a ¢ € [a,b]
such that f(c) = y. Furthermore, we have f([a,b]) = [m, M].
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e Proof. See Week 7 homework. O
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Monotonic functions

e We now discuss a class of functions which is distinct from the class of
continuous functions, but has somewhat similar properties: the class
of monotone (or monotonic) functions.

e Definition Let X be a subset of R, and let f : X — R be a function.
We say that f is monotone increasing iff f(y) > f(x) whenever z,y € X
and y > z. We say that f is strictly monotone increasing iff f(y) >
f(z) whenever z,y € X and y > z. Similarly, we say f is monotone
decreasing iff f(y) < f(z) whenever z,y € X and y > x, and strictly
monotone decreasing iff f(y) < f(z) whenever z,y € X and y > z.
We say that f is monotone if it is monotone increasing or monotone
decreasing, and strictly monotone if it is strictly monotone increasing
or strictly monotone decreasing.

e Examples. The function f(z) := x2, when restricted to the domain
[0, 00), is strictly monotone increasing (why?), but when restricted in-
stead to the domain (—oc, 0], is strictly monotone decreasing (why?).
Thus the function is strictly monotone on both (—oo, 0] and [0, 0c), but
is not strictly monotone (or monotone) on the full real line (—oo, 00).
Note that if a function is strictly monotone on a domain X, it is au-
tomatically monotone as well on the same domain X. The constant
function f(z) := 6, when restricted to an arbitrary domain X C R, is
both monotone increasing and monotone decreasing, but is not strictly
monotone (unless X consists of at most one point - why?).

e Continuous functions are not necessarily monotone (cf. the function
f(z) = z? on R), and monotone functions are not necessarily continu-
ous; for instance, consider the function f : [—1,1] — R defined earlier
by

-1 ifz<0

f(x)‘:{ 1 ifz>0.

Monotone functions obey the Maximum principle, but not the inter-
mediate value principle (See Week 7 homework).
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e It is possible for a monotone function to have many, many disconti-
nuities. In Week 7 homework we construct an example of a function
which has a discontinuity at every rational point.

e If a function is both strictly monotone and continuous, then it has
many nice properties:

e Proposition 3. Let a < b be real numbers, and let f : [a,b] — R be
a function which is both continuous and strictly monotone increasing.
Then f is a bijection from [a,b] to [f(a), f()], and the inverse f~! :
[f(a), f(b)] = [a,b] is also continuous and strictly monotone increasing.

e Proof. See Week 7 homework. O

e There is a similar Proposition for functions which are strictly monotone
decreasing; we leave it to the reader to work out what it is.

e For example, let n be a positive integer and R > 0. Since the function
f(z) := z™ is strictly increasing on the interval [0, R] , we see from
Proposition 3 that this function is a bijection from [0, R] to [0, R"],
and hence there is an inverse from [0, R"] to [0, R]. This can be used
to give an alternate means to construct the n** root 2'/* of a number
z € [0, R] than what was done in the Week 5 notes.

X %k ok ok ok

Uniform continuity

e We know that a continuous function on a closed interval [a, b] remains
bounded (and in fact attains its maximum and minimum, by the Max-
imum principle). However, if we replace the closed interval by an open
interval, then continuous functions need not be bounded any more. An
example is the function f : (0,2) — R defined by f(z) := 1/z. This
function is continuous at every point in (0, 2), and is hence continuous

t (0,2), but is not bounded.

e Informally speaking, the problem here is that while the function is
indeed continuous at every point in the open interval (0, 2), it becomes
“less and less” continuous as one approaches the endpoint 0.



e Let us analyze this phenomenon further, using the “epsilon-delta” def-
inition of continuity - Proposition 10(c) from Week 6 notes. We know
that if f : X — R is continuous at a point zy, then for every € > 0
there exists a 0 such that f(z) will be e-close to f(zo) whenever z € X
is d-close to xo. In other words, we can force f(z) to e-close to f(xzo)
if we ensure that x is sufficiently close to zy. Omne way of thinking
about this is that around every point xy there is an “island of stabil-
ity” (zo—0,xo+0), where the function f(x) doesn’t stray by more than
e from f(x).

e For instance, take the function f(z) := 1/x mentioned above at the
point g = 1. In order to ensure that f(x) is 0.1-close to f(zy), it
suffices to take z to be 1/11-close to zg, since if z is 1/11-close to
then 10/11 < z < 12/11, and so 11/12 < f(z) < 11/10, and so f(x)
is 0.1-close to f(xg). Thus the “4” one needs to make f(z) 0.1-close to
f(zo) is about 1/11 or so, at the point zy = 1.

e Now let us look instead at the point xy = 0.1. The function f(z) = 1/z
is still continuous here, but we shall see the continuity is much worse. In
order to ensure that f(z) is 0.1-close to f(zg), we need x to be 1/1010-
close to zy (if = is 1/1010 close to zp, then 10/101 < z < 102/1010,
and so 9.901 < f(z) < 10.1, so f(z) is 0.1-close to f(xy). Thus one
needs a much smaller “6” for the same value of ¢ - i.e. f(z) is much
more “unstable” near 0.1 than it is near 1, in the sense that there is a
much smaller “island of stability” around 0.1 as there is around 1 (if
one is interested in keeping f(x) 0.1-stable).

e On the other hand, there are other continuous functions which do not
exhibit this behavior. Consider the function g : (0,2) — R defined by
g(x) := 2z. Let us fix ¢ = 0.1 as before, and investigate the island of
stability around zo = 1. It is clear that if z is 0.05-close to xy, then
g(x) is 0.1-close to g(xp); in this case we can take d to be 0.05 at o = 1.
And if we move xy around, say if we set xg to 0.1 instead, the 6 does not
change - even when z; is set to 0.1 instead of 1, we see that g(z) will
stay 0.1-close to g(x¢) whenever z is 0.05-close to zo. Indeed, the same
0 works for every xo. When this happens, we say that the function g
is uniformly continuous. More precisely:
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Definition Let X be a subset of R, and let f : X — R be a function.
We say that f is uniformly continuous if, for every ¢ > 0, there exists
a § > 0 such that f(x) and f(zo) are e-close whenever z,xy € X are
two points in X which are d-close.

In contrast, a function f is merely continuous if for every ¢ > 0, and
every xo € X, there is a 6 > 0 such that f(z) and f(zo) are e-close
whenever z € X is d-close to xy. The difference between uniform
continuity and continuity is that in uniform continuity one can take a
single 6 which works for all zy € X; for ordinary continuity, each xq € X
might use a different §. Thus every uniformly continuous function is
continuous, but not conversely.

Example. The function f: (0,2) — R defined by f(z) := 1/x is con-
tinuous on (0, 2), but not uniformly continuous, because the continuity
(or more precisely, the dependence of 6 on €) becomes worse and worse
as £ — 0. (We will make this more precise later on, and give a rigorous
proof that this function is not uniformly continuous).

Recall that the notions of adherent point and of continuous function had
several equivalent formulations; both had “epsilon-delta” type formu-
lations (involving the notion of e-closeness), and both had “sequential”
formulations (involving the convergence of sequences). See Lemma 5
and Proposition 6 from last week’s notes. The concept of uniform
convergence can similarly be phrased in a sequential formulation, this
time using the concept of equivalent sequences. We have not had to
deal much with this concept since Week 2, so let us review it again
(this time using sequences of real numbers instead of rationals):

Definition. Let (a,)2,, and (b,),. be two sequences of real num-
bers, m be an integer, and let € > 0. We say that (a,)32,, is e-close
to (b,)2°,, iff a, is e-close to b, for each n > m. We say that (a,),,
is eventually e-close to (b,)22, iff there exists an N > m such that the
sequences (a,)3 y and (b,)s  are e-close. Two sequences (a,)3,.
and (b,)%2, . are equivalent iff for each ¢ > 0, the sequences (a,)>°, and

(bp)S2, are eventually e-close.

Note that one could quibble about whether & should be assumed to be
rational or real, but as discussed in Week 3/4 notes (cf. Proposition
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15 from those notes) this does not make any difference to the above
definitions.

The notion of equivalence can now be phrased more succinctly using
our language of limits:

Lemma 4. Let (a,);>, and (b,)7°, be sequences of real numbers
(not necessarily bounded or convergent). Then (a,,)22; and (b,)$2 , are
equivalent if and only if lim,,_,(a, — b,) = 0.

Proof. See Week 7 homework. O

Meanwhile, the notion of uniform continuity can be phrased using
equivalent sequences:

Proposition 5. Let X be a subset of R, and let f : X — R be a
function. Then the following two statements are equivalent (i.e. (a) is
true if and only if (b) is true):

(a) f is uniformly continuous on X.

(b) For every two equivalent sequences (x,,)5, and (y,)22, consisting
of elements of X, the sequences (f(z,))52, and (f(y,))>2, are also
equivalent sequences.

Proof. See Week 7 homework. O

The reader should compare this with Proposition 6 from last week’s
notes. That Proposition asserted that if f was continuous, then f maps
convergent sequences to convergent sequences. In contrast, Proposition
5 here asserts that if f is uniformly continuous, then f maps equivalent
pairs of sequences to equivalent pairs of sequences. (To see how the
two Propositions are connected, observe that (z,)°, will converge to
z, if and only if the sequences (z,)%, and (z.)%°, are equivalent.)

Example. Consider the function f : (0,2) — R defined by f(z) :=1/x
considered earlier. The sequence (1/n)%, and (1/2n)%° , are equivalent
sequences in (0,2) (why? Use Lemma 4). However, the sequences
(f(1/n))2; and (f(1/2n))2, are not equivalent (why? Use Lemma
4 again). So by Proposition 5, f is not uniformly continuous. (These
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sequences start at 1 instead of 0, but the reader can easily see that this
makes no difference to the above discussion).

Example. Consider the function f : R — R defined by f(z) := 22.
This is a continuous function on R, but it turns out to not be uniformly
continuous; in some sense the continuity gets “worse and worse” as one
approaches infinity. One way to quantify this is via Proposition 5.
Consider the sequences (n)3, and (n + 1)2,. By Lemma 4, these
sequences are equivalent. But the sequences (f(n))se, and (f(n +
)22, are not equivalent, since f(n+ =) =n’>+2+ 25 = f(n) +2+
does not become eventually 2-close to f(n). By Proposition 5 we can

thus conclude that f is not uniformly continuous.

Another property of uniformly continuous functions is that they map
Cauchy sequences to Cauchy sequences.

Proposition 6. Let X be a subset of R, and let f : X — R be
a uniformly continuous function. Let (z,)2, be a Cauchy sequence
consisting entirely of elements in X. Then (f(z,))32, is also a Cauchy
sequence.

Proof. See Week 7 homework. O

Example. Once again, we demonstrate that the function f : (0,2) —
R defined by f(z) := 1/z is not uniformly continuous. The sequence
(1/n)22, is a Cauchy sequence in (0, 2), but the sequence (f(1/n)),
is not a Cauchy sequence (why?). Thus by Lemma 6, f is not uniformly

continuous.

Corollary 7. Let X be a subset of R, let f : X — R be a uniformly
continuous function, and let zy be an adherent point of X. Then the
limit lim, .. x f(z) exists (in particular, it is a real number).

Proof. See Week 7 homework. O

Again, we could use this Corollary (or the next Proposition) to show
once again that the function f : (0,2) — R defined by f(z) := 1/z is
not uniformly continuous; this time we leave it to the reader.
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We now show that uniformly continuous functions map bounded sets
to bounded sets.

Proposition 8. Let X be a subset of R, and let f : X — R be a
uniformly continuous function. Suppose that E is a bounded subset of
X. Then f(E) is also bounded.

Proof. See Week 7 homework. O

As we have just seen repeatedly, not all continuous functions are uni-
formly continuous. However, if the domain of the function is a closed
interval, then continuous functions are in fact uniformly continuous:

Theorem 9. Let a < b be real numbers, and let f : [a,b] — R
be a function which is continuous on [a,b]. Then f is also uniformly
continuous.

Proof. (Optional) Suppose for contradiction that f is not uniformly
continuous. By Proposition 5, there must therefore exist two equiv-
alent sequences (z,)%2, and (y,)22, in [a,b] such that the sequences
(f(xn))se, and (f(yn))S2, are not equivalent. In particular, we can

find an € > 0 such that (f(z,))>2, and (f(yn))s>, are not eventually
e-close.

Fix this value of ¢, and let E be the set
E:={ne€N: f(z,) and f(y,) are not e-close}.

We must have E infinite, since if E were finite then (f(z,))%, and
(f(yn))e, would be eventually e-close (why?). By Proposition 2 of
Week 3/4 notes, FE is countable; in fact from the proof of that propo-
sition we see that we can find an infinite sequence

Ng <nip <ng < ...
consisting entirely of elements in E. In particular, we have

On the other hand, the sequence (z,,)$2, is a sequence in [a, b], and so
by the Bolzano-Weierstrass theorem (cf. the proof of Lemma 1) there
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must be a subsequence (xnjk),;“;o which converges to some limit L in
[a,b]. In particular, f is continuous at L, and so by Proposition 4 of
last week’s notes,

lim f(zn,,) = F(L) 2)

k—00

Note that (z, );2, is a subsequence of (z,)p2, and (yn, )i, is a

subsequence of (y,)5%,, by Lemma 1 of Week 6 notes. On the other
hand, from Lemma 4 we have

lim z, —y, = 0.
n—o0

By Proposition 2 from Week 6 notes, we thus have
Jim o, =, =0
Since T, converges to L as k — oo, we thus have by limit laws
kli—>nolo Yy, = I
and hence by continuity of f at L
li ne ) = f(L).
Jim f(yn,,) = F(L)
Subtracting this (2) using limit laws, we obtain

k—00

But this contradicts (1) (why?). From this contradiction we conclude
that f was in fact uniformly continuous. U

e The reader should compare Lemma 1, Proposition 8, and Theorem 9
with each other. No two of these results imply the third, but they are
all consistent with each other.

* % k % %

Limits at infinity
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Until now, we have discussed what it means for a function f: X - R
to have a limit as x — xy... as long as x( is a real number. We now
briefly discuss what it would mean to take limits when zy is equal
to 400 or —oo. (We will not use those notions much in this course,
but we include this for completeness, since they are used elsewhere in
mathematics. See pages 97-98 of the textbook for more information).

First, we need a notion of what it means for +00 or —oo to be adherent
to a set.

Definition Let X be a subset of R. We say that +oo is adherent to
X iff for every M € R there exists an x € X such that x > M; we say
that —oo is adherent to X iff for every M € R there exists an x € X
such that x < M.

In other words, +oo is adherent to X iff X has no upper bound, or
equivalently iff sup(X) = +oo. Similarly —oco is adherent to X iff X
has no lower bound, or iff inf(X) = —occ. Thus a set is bounded if and
only if +00 and —oo are not adherent points.

The reader may compare this definition with the notion of a real num-
ber zy being an adherent point. The two definitions may seem dis-
similar, but they can in fact be viewed as different special cases of a
unified definition; you will see this in more detail if you take Math 121,
Introduction to Topology.

Definition Let X be a subset of R with +0c as an adherent point,
and let f: X — R be a function. We say that f(x) converges to L as
r — +oo in X, and write lim,_, 4 oo.zex f(z) = L, iff for every € > 0
there exists an M such that f is e-close to L on X N (M, +o0) (i.e.
|f(z) — L| < ¢ for all x € X such that z > M). Similarly we say that
f(z) converges to L as x — —oc iff for every € > 0 there exists an M
such that f is e-close to L on X N (—o0, M).

Example. Let f: (0,00) — R be the function f(x) := 1/z. Then we
have limg_, 4 o:ze(0,00) 1/ = 0 (can you see why, from the definition?).

One can do many of the same things with these limits at infinity as we
have been doing with limits at other points xy; for instance, it turns
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out that all of the limit laws continue to hold. However, as we will not
be using these limits in this course, we will not devote much attention
to these matters.

We will note one thing though: if (a,)3, is a sequence of real numbers,
then a, can also be thought of as a function from N to R, which
takes each natural number n to a real number a,,. Thus we can use
the above definition to define the expression lim__ +oomeN On- But it
turns out that this expression is exactly the same as the ordinary limit
lim,,_, + a, defined back in Week 5 notes; i.e. if one limit exists then so
does the other, and they have the same value. This is an easy matter
of inspecting the definition of both types of limits.

X %k sk ok ok

Derivatives

We are almost ready now to define a notion of derivative. But first we
must modify the notion of adherent point mentioned earlier, to that of
limit point.

Definition Let X be a subset of R, and let z be a real number. We
say that x is a limit point (or cluster point) of X iff it is an adherent
point of X — {z}.

Equivalently, = is a limit point of X iff for every € > 0 there exists a
point y € X which is e-close to z, but which is not equal to z. From
Lemma 5 of last week’s notes, we immediately have

Lemma 10. Let X be a subset of R, and let x be a real number. Then
x is a limit point of X iff there exists a sequence (x,)>, of elements
in X — {z} which converge to x.

Example. Let X be the set X = (1,2) U{3}. Then 3 is an adherent
point of X, but it is not a limit point of X, since 3 is not adherent to
X —{3} = (1,2). On the other hand, 2 is still a limit point of X, since
2 is adherent to X — {2} = X.

Lemma 11. Let [ be a (possibly infinite) interval, i.e. I is a set of the
form (a,b), (a,b], [a,b), [a,b], (a,+00), [a,+00), (—o0,a), or (—o0, al.
Then every element of [ is a limit point of 1.

17



Proof. We show this for the case I = [a, b]; the other cases are similar
and are left to the reader.

Let x € I; we have to show that z is a limit point of I. There are
three cases: ¢ = a,a < x < b, x = b. If x = a, then consider the
sequence (¢ + =) . This sequence converges to z, and will lie inside
I — {a} = (a,b] if N is chosen large enough (why?). Thus by Lemma
10 we see that z = a is a limit point of [a, b]. A similar argument works
when a < z < b. When z = b one has to use the sequence (z — 1)%°
instead (why?) but the argument is otherwise the same. O

We can now define derivatives analytically, using limits (this is opposed
to the geometric definition of derivatives, which uses tangents. The
advantage of working analytically is that (a) we do not need to know
the axioms of geometry, and (b) these definitions can be modified to
handle functions of several variables, or functions whose values are
vectors instead of scalars, whereas one’s geometric intuition becomes
difficult to rely on once one has more than three dimensions in play).

Definition Let X be a subset of R, and let ;5 € X be an element of
X which is also a limit point of X. Let f : X — R be a function. If

the limit
L @) = )

z—zo;x€X —{z0} T — Xy

converges to some real number L, then we say that f is differentiable
at xg on X with derivative L, and write f'(xzo) := L. If the limit does
not exist, or if zy is not an element of X or not a limit point of X, we
leave f'(xy) undefined, and say that f is not differentiable at xy on X.

Note that we need zy to be a limit point in order for zy to be adher-
ent to X — {o}, otherwise the limit limy_,;;0e x—{x0} w would
automatically be undefined. In practice, the domain X will almost al-
ways be one of the sets in Lemma 11, and so all elements zy of X will
automatically be limit points and we will not have to care much about

these issues.

Example. Let f : R — R be the function f(z) := 22, and let zy be
any real number. To see whether f is differentiable at xy on R, we
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compute the limit

f(x) — f(z0) z? — 353

lim —_ - < = lim .
x—)wo;zER—{zo} T — Ty w—)zo;meRf{mo} r — X

We can factor the numerator as (z° — 23) = (z — x¢)(z + 29). Since

z € R — {z0}, we may legitimately cancel the factors of x — o and
write the above limit as

lim T+ g
T—Tg ;.’L‘ER— {zo}

which by limit laws is equal to 2zy. Thus the function f(z) is differen-
tiable at xy and its derivative there is 2x.

This point is trivial, but it is worth mentioning: if f : X — R is
differentiable at zg, and ¢ : X — R is equal to f (i.e. g(z) = f(x)
for all z € X), then g is also differentiable at xy and ¢'(zo) = f'(xo)-
(Why?). However, if two functions f and g merely have the same value
at xg, i.e. g(zo) = f(zo), this does not imply that ¢'(z¢) = f'(z0) (can
you see a counterexample?). Thus there is a big difference between two
functions being equal on their whole domain, and merely being equal
at one point.

One sometimes writes % instead of f’. This notation is of course very
familiar and convenient, but one has to be a little careful, because it
is only safe to use as long as x is the only variable used to represent
the input for f; otherwise one can get into all sorts of trouble. For
instance, the function f: R — R defined by f(z) := z? has derivative
% = 2z, but the function g : R — R defined by ¢(y) := y? would seem
to have derivative Z—i = 0 if y and x are independent variables, despite
the fact that g and f are exactly the same function. Because of this
possible source of confusion, we will refrain from using the notation %
whenever it could possibly lead to confusion. (This confusion becomes
even worse in several variable calculus, and the standard notation of %
can lead to some serious ambiguities. There are ways to resolve these
ambiguities, most notably by introducing the notion of differentiation

along vector fields, but this is beyond the scope of this course).
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e Example. Let f : R — R be the function f(z) := |z|, and let 27 = 0.
To see whether f is differentiable at 0 on R, we compute the limit

lim M = lim

z—)O:zER—{O} z—0 ;c—)O::cER—{O} T

]

Now we take left limits and right limits. The right limit is

Pl m T2 lim 121

z—0:x€(0,00) T z—0:2€(0,00) T z—0:2€(0,00) ’

while the left limit is

lim m = lim = lim —-1=-1

z—0:z€(—00,0) T z—0:x€(0,00) T z—0:2€(0,00) ’

and these limits do not match. Thus lim R (0} % does not exist,
and f is not differentiable at 0 on R. However, if one restricts f
to [0,00), then the restricted function f|,«) s differentiable at 0 on
[0, 00), with derivative 1:
z)— f(0 z
lim M = lim u =1.

z—0:z€[0,00)—{0} z—0 z—0:z€(0,00) T
Similarly, when one restricts f to (—oo, 0], the restricted function f|(_,q
is differentiable at 0 on (—o0, 0], with derivative —1. Thus even when
a function is not differentiable, it is sometimes possible to restore the
differentiability by restricting the domain of the function.

e An element of X which is not a limit point of X is known as an isolated
point; for instance, 3 is an isolated point of the set X := (1,2) U {3}.
Given the above definition, it is not possible for a function f : X — R
to be differentiable at an isolated point of X; for instance the function
f:(1,2) U {3} = R defined by f(z) = z? is not differentiable at 3
on (1,2) U {3}. This is despite f being the restriction of the function
g : R — R defined by g(z) := z?, which is differentiable at 3. Thus
it is possible for a function which is differentiable at zy to cease being
differentiable if the domain is restricted so that xy becomes an isolated
point. (However, if f : X — R is differentiable at zo, and Y C X is
such that zq is still a limit point of Y, then the restricted fly : Y - R
is also differentiable at zp, and with the same derivative. Why?)
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If a function is differentiable at z(, then it is approximately linear near
Zp:

Proposition 12 (Newton’s approximation). Let X be a subset of
R, let x4 be a limit point of X, let f : X — R be a function, and let L
be a real number. Then the following two statements are equivalent.

(a) f is differentiable at zy on X with derivative L.

(b) For every € > 0, there exists a § > 0 such that f(x) is e|z — x|-close
to f(zg) + L(x — xy) whenever z € X is d-close to xg, i.e.

|f(z)—=(f(zo)+L(z—x0))| < e|x—2x0| whenever z € X and |z—xz¢| < 6.

Proof. See Week 8 homework. O

To phrase Proposition 12 in a more informal way: if f is differentiable
at o, then one has the approximation f(z) =~ f(x) + f'(z0)(z — x),
and conversely.

As the example of the function f : R — R defined by f(z) := |x| shows,
a function can be continuous at a point without being differentiable at
that point. However, in the converse direction, differentiability implies
continuity:

Proposition 13. Let X be a subset of R, let xy be a limit point of
X, and let f: X — R be a function. If f is differentiable at z,, then
f is also continuous at x;.

Proof. See Week 8 homework. O

Definition Let X be a subset of R, and let f : X — R be a function.
We say that f is differentiable on X if, for every xzq € X, the function
f is differentiable at x5 on X.

From Proposition 13 and the above definition we have an immediate
corollary:

Corollary 14. Let X be a subset of R, and let f : X — R be a
function which is differentiable on X. Then f is also continuous on X.
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e Now we state the basic properties of derivatives which you are all fa-
miliar with.

e Theorem 15. Let X be a subset of R, let zy be a limit point of X,
and let f: X — R and g : X — R be functions.

e (a) If f is a constant function, i.e. there exists a real number ¢ such that
f(z) =cfor all x € R, then f is differentiable at x4 and f'(zq) = 0.

e (b) If f is the identity function, i.e. f(z) = z for all x € R, then f is
differentiable at zo and f'(x¢) = 1.

e (¢) (Sum rule) If f and g are differentiable at xy, then f + g is also
differentiable at x¢, and (f + ¢)'(x0) = f'(z0) + ¢'(0).

e (d) (Product rule) If f and g are differentiable at o, then fg is also
differentiable at xo, and (fg)'(zo) = f'(z0)g(z0) + f(z0)g'(x0)-

e (e) If f is differentiable at zo and c¢ is a real number, then cf is also
differentiable at zo, and (cf)'(zo) = cf' (o).

e (f) (Difference rule) If f and g are differentiable at zq, then f — g is
also differentiable at xq, and (f — g)'(zo) = f'(z0) — ¢'(z0)-

e (g) If g is differentiable at xg, and g is non-zero on X (i.e. g(z) # 0 for

all z € X), then 1/g is also differentiable at z, and (;)'(zo) = —;’Eg‘;l

e (h) (Quotient rule) If f and g are differentiable at z,, and g is non-zero
on X, then f/g is also differentiable at zy, and

o f(@o)g(xo) = f(20)g' (20)
(5) (330) - g(xO)Q '

e Proof. See Week 8 homework. O

e As you are well aware, the above rules allow one to compute many
derivatives easily. For instance, if f : R — {1} — R is the function
f(z) :== 222, then it is easy to use the above rules to show that f'(zo) =
m for all zy € R—{1}. (Why? Note that every point zo in R—{1}
is a limit point of R — {1}).

22



e Another fundamental property of differentiable functions is the follow-
ing:

e Theorem 16 (Chain rule). Let X, Y be subsets of R, let zp € X
be a limit point of X, and let yo € Y be a limit point of Y. Let
f: X =Y be a function such that f(x¢) = yo and f is differentiable
at zo. Suppose that ¢ : Y — R is a function which is differentiable at
Yo- Then the function go f : X — R is differentiable at xy, and

(g0 f)'(w0) = g' (o) f' (o).

e Proof. See Week 8 homework. O

e For instance, if f : R — {1} — R is the function f(z) := 22, and

g : R — R is the function g(y) := y?, then go f(z) = (22)?, and the
chain rule gives

£E0—2 1
:C()—l (.’Eo—l)Q.

(g0 f) (o) =2(

e If one writes y for f(x), and z for g(y), then the chain rule can be

written in the more visually appealing manner % = %9  However,

dr ~ dydz-
this notation can be misleading (for instance it blurs ;Ic/he distinction
between dependent variable and independent variable, especially for
y), and leads one to believe that the quantities dz, dy, dx can be
manipulated like real numbers. However, these quantities are not real
numbers (in fact, we have not assigned any meaning to them at all), and
treating them as such can lead to problems in the future. For instance,
if f depends on z; and x5, which depend on ¢, then the several variable
calculus chain rule asserts that ‘;—’: = g—gfl% g—é%, but this rule might
seem suspect if one treated df, dt, etc. as real numbers. It is possible to
think of dy, dx, etc. as “infinitesimal real numbers” if one knows what
one is doing, but at this stage I would not recommend it, especially
if one wishes to work rigorously. (There is a way to make all of this
rigorous, even for several variable calculus, but it requires the notion
of a tangent vector, and the derivative map, both of which are beyond

the scope of this course).
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Local maxima, local minima, and derivatives

As you learnt in lower-division calculus, one very common application
of using derivatives is to locate maxima and minima. We now present
this material again, but more rigorously than in lower division.

The notion of a function f : X — R attaining a maximum or minimum
at a point zqg € X was defined in last week’s notes. We now localize
this definition:

Definition Let f : X — R be a function, and let x € X. We say that
f attains a local maximum at xy iff there exists a § > 0 such that the
restriction f|xn(zo—s,00+6) Of f to XN (2o —0,2940) attains a maximum
at xo. We say that f attains a local minimum at x, iff there exists a
d > 0 such that the restriction f|xn(go—6,z0+4) Of f to XN (zg—6, 20 +06)
attains a minimum at zg.

If f attains a maximum at zy, we sometimes say that f attains a global
maximum at z, in order to distinguish it from the local maxima defined
here. Note that if f attains a global maximum at xzg, then it certainly
also attains a local maximum at this zy, and similarly for minima.

Example. Let f : R — R denote the function f(z) := 2* — z*.
This function does not attain a global minimum at 0, since for example
f(2) = =12 < 0 = f(0), however it does attain a local minimum, for
if we choose ¢ := 1 and restrict f to the interval (—1,1), then for all
r € (—1,1) we have z* < 22 and thus f(z) = 22 — 2* > 0 = f(0), and
s0 f|(-1,1) has a local minimum at 0.

Example. Let f : Z — R be the function f(x) = z, defined on
the integers only. Then f has no global maximum or global minimum
(why?), but attains both a local maximum and local minimum at every
integer n (why?).

Note that if f: X — R attains a local maximum at a point zy in X,
and Y C X is a subset of X which contains z(, then the restriction
fly Y — R also attains a local maximum at z, (why?). Similarly for
minima.
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The connection between local maxima, minima and derivatives is the
following.

Proposition 17. Let a < b be real numbers, and let f : (a,b) — R be
a function. If zy € (a,b), f is differentiable at z,, and f attains either
a local maximum or local minimum at x¢, then f'(zy) = 0.

Proof. See Week 8 homework. O

Note that f must be differentiable for this to work; see Week 8 home-
work. Also, this Proposition also does not work if the open interval
(a,b) is replaced by a closed interval [a,b]. For instance, the function
f :[1,2] = R defined by f(z) := x has a local maximum at zo, = 2
and a local minimum zy = 1 (in fact, these local extrema are global ex-
trema), but at both points the derivative is f'(x¢) = 1, not f'(zo) = 0.
Thus the endpoints of an interval can be local maxima or minima even
if the derivative is not zero there.

By combining Proposition 17 with the Maximum principle, one can
obtain

Theorem 18 (Rolle’s theorem) Let a < b be real numbers, and let
g : [a,b] — R be a continuous function which is differentiable on (a, b).
Suppose also that g(a) = ¢g(b). Then there exists an = € (a,b) such
that ¢'(z) = 0.

Proof. See Week 8 homework. O

Note that we only assume f is differentiable on the open interval (a, b),
though of course the theorem also holds if we assume f is differentiable
on the closed interval [a, b], since this is larger than (a, b).

This theorem has an important corollary.

Corollary 19 (Mean value theorem) Let a < b be real numbers,
and let f : [a,b] — R be a function which is continuous on [a, b]

and differentiable on (a,b). Then there exists an = € (a,b) such that
f(a) = [O=I@

Proof. See Week 8 homework. O

25



X %k ok ok ok

Monotone functions and derivatives

In your lower-division calculus (or perhaps in high-school) you learnt
that a positive derivative meant an increasing function, and a negative
derivative meant a decreasing function. This statement is not com-
pletely accurate, but it is pretty close; we now give the precise version
of these statements below.

Proposition 20. Let X be a subset of R, let 2y be a limit point of
X,and let f: X — R be a function. If f is monotone increasing and
f is differentiable at xg, then f'(xo) > 0. If f is monotone decreasing
and f is differentiable at zo, then f'(xy) < 0.

Proof. See Week 8 homework. O

Note that we have to assume that f is differentiable at zy. There exist
monotone functions which are not always differentiable (see Week 8
homework), and of course if f is not differentiable at zo we cannot
possibly conclude that f'(zo) > 0 or f'(xy) < 0.

One might naively guess that if f were strictly monotone increasing,
and f was differentiable at z,, then the derivative f’(zy) would be
strictly positive instead of merely non-negative. Unfortunately, this is
not always the case. For instance, the function f : R — R defined
by f(z) := 2® is strictly monotone increasing on R (why?), but the
derivative at 0 is 0.

On the other hand, we do have a converse result: if the derivative is
always strictly positive, then the function is strictly monotone increas-

ing:

Proposition 21. Let a < b, and let f : [a,b] — R be a differentiable
function. If f'(z) > 0 for all z € [a,b], then f is strictly monotone
increasing. If f'(z) < 0 for all z € [a,b], then f is strictly monotone
decreasing. If f'(z) = 0 for all z € [a, b], then f is a constant function.

Proof. See Week 8 homework. O
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Inverse functions and derivatives.

We now ask the following question: if we know that a function f :
X — Y is differentiable, and it has an inverse f! : ¥ — X, what
can we say about the differentiability of f='? This will be useful for
many applications, for instance if we want to differentiate the function

f(z) == z/m.
We begin with a preliminary result.

Lemma 22. Let f : X — Y be an invertible function, with inverse
f7' 1Y — X. Suppose that o € X and yy € Y are such that
Yo = f(zo) (which also implies that zo = f~'(yo)). If f is differentiable
at xg, and f~! is differentiable at 1o, then

—1y\/ _ 1
(f ) (yO) - f,(xo)'

Proof. From the chain rule (Theorem 16) we have

(f™ o f) (o) = (/) (o) ' (o)-

But f~!o f is the identity function on X, and hence by Theorem 15(b)
(f7to f)'(zg) = 1. The claim follows. O

As a particular corollary of Lemma 22, we see that if f is differentiable
at xo with f’(zo) = 0, then f~! cannot be differentiable at yo = f(z),
since 1/ f'(zo) is undefined in that case. Thus for instance, the function
g :[0,00) = [0,00) defined by g(y) := y'/® cannot be differentiable at
0, since this function is the inverse g = f~! of the function f : [0, 00) —
[0, 00) defined by f(z) := 23, and this function has a derivative of 0 at

f1(0) =o.

If one writes y = f(z), so that z = f~'(y), then one can write the con-
clusion of Lemma 22 in the more appealing form dz/dy = 1/(dy/dz).
However, as mentioned before, this way of writing things, while very
convenient and easy to remember, can be misleading and cause errors
if applied too carelessly (especially when one begins to work in several
variable calculus).
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e Lemma 22 seems to answer the question of how to differentiate the
inverse of a function, however it has one significant drawback: the
lemma only works if one assumes a priori that f~! is differentiable. (a
priori is Latin for “beforehand” or “before the fact”, as opposed to a
posteriort, “after the fact”, and in mathematics refers to a situation
in which a certain desirable property is assumed instead of deduced).
Thus, if one does not already know that f~! is differentiable, one cannot
use Lemma 22 to compute the derivative of f=1.

e However, the following improved version of Lemma 22 will compensate
for this fact, by relaxing the requirement on f~! from differentiability
to continuity.

e Theorem 23 (Inverse function theorem) Let f : X — Y be an
invertible function, with inverse f ! : Y — X. Suppose that zp € X
and yo € Y are such that f(zq) = yo. If f is differentiable at xq, f! is
continuous at yo, and f’(zo) # 0, then f~! is differentiable at 1, and

(f ™) (o) =

f'(xo)
e Proof. We have to show that
F7' () — (o) 1

lim = .
y—=yo:y€Y —{yo} Y—Y f'(l"o)

By Proposition 6 of Week 6 notes, it suffices to show that

M) = M) 1
5, Yn — Yo — f(wo)

o

% , of elements in Y — {yo} which converge to y.

for any sequence (yy,)

e To prove this, we set z, := f~'(y,). Then (z,)%°, is a sequence of
elements in X — {zy} (why? Note that f~' is a bijection). Since f~!
is continuous by assumption, we know that z, = f~'(y,) converges to
fY(yo) = o as n — oco. Thus, since f is differentiable at zy, we have
(by Proposition 6 of Week 6 notes again)

o L) = f@0)

n—oo _’L‘n — _’L'O

= f'(xy).

28



But since x,, # 0 and f is a bijection, the fraction
Also, by hypothesis f'(z¢) is non-zero. So by limit Taws
Tn — X 1
lim =

n—00 f(xn) - f(iUO) fl(xo)‘

But since z, = f(yo) and zo = f (1), we thus have

F ) = (o) 1

lim -
n—00 Yn — Yo f'(xo)

as desired.

that functions such as z'/™

derivatives.

* % k % %

L’Hopital’s rule

f(wn) [z

n—T0

0)

1S non-zero.

g

e In the homework you will use the inverse function theorem to prove
are differentiable, and then compute their

e Finally, we present a version of a rule you are all familiar with.

e Proposition 24 (L’Hoépital’s rule, first version) Let X be a subset
of R,let f: X — R and g: X — R be functions, and let zy be a limit
point of X. Suppose that f(x¢) = g(zo) = 0, that f and g are both
differentiable at zq, but ¢'(x¢) # 0. Then there exists a § > 0 such that

g(xz) Z0forall z € (X N (xg — 0,70 + ) — {x0}, and
flz) _ (o)

lim oY
z—0;2€(XN(zo—0,x0+0))—{z0} (.’17 g (.’130)

e Proof. See Week 8 homework.

0

e The presence of the § may seen somewhat strange, but is needed be-
cause g(x) might vanish at some points other than z, and so the quo-

(@) ;

tient 75 is not necessarily defined at all points in X — {zo}.

e A more sophisticated version of L’Hopital’s rule is the following.
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e Proposition 25 (L’Hopital’s rule, second version) Let a < b be
real numbers, let f : [a,b] = R and ¢ : [a,b] — R be a functions which
are differentiable on [a, b]. Suppose that f(a) = g(a) = 0, that ¢ is non-

!

zero on [a,b] (i.e. g'(x) # 0 for all € [a,b]), and lim,_,q:2¢ (] % ex-
ists and equals L. Then g(z) # 0 for all = € (a,b], and limg_,4:5¢(a ] [z)

. 9(z)
exists and equals L.

e This proposition only considers limits to the right of a, but one can
easily state and prove a similar proposition for limits to the left of a,
or around both sides of a. Speaking very informally, the proposition
states that .

@) )

T—a g(x) z—a g’(;[;)
though one has to ensure all of the conditions of the proposition hold
(in particular, that f(a) = g(a) = 0, and that the right-hand limit
exists), before one can apply L’Hopital’s rule.

7

e Proof. (Optional) We first show that g(z) # 0 for all z € (a,b).
Suppose for contradiction that g(z) = 0 for some = € (a,b]. But since
g(a) is also zero, we can apply Rolle’s theorem to obtain ¢'(y) = 0 for
some a < y < x, but this contradicts the hypothesis that ¢’ is non-zero
on [a, b].

e Now we show that limg_,:z¢(a,p G By Proposition 6 of Week 6

9(z)
notes, it will suffice to show that

lim f(@n)

o0

% | (a, b] which converges to x.

for any sequence (z,)

e Consider a single z,,, and consider the function h,, : [a,z,] — R defined
by
hn(z) := f(2)g(2n) — 9() f (2n)-

Observe that h, is continuous on [a, z,] and equals 0 at both a and z,,
and is differentiable on (a,z,) with derivative b/ (z) = f'(z)g(x,) —
g'(z)f(z,). (Note that f(z,) and g(z,) are constants with respect
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to z). By Rolle’s theorem, we can thus find y, € (a,z,) such that
k!, (yn) = 0, which implies that

flzn) _ f'(yn)
9(xn)  '(Yn)

Since y, € (a,x,) for all n, and x, converges to a as n — 0o, we see
from the squeeze test that y, also converges to a as n — oo. Thus

’;,,8:% converges to L, and thus % also converges to L, as desired. [
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