Math 131AH - Week 5
Textbook pages: 58-69. (Optional reading: 70-75).
Topics covered:

Some standard limits

Series; conditional versus absolute convergence
Some series convergence tests

The root and ratio tests

X %k sk ok ok

More on exponentiation

We will continue our study of sequences and series momentarily, but
first we need to expand our notion of exponentiation some more. Cur-
rently we have only defined exponentiation 2™ when z is a real number
and n is an integer (and when 7 is negative we have to ensure x is non-
zero). We would like to expand this definition to define z¥ for all real
numbers x and y, though as we will see this is only really feasible for
positive z. (To raise negative numbers to non-integer powers requires
the complex numbers, which are beyond the scope of this course; but
see Math 132).

As in last week’s notes, we shall now use all the normal rules of algebra
without further comment.

We begin with the notion of an n'* root, which we can define using our
notion of supremum.

Definition. Let z > 0 be a positive real, and let n > 1 be a positive
integer. We define 2!/, also known as the n** root of x, by the formula

2" .= sup{y € R:y > 0 and y" < z}.

We first show that this supremum is not infinite:



Lemma 1. Let z > 0 be a positive real, and let n > 1 be a positive
integer. Then the set £ := {y € R:y > 0 and y" < z} is non-empty
and is also bounded above. In particular, /" is a real number.

Proof. The set E contains 0 (why?), so it is certainly not empty. Now
we show it has an upper bound. We divide into two cases: z < 1 and
x > 1. First suppose that we are in the case where < 1. Then we
claim that the set E is bounded above by 1. To see this, suppose for
contradiction that there was an element y € E for which y > 1. But
then y™ > 1 (why?), and hence y™ > z, a contradiction. Thus F has an
upper bound. Now suppose that we are in the case where x > 1. Then
we claim that the set E is bounded above by x. To see this, suppose
for contradiction that there was an element y € E for which y > z.
Since x > 1, we thus have y > 1. Since y > x and y > 1, we have
y™ > x (why?), a contradiction. Thus in both cases E has an upper
bound, and so z/" is finite. d

We list some basic properties of n'* root below.

Lemma 2. Let z,y > 0 be positive reals, and let n,m > 1 be positive
integers.

a) If y = 2!/, then y" = z.

b) Conversely, if y” = z, then y = z'/™.

d) We have = > y if and only if z'/* > y!/",

(
(
(c) z'/™ is a positive real number.
(
( k

e) If z > 1, then z'/* is a decreasing function of k. If z < 1, then z'/
is an increasing function of k. If £ = 1, then z'/* =1 for all k.

(f) We have (zy)'/" = z'/nyl/.
(g) We have (x!/m)l/m = gl/mm

Proof. See Week 5 homework. O



The observant reader may note that this definition of z'/” might pos-

sibly be inconsistent with our previous notion of 2™ when n = 1, but
it is easy to check that z'/! = 2 = z! (why?), so there is in fact no
inconsistency.

One consequence of Lemma 2(b) is the following cancellation law: if y
and z are positive and y"™ = 2", then y = z. (Why does this follow from
Lemma 2(b)?). Note that this only works when y and z are positive; for
instance, (—3)? = 32, but we cannot conclude from this that —3 = 3.

Now we define how to raise a positive number x to a rational exponent
q.

Definition. Let > 0 be a positive real number, and let ¢ be a rational
number. To define 29, we write ¢ = a/b for some integer a and positive

integer b, and define
21 = (z/%)e.

Note that every rational ¢, whether positive, negative, or zero, can be
written in the form a/b where a is an integer and b is positive (why?).
However, the rational number ¢ can be expressed in the form a/b in
more than one way, for instance 1/2 can also be expressed as 2/4 or
3/6. So to ensure that this definition is well-defined, we need to check
that different expressions a/b give the same formula for z4:

Lemma 3. Let a,a’ be integers and b,b' be positive integers such

that a/b = o'/b', and let x be a positive real number. Then we have
(xl/b’)a’ — (ml/b)a_
Proof. There are three cases: a =0, a > 0, a < 0. If a = 0, then we

must have ¢/ = 0 (why?) and so both (z'/*)* and (z'/°)* are equal to
1, so we are done.

Now suppose that ¢ > 0. Then o > 0 (why?), and ab’ = ba’. Write
y = x/(@) = g1/() " By Lemma 2(g) we have y = (z'/*)"/* and
y = (z'/*)'/9; by Lemma 2(a) we thus have y* = z'/* and y* = z'/°.
Thus we have

(xl/b’)a’ — (ya)a’ — yaa' — (ya’)a — (xl/b)a,

as desired.



Finally, suppose that a < 0. Then we have (—a)/b = (—a')/b. But
—a is positive, so the previous case applies and we have (z!/ ”')_“' =
(x/%)~e. Taking the reciprocal of both sides we obtain the result. [

Thus x? is well-defined for every rational q. Note that this new defi-
nition is consistent with our old definition for z!/* (why?) and is also
consistent with our old definition for z™ (why?).

Some basic facts about rational exponentiation:

Lemma 4. Let z,y > 0 be positive reals, and let ¢, be rationals.
a) x? is a positive real.

b) We have 27" = 292" and (29)" = z?".

(

(

(c) We have 279 = 1/a9.

(d) If ¢ > 0, then z > y if and only if 27 > y9.
(

e) If x > 1, then 27 > 2" if and only if ¢ > r. If z < 1, then 29 > 2" if
and only if ¢ < 7.

Proof. See Week 5 homework. O

We still have to do real exponentiation; in other words, we still have to
define ¥ where z > 0 and y is a real number - but we will defer that
for a little while.
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Some standard limits.

e Armed now with the limit laws and the squeeze test, we can now com-

pute a large number of limits.

e A particularly simple limit is that of the constant sequence c,c,c,c,.. ;
we clearly have

lime=c
n—0o0

for any constant ¢ (why?).



Also, in Proposition 17 from Week 3/4, we proved that lim,,_,, 1/n = 0.
This now implies

Corollary 5. For any integer k > 1, we have lim,,_,o, 1/n!/* = 0.

Proof. From Lemma 2 we know that 1/n'/* is a decreasing function

of n, while being bounded below by 0. By Proposition 25 of Week
3/4 notes (for decreasing sequences instead of increasing sequences) we
thus know that this sequence converges to some limit L > 0:

L = lim 1/n!/*.
n—o0

Raising this to the k" power and using the limit laws (or more precisely,
Theorem 21(b) of Week 3/4 notes and induction), we obtain

k _ .
L* = nh_)rgo 1/n.
By Proposition 17 from Week 3/4 notes we thus have L* = 0; but this
means that L cannot be positive (else L*¥ would be positive), and thus
L =0, and we are done. 1.

From Corollary 5 and the limit laws again we can conclude in fact that
lim,, , 1/n? = 0 for any rational ¢ > 0 (why?). This implies, by the
way, that the limit lim,,_,,, n? does not exist (why? use Theorem 21(e)
of Week 3/4 notes and prove by contradiction).

From page 27 of Week 3/4 notes we also have the limit lim,,_,o, 2" =0
when 0 < z < 1. This also implies that lim,_,,, 2" = 0 when —1 <
z < 0 (why? Use Q10 of Week 4 Homework), and that lim,, ,,, 2" does
not exist when z > 1 or x < —1 (why? Use Theorem 21(e) of Week
3/4 notes and argue by contradiction). Quiz: what happens in the
remaining cases x = —1,0,17

Another basic limit is the following:
Lemma 6. For any z > 0, we have lim,,_,,, '/ = 1.

Proof. See Week 5 homework. O



o We will derive a few more standard limits later on, once we develop the
root and ratio tests for series and for sequences.

e Finally, from Proposition 18 and Theorem 30 from last week’s notes
we recall that a Cauchy sequence of real numbers and a convergent
sequence of real numbers are the same thing:

e Proposition 7. Let (a,)°,, be a sequence of real numbers. Then
(@)%, is convergent if and only if it is a Cauchy sequence.

e Proof. See Proposition 18 and Theorem 30 from last week’s notes. [

* % ok % %

Finite series

e Now that we have developed a reasonable theory of limits of sequences,
we will use that theory to develop a theory of infinite series

o0

E Ap = Qm + Qg1 + Qg2 + -+ -

n=m

But before we develop infinite series, we must first develop the theory
of finite series.

e Let m,n be integers, and let (a;)",, be a finite sequence of real num-
bers, assigning a real number a; to each integer i between m and n
inclusive (i.e. m < ¢ < n). Then we define the finite sum (or finite
series) > " a; by the recursive formula

n n—++ n
E a; := 0 whenever n < m; E a; == ( E a;)+a, whenever n > m—1.
i=m i=m

i=m

e Thus for instance

m—2 m—1 m
E a; = 0; E a; = 0; E a; A
i=m i=m =m
m+1 m+2
E Q; = O + Gppg1; E i = Om + OGmy1 + Qg2



(why do these identities follow from the above definition?). Because of
this, we sometimes express Y .. a; less formally as

n
Zai:am+am+1+...+an.

i=m

(A remark: the difference between “sum” and “series” is a subtle lin-
guistic one. Strictly speaking, a series is an expression of the form
Y. a;; this series is equal to a real number, which is then the sum of
that series. For instance, 1+ 2 + 3 +4 + 5 is a series, whose sum is 15;
if one were to be very picky about semantics, one would not consider
15 a series and one would not consider 1+ 2+ 3+ 4 + 5 a sum, despite
the two expressions having the same value. However, we will not be
very careful about this distinction as it is purely linguistic and has no
bearing on the mathematics; from the point of view of mathematics
1+243+4+5and 15 are the same number, and thus interchangeable

(the axiom of substitution)).

Note that the variable i (sometimes called the indez of summation) is
a bound variable (sometimes called a dummy variable); the expression

> . a; does not actually depend on any quantity named 4. In partic-

ular, one can replace the index of summation ¢ with any other symbol,
and obtain the same sum:

n n
E a; = E aj;.
i=m j=m

We list some basic properties of summation below.
Lemma 8

(a) Let m < n < p be integers, and let a; be a real number assigned to
each integer m < 7 < p. Then we have

n p p
E a; =+ E a; = E a;.
t=m i=m

t=n+1



(b) Let m < n be integers, k be another integer, and let a; be a real
number assigned to each integer m < i < n. Then we have

n n+k
E a; = E Qj—-
i=m j=m+k

(¢) Let m < n be integers, and let a;, b; be real numbers assigned to
each integer m < ¢ < n. Then we have

Z(ai + bz) = (Z CLZ') + (Z bz)

(d) Let m < n be integers, and let a; be a real number assigned to each
integer m < ¢ < n, and let ¢ be another real number. Then we have

n n

Z(cai) = C(Z a;).

i=m t=m

(e) (Triangle inequality for finite series) Let m < n be integers, and let
a; be a real number assigned to each integer m < ¢ < n. Then we have

n n
2wl <) el
i=m i=m

(f) (Comparison test for finite series) Let m < n be integers, and let
a;, b; be real numbers assigned to each integer m < i < n. Suppose
that a; < b; for all m <7 <n. Then we have

n

Proof. See Week 5 homework. O

Note: in the future we may omit some of the parentheses in series ex-
pressions, for instance we may write > . (a;+0b;) simply as > .- a;+
b;. This is reasonably safe from being mis-interpreted, because the al-
ternative interpretation (3.1 a;) + b; does not make any sense (the
index ¢ in b; is meaningless outside of the summation, since ¢ is only a
dummy variable).



One can use finite series to also define summations over finite sets:

Definition. Let X be a finite set with n elements (where n € N), and
let f: X — R be a function from X to the real numbers (i.e. f assigns
a real number f(x) to each element = of X). Then we can define the
finite sum ) f(z) as follows. We first select any bijection g from
{i € N:1<1i<n} toX;such a bijection exists since X is assumed
to have n elements. We then define

S @) =Y £9(i).

zeX

Example Let X be the three-element set X := {a,b, c}, where a,b,c
are distinct objects, and let f : X — R be the function f(a) := 2,
f(b) :==5, f(c) == —1. In order to compute the sum ) . f(z), we
select a bijection g : {1,2,3} —» X, e.g. g(1) :=q, g(2) := b, ¢(3) :=c.
We then have

3
D F@) =) flg(i) = f(a)+ f(b) + f(c) =6.
TeX =1
One could pick another bijection from {1,2,3} to X, e.g. h(1) := ¢,
h(2) := b, h(3) = ¢, but the end result is still the same:

S @) =S F k() = f(e) + F(b) + f(a) = 6.

zeX =1

To verify that this definition actually does give a single, well-defined
value to >y f(z), one has to check that different bijections g from
{i e N:1<i<n}toX give the same sum. In other words, we must
prove

Proposition 9. Let X be a finite set with n elements (where n € N),
let f: X — R be a function, and let g: {i e N:1<i<n}— X and
h:{ie€ N:1<i<n}— X be bijections. Then we have

> Hg) = 3 £(h(0).



e Proof. We use induction on n; more precisely, we let P(n) be the
assertion that “For any set X of n elements, any function f : X — R,
and any two bijections ¢, h from {i € N : 1 < ¢ < n} to X, we have
Yo flg(d)) =30, f(R(i))”. (More informally, P(n) is the assertion
that Proposition 9 is true for that value of n). We want to prove that
P(n) is true for all natural numbers n.

We first check the base case P(0). In this case we have Y., f(g(i))
and 37, f(h(i)) both equal to 0, by definition of finite series, so we
are done.

Now suppose inductively that P(n) is true; we now prove that P(n++)
is true. Thus, let X be a set with n + + elements, let f : X — R be a
function, and let g and h be bijections from {i € N : 1 <i<n++}
to X. We have to prove that

n++

Zf(g(i)) =Y fh@). (1)

=1

Let z := g(n++); thus z is an element of X. By definition of finite
series, we can expand the left-hand side of (1) as

> Fla(@) = 3 flel)) + .

Now let us look at the right-hand side of (1). Ideally we would like to
have h(n+4+) also equal to x - this would allow us to use the inductive
hypothesis P(n) much more easily - but we cannot assume this. How-
ever, since h is a bijection, we do know that there is some index j, with
1 < j < n++, for which A(j) = z. We now use Lemma 8 and the
definition of finite series to write

S G = (3 FR) + (3 £
= (@) + £06) + (3 1)

10



We now define the function 2 : {i e N:1 < i < n} - X — {z} by
setting /(i) := h(i) when i < j and h(i) := h(i + 1) when i > j. We
can thus write the right-hand side of (1) as
j—1 n
= (Y S(@)) +z+ (D f(h(:))
i=1 i=j

= O Sh() +

where we have used Lemma 8 once again. Thus to finish the proof of
(1) we have to show that

Z flg()) = Z fhG).  (2)

But the function g (when restricted to {i € N : 1 < i < n}) is a
bijection from {i € N :1 < i <n} — X — {z} (why?). The function
h is also a bijection from {i € N : 1 < i < n} — X — {z} (why? cf.
Lemma 31 from Week 2 notes). Since X —{z} has n elements (Lemma
31 from Week 2 notes), the claim (2) then follows directly from the
induction hypothesis P(n). d

Because of Proposition 9, we know that our definition of ) f(z) is
well-defined.

Some basic properties of summations on finite sets:
Proposition 10.

(a) If X is empty, and f : X — R is a function (which, by the way,
must be the empty function), we have

Y fl@) =

reX

11



e (b) If X consists of a single element, X = {70}, and f: X - Risa

function, we have
Z f(x) = f(z0).

zeX

e (c) (Substitution rule) If X is a finite set, f : X — R is a function,
and g : Y — X is a bijection, then

> @) =) flay):

T€X yeYy

e (d) Let n < m be integers, and let X be theset X :={i€Z:n<i<
m}. If a; is a real number assigned to each integer i € X, then we have

m
E a; = E a;.
i=n 1€X

e (e) Let X, Y be disjoint finite sets (so XNY = @), and f: XUY - R
is a function. Then we have

Yo f@ =0 f@)+ Q0 f®)-

zeXUY zeX yey

e (f) Let X be a finite set, and let f : X — R and g : X — R be
functions. Then

D f@) +g(@) = (Y @)+ (D 9(@)).

reX zeX zeX

e (g) Let X be a finite set, let f : X — R be a function, and let ¢ be a

real number. Then
D ef(w)=c) fl).

reX zeX

e (h) Let X be a finite set, and let f : X — R and g : X — R be
functions such that f(x) < g(z) for all x € X. Then we have

> f@) <) gl)

reX zeX

12



e (i) Let X be a finite set, and let f : X — R be a function, then

1> @< |f(@)].

z€X zeX

e Proof. See Week 5 homework. O

e The substitution rule (c) can be thought of as making the substitution
z := ¢g(y) (hence the name). Note that the assumption that g is a
bijection is essential; can you see why the rule will fail when g is not
one-to-one or not onto? From (c) and (d) we see that

Sa =

for any bijection f from the set {i € Z : n < i < m} to itself. In-
formally, this means that we can rearrange the elements of a finite
sequence at will and still obtain the same bound.

e Now we look at double finite series - finite series of finite series - and
how they connect with Cartesian products.

e Lemma 11. Let X, Y be finite sets, and let f : (X xY) - R be a
function. Then

DO fmy)= D flay).

zeX yeyY (z,y)EX XY
e Example. Let X := {a,b} and Y := {¢,d}. Then the left-hand side is

> (Y fl@y) = (fla,0) + fa,d) + (f(b,c) + f(b,d))
z€{a,b} ye{c,d}
while the right-hand side is
Z :f(a,c)—|—f(b,c)+f(a,d)+f(b,d)
(z,y)€{(asc),(b,c),(a,d),(b,d)}

which is equal to the left-hand side.

13



e Proof. Let n be the number of elements in X. We will use induction
on n (cf. Proposition 9); i.e. we let P(n) be the assertion that Lemma
11 is true for any set X with n elements, and any finite set Y and any
function f : (X xY) — R. We wish to prove P(n) for all natural
numbers n.

e The base case P(0) is easy, following from Proposition 10(a) (why?).
Now suppose that P(n) is true; we now show that P(n++) is true.

e Let X be a set with n4++ elements. In particular, by Lemma 31 from
Week 2 notes, we can write X = X' U {x}, where z; is an element of
X and X' := X — {zo} has n elements. Then by Proposition 10(e) we
have

DO fay) = Q fay) + (Q f(zoy)

reX y€ey zeX’' yey yey

by the induction hypothesis this is equal to

Y. Sy + Q] f@o.y)

(z,y)€X'XY yey

By Proposition 10(c) this is equal to

Y. fay+( D fl@y).

(z,y)EX' XY (z,y)€{mo}xY

By Proposition 10(e) this is equal to

> fay)

(z,y)eXXY
(why?) as desired. O

e Corollary 12. (Fubini’s theorem for finite sums) Let X, Y be
finite sets, and let f: (X xY) — R be a function. Then

YO @)=Y flay= >, [y =Y 0 f(=y)

z€X yey (z,y)EX XY (y,z)€Y xX yeY zeX

14



e Proof. In light of Lemma 11, it suffices to show that

Yo flay = DY, flay)

(z,y)eXxY (y:x)eY x X

But this follows from Proposition 10(c) by applying the bijection A :
X XY =Y x X defined by h(z,y) := (y,z). (Why is this a bijection,
and why does Proposition 10(c) give what we want?). O

e This should be contrasted with the interchanging sums example on
Page 4 of Week 1 notes; thus we anticipate something interesting to
happen when we move from finite sums to infinite sums.

* % ok % %

Infinite series

e We are now ready to sum infinite series.

e Definition. A (formal) infinite series is any expression of the form

o
§ ana
n=m

where m is an integer, and a, is a real number for any integer n > m.
We sometimes write this series as

A + A1 + Qg2 + - - -

e At present, this series is only defined formally; we have not set this
sum equal to any real number; the notation a,, + Gmyy1 + CGmao + - - -
is of course designed to look very suggestively like a sum, but is not
actually a finite sum because of the “...” symbol. To rigorously define
what the series actually sums to, we need another definition.

e Definition. Let ) ° a, be a formal infinite series. For any integer
N > m, we define the N** partial sum Sy of this series to be Sy =
Zgzm a,; of course, Sy is a real number. If the sequence (Sy)3,,
converges to some limit L as N — oo, then we say that the infinite

series Y o a, is convergent, and converges to L; we also write L =

15



Yoo, Gn, and say that L is the sum of the infinite series Y >°  ay,.
If the partial sums Sy diverge, then we say that the infinite series
Yoo . Gy is divergent, and we do not assign any real number value to
that series.

Examples. Consider the formal infinite series

o
22—"=2—1+2—2+2—3+....

n=1

The partial sums can be verified to equal
N
Sy=>» 2"=1-27"
n=1

by an easy induction argument (or by deriving the geometric series
formula); the sequence 1 — 2~ converges to 1 as N — oo, and hence

we have
o0

Y 2m=1.
n=1
In particular, this series is convergent. On the other hand, if we consider

the series
[o¢]

22":21+22+23+...
n=1

then the partial sums are
N
SN :Z2n :2N+1 -9
n=1

and this is easily shown to be an unbounded sequence, and hence di-
vergent. Thus the series > 7 2" is divergent. Quiz: is the series

> oo (=1)™ convergent or divergent?

Now we address the question of when a series converges. The following
proposition shows that a series converges iff the “tail” of the sequence
is eventually less than ¢ for any € > 0:

16



Proposition 13. Let > >° a, be a formal series of real numbers.
Then "> a, converges if and only if, for every real number ¢ > 0,
there exists an integer N > m such that

q
|Zan\ <e¢ for all p,g > N.

n=p
Proof. See Week 5 homework. O

This Proposition, by itself, is not very handy, because it is not so easy
to compute the partial sums Zfb:p a, in practice. However, it has a
number of useful corollaries. For instance:

Corollary 14 (Zero test). Let Y ~° a, be a formal series of real
numbers. Then if Zzo:m a, converges, we must have lim, ., a, = 0.
To put this another way, if lim,_,, a, is non-zero or divergent, then
the series Y > ay, is divergent.

Proof. See Week 5 homework. O

Example. The sequence a, := 1 does not converge to 0 as n — oo,
so we know that Y o2 1 is a divergent series. (Note however that
1,1,1,1,...1s a convergent sequence; convergence of series is a different
notion from convergence of sequences). Similarly, the sequence a, :=
(—1)™ diverges, and in particular does not converge to zero; thus the
series »_>°  (—1)™ is also divergent.

If a sequence (a,)3,, does converge to zero, then the series Y~ a,
may or may not be convergent; it depends on the series. For instance,
we will soon see that the series Y >° | 1/n is divergent despite the fact
that 1/n converges to 0 as n — oc.

Definition. Let Y . a, be a formal series of real numbers. We
say that this series is absolutely convergent iff the series Y - |a,| is
convergent. If a series is not absolutely convergent, then it is absolutely
divergent.

In order to distinguish convergence from absolute convergence, we some-
times refer to the former as conditional convergence.

17



e Proposition 15 (Absolute convergence test). Let > a, be a
formal series of real numbers. If this series is absolutely convergent,
then it is also conditionally convergent. Furthermore, in this case we
have the triangle inequality

o0 o
2 anl <D ol
n=m n=m

e Proof. See Week 5 homework. O

e The converse, however, is not true; there exist series which are con-
ditionally convergent but not absolutely convergent. We will give an
example shortly.

e Note in particular that we consider the class of conditionally convergent
series to include the class of absolutely convergent series as a subclass.
Thus when we say a statement such as “Y">° a, is conditionally con-
vergent”, this does not automatically mean that Y > is not absolutely
convergent. If we wish to say that a series is conditionally convergent
but not absolutely convergent, then we will instead use a phrasing such
as “Y > ap is only conditionally convergent”, or “Y>° a, converges
conditionally, but not absolutely”.

n

e Proposition 16 (Alternating series test). Let (a,)3,, be a se-
quence of real numbers which are non-negative and decreasing, thus
an, > 0 and a, > a,4; for every n > m. Then the series > >° (—1)"a,
is convergent if and only if the sequence a,, converges to 0 as n — oo.

e Proof. From the zero test, we know that if the series Y~ (—1)"a,
converges, then the sequence (—1)"a, converges to 0, which implies
(why? note that (—1)"a, and a, have the same distance from 0) that
a, also converges to 0.

e Now suppose conversely that a, converges to 0. For each N, let Sy
be the partial sum Sy := 32 (—1)"a,; our job is to show that Sy
converges. Observe that

SN_|_2 = SN+(—1)N+ICI,N+1+(—1)N+26LN+2 = SN+(—1)N+1(CZN+1—(J,N+2).

18



But by hypothesis, (ayi1 — anyt2) is non-negative. Thus we have
Sni2 > Sy when N is odd and Sy, < Sy if N is even.

Now suppose that N is even. From the above discussion and induction
we see that Syi9r < Sy for all natural numbers k& (why?). Also we
have SN—|—2k—|—1 Z SN_|_1 = SN—CLN+1 (Why?) Finally, we have SN+2k+1 =
SN+2]c — ON+4+2k+1 S SN+2k (Why?) Thus we have

Sy —ant1 < Snviok+1 < Sy < Sw
for all £. In particular, we have
SN—CI,N_H SSn SSN forallnzN

(why?). In particular, the sequence S, is eventually ay.i-steady. But
the sequence ay converges to 0 as N — oo, thus this implies that S,
is eventually e-steady for every € > 0 (why?). Thus S,, converges, and
so the series Y>> (—1)"a, is convergent. O

Example. The sequence (1/n)%, is non-negative, decreasing, and
converges to zero. Thus > 2 (—1)"/n is convergent (but it is not ab-
solutely convergent, because > >, 1/n diverges, as we shall see below).
Thus absolute divergence does not imply conditional divergence, even
though absolute convergence implies conditional convergence.

Some basic identities concerning convergent series are collected below.
Proposition 17

(a) If > a, is a series of real numbers converging to z, and Y - b,
is a series of real numbers converging to y, then > (a, +b,) is also
a convergent series, and converges to z + y. In particular, we have

o o0 o

D (an+b) = an+ > b

n=m n=m n=m

(b) If >°>° ay is a series of real numbers converging to z, and ¢ is a
real number, then Y °7 (ca,) is also a convergent series, and converges

) n=m n g Y g
to cx. In particular, we have

Z(can) =c Z .

n=m n=m
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(c) Let >~°  ay be aseries of real numbers, and let £ > 0 be an integer.
If one of the two series ) ° a, and ) >’ . a, are convergent, then
the other one is also, and we have the identity

m+k—1 9]

o
Zan = Z an, + Z G, -
n=m n=m

n=m-+k

(d) Let Y °>°  a, be a series of real numbers converging to z, and let &

be an integer. Then > ° .. a,  also converges to z.

Proof. See Week 5 homework.

From Proposition 17(c) we see that the convergence of a series does not
depend on the first few elements of the series (though of course those
elements do influence which value the series converges to). Because of
this, we will usually not pay much attention as to what the initial index
m of the series is.

X %k ok ok ok

Sums of non-negative numbers

Now we specialize to consider sums » .- a, where all the terms a,, are
non-negative. This situation comes up, for instance, from the absolute
convergence test, since the absolute value |a,| of a real number a, is
always non-negative. Note that when all the terms in a series are non-
negative, there is no distinction between conditional convergence and
absolute convergence.

Suppose 7 ay, is a series of non-negative numbers. Then the partial
sums Sy = Znsz a, are increasing, i.e. Syy1 > Sy for all N > n
(Why?). From Proposition 25 and Corollary 20 of Week 3/4 notes, we
thus see that the sequence (Sy)92,, is convergent if and only if it has

an upper bound M. In other words, we have just shown

Proposition 18 Let Y >° a, be a formal series of non-negative real
numbers. Then this series is convergent if and only if there is a real
number M such that

N

Z a, < M for all integers N > m.

n=m

20



A simple corollary of this is

Corollary 19 (Comparison test). Let > >° a, and Y . b, be
two formal series of real numbers, and suppose that |a,| < b, for all
n > m. Then if > 7 b, is convergent, then Y - a, is absolutely
convergent, and in fact

1Dl <D ol <D b
Proof. See Week 5 homework. O

We can also run the comparison test in the contrapositive: if we have
lan| < b, for all n > m, and ) a, is absolutely divergent, then
> oo by is conditionally divergent. (Why does this follow immediately
from Corollary 197)

A useful series to use in the comparison test is the geometric series

where z is some real number. If |x| > 1 then this series diverges, thanks
to the zero test (why?). Now suppose |z| < 1. The partial sums can
easily be evaluated by the geometric series formula

Y oat=(1—a"/(1-a);

this formula can be easily verified by induction (how?). If |z| < 1, then
we have limy_,o, 2V = 0 by the discussion at the beginning of these
notes, and so by the limit laws

lim (1 —2V™)/(1—2)=1/(1 —z)

N—oo

and hence )" " converges to 1/(1 — z) when |z| < 1. Indeed, this
convergence is absolute (why?).
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We now give a useful criterion, known as the Cauchy criterion, to test
whether a series of non-negative but decreasing terms is convergent.

Proposition 20 (Cauchy criterion). Let (a,)3%; be a decreasing
sequence of non-negative real numbers (so a,, > 0 and a,,1 < a, for all
n > 1). Then the series Y >-, a, is convergent if and only if the series

o0
ZQkan = a1+ 2a9 + 4as + 8ag + . ..
k=0

is convergent.

It is interesting that this criterion only uses a small number of elements
of the sequence a, (namely, those elements whose index n is a power
of 2, n = 2*) in order to determine whether the whole sequence is
convergent or not.

Proof. Let Sy := 3.V  a, be the partial sums of 3°°  a,, and let
Ty =31, 2%as be the partial sums of Y1 2%a. In light of Propo-
sition 18, our task is to show that the sequence (Sy)%_; is bounded if
and only if the sequence (Tx)%_, is bounded. To do this we need the

following claim:

Claim. For any natural number K, we have

Sors1_y < Tx < 259k,

Proof. We use induction on K. First we prove the claim when K = 0,
i.e.

S1 <Tp <265;.
This becomes

a; < a; < 2ay

which is clearly true, since a; is non-negative.

Now suppose the claim has been proven for K, and now we try to prove
it for K + 1:
SZK+2_1 S TK+1 S 252K+1.
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Clearly we have
TK_|_1 - TK + 2K+1a2K+1.

Also, we have (using Lemma 8(af) and the hypothesis that the a,, are
decreasing)

oK +1 oK +1
Sox1 = Sox + E a, > Sox + E Qox+1 = Sox + 2Ka21<+1
n=2K 41 n=2K 41

and hence
252K+1 > 2521( —+ 2K+1a2x+1.

Similarly we have

2K+2_1 2K+2_1
E § K+1
SQK+2_1 = SQK+1_1+ Qp S SQK+1_1+ AoK+1 = SQK+1_1+2 + AoK+1.
n—2K+1 n—2K+1

Combining these inequalities with the induction hypothesis
SQK+1_1 S TK S QSQK

we obtain
SQK+2_1 S TK+1 S 252K+1

as desired. This proves the claim. [l

From this claim we see that if (Sy)%_; is bounded, then (Syx)®_, is
bounded, and hence (Tk)%_, is bounded. Conversely, if (Tx)%_, is
bounded, then the claim implies that Syx+1_; is bounded, i.e. there is
an M such that Syx+1_; < M for all natural numbers K. But one can
easily show (using induction) that 251 —1 > K + 1, and hence that
Sk+1 < M for all natural numbers K, hence (Sy)%¥_; is bounded. O

Corollary 21. Let ¢ > 0 be a rational number. Then the series
> 1/n? is convergent when ¢ > 1 and divergent when ¢ < 1.

Proof. The sequence (1/n%)%2,; is non-negative and decreasing (by
Lemma 4(d)), and so the Cauchy criterion applies. Thus this series is

convergent if and only if




is convergent. But by the laws of exponentiation (Lemma 4) we can
rewrite this as the geometric series

o
2(21—(])/0.
k=

0

As mentioned earlier, the geometric series >, z* converges if and
only if |z| < 1. Thus the series Y - 1/n? will converge if and only if
|2179] < 1, which happens if and only if ¢ > 1 (why? Try proving it
just using Lemma 4, and without using logarithms). (]

e In particular, the series > - 1/n (also known as the harmonic se-
ries) is divergent, as claimed earlier. However, the series > >0 1/n? is
convergent.

e (A digression: The quantity Y - 1/n9 when it converges, is called
((q), the Riemann-zeta function of q. This function is very important
in number theory, and in particular in the distribution of the primes;
there is a very famous unsolved problem regarding this function, called
the Riemann hypothesis, but to discuss it further is far beyond the
scope of this course. I will mention however that there is a US$ 1
million prize - and instant fame among all mathematicians - attached
to the solution to this problem).

X %k ok ok ok

Rearrangement of series

e One feature of finite sums is that no matter how one rearranges the
terms in a sequence, the total sum is the same. For instance,

a] + a9+ a3+ ag + a5 = a4 + a3 + a5 + a1 + as.

A more rigorous statement of this, involving bijections, has already
appeared earlier, just after Proposition 10.

e One can ask whether the same thing is true for infinite series. If all the
terms are non-negative, the answer is yes:
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e Proposition 22. Let ">  a, be a convergent series of non-negative
real numbers, and let f : N — N be a bijection. Then Y 7" asqy,) is
also convergent, and has the same sum:

D= asm)
n=0 m=0

e Proof. (Optional) We introduce the partial sums Sy := 32" a, and
Ty = an/[ 0 Gf(m)- We know that the sequences (Sy)r2, and (Th)or_,
are increasing. Write L = sup(Sy)$, and L' := sup(Tar)se_,. By
Proposition 25 from Week 3/4 notes we know that L is finite, and in
fact L =Y 7, a,; by Proposition 25 again we see that we will thus be
done as soon as we can show that L' = L.

e Fix M, and let Y be the set Y := {m € N : m < M}. Note that f is
a bijection between Y and f(Y'). By Proposition 10, we have

TM—Zafm)—Zaf Zan

meyY nef(y

The sequence (f(m))M_, is finite, hence bounded, i.e. there exists an
N such that f(m) < N for all m < N. In particular f(Y) is a subset of
{n € N : n < N}, and so by Proposition 10 again (and the assumption
that all the a,, are non-negative)

Z an < Z an=Zan=SN.

nef(Y) ne{neN:n<N} n=0

But since (Sn)¥_, has a supremum of L, we thus see that Sy < L,
and hence that Ty, < L for all M. Since L' is the least upper bound of
(Tw)$5—o, this implies that L' < L.

e A very similar argument (using the inverse f~' instead of f) shows that
every Sy is bounded above by L', and hence L < L'. Combining these
two inequalities we obtain L = L', as desired. O
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e Example We know that the series

o0

S 1/mP=1+1/4+1/9+1/16+1/25+1/36+ ...

n=1

is convergent. Thus, if we interchange every pair of terms, to obtain
1/4+1+1/16+1/9+1/36+1/25+ ...

we know that this series is also convergent, and has the same sum.

e Now we ask what happens when the series is not non-negative. Then
as long as the series is absolutely convergent, we can still do rearrange-
ments:

e Proposition 23. Let ) ~° a, be an absolutely convergent series of
real numbers, and let f : N — N be a bijection. Then Y 7" afqy) is
also absolutely convergent, and has the same sum:

D= agm
n=0 m=0

e Proof. (Optional) We apply Proposition 22 to the infinite series Y -, |a, ],
which by hypothesis is a convergent series of non-negative numbers.
If we write L := Y >° l|a,|, then by Proposition 22 we know that
> o o lagem| also converges to L.

e Now write L' := Y >° ja,. We have to show that >~  asu,) also
converges to L'. En other words, given any € > 0, we have to find an
M such that M af(m) is e-close to L' for every M' > M.

e To prove this, we use the fact that )" |a,| converges to L. In par-
ticular, by Proposition 13 we can find an N such that > 7 |a,| < &/2
for all p,¢q > N. In particular, by the triangle inequality we have
| h—pan| < €/2 for all p,¢ > N, implies that |>°° ., a,| < £/2
(why?), so by Proposition 17(c) we have that S~ _ a, is ¢/2-close to
L.
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e Now the sequence (f~'(n))N_, is finite, hence bounded, so there exists
an M such that f~!(n) < M for all 0 < n < N. In particular, for any
M' > M, the set {f(m) : m € N;m < M'} contains {n € N : n <
N}(why?). So by Proposition 10, for any M' > M

g N
> apm = > = an+ ) a
m=0 n=0

ne{f(m)meN;m<M'} nex
where X is the set
X={f(m):meN;m<M}-{neN:n<N}

The set X is finite, and is therefore bounded by some natural number
¢; we must therefore have

XC{neN:N+1<n<gq}

(why?). Thus

q
1 anl <Y anl < Y an] < /2

neX neX n=N-+1

by our choice of N. Thus Zfr/{;o af(m) is €/2-close to Y- a,, which
as mentioned before is €/2-close to L'. Thus an/ﬂzo af(m) is e-close to
L for all M' > M, as desired. O

e Surprisingly, when the series is not absolutely convergent, then the
rearrangements are very badly behaved. As an example, consider the
series

1/3—1/4+1/5—-1/6+1/T—1/8+....

This series is not absolutely convergent (why?), but is conditionally
convergent, by the alternating series test, and in fact the sum can be seen
to converge to a positive number (in fact, it converges to In(2) —1/2 =
0.193147...). Basically, the reason why the sum is positive is because
the quantities (1/3—1/4), (1/5—1/6), (1/7—1/8) are all positive, which
can then be used to show that every partial sum is positive (why? you
have to break into two cases, depending on whether there are an even
or odd number of terms in the partial sum).

27



If, however, we rearrange the series to have two negative terms to each
positive term, thus

1/3—1/4—1/6+1/5—1/8=1/10+1/7T—1/12—1/14+ ...

then the partial sums quickly become negative (this is because (1/3 —
1/4—-1/6), (1/5—1/8—1/9), and more generally (1/(2n+1)—1/4n—
1/(4n + 2)) are all negative), and so this series in fact converges to a
negative quantity (in fact, it converges to (In(2)—1)/2 = —.153426. . .).
There is in fact a surprising result of Riemann, which shows that an
absolutely divergent series can in fact be rearranged to converge to any
value (or rearranged to diverge, in fact!):

Theorem 24. Let > >°  a, be a series which is not absolutely con-
vergent, and let L be any real number. Then there exists a bijection
f N — N such that Y >°_ asum) converges conditionally to L.

Proof. (Optional) See Theorem 3.54 of the textbook. O

To summarize, rearranging series is OK when the series is absolutely
convergent, but is somewhat dangerous otherwise. (This is not to say
that rearranging an absolutely divergent series necessarily gives you the
wrong answer - in fact, physicists are often do maneuvers like this, and
still (usually) obtain a correct answer at the end - but doing so is risky,
unless it is backed by a rigorous result such as Proposition 23).

In light of Proposition 23, we can now talk about sums on countable
sets, provided that the sum is absolutely convergent.

Definition Let X be a countable set, and let f : X — R be a function.
We say that the series ) _+ f(x) is absolutely convergent iff for some
bijection g : N — X, the sum ) >, f(g(n)) is absolutely convergent.
We then define the sum of }°__ f(x) by the formula

Y f@) =) flg(n)).

From Proposition 23 (and Proposition 29 from Week 2 notes), one can
show that these definitions do not depend on the choice of g, and so
are well defined.
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e We can now use this to derive an important theorem about double
summations.

e Theorem 25. (Fubini’s theorem for infinite sums) Let f : N X
N — R be a function such that Z(n myeNxN f(n,m) is absolutely
convergent. Then we have

DO fam)= Y flm)= Y flam) =Y (Y f(n,m)).
n=0 m=0 (n,m)ENXN (m,n)eNxN m=0 n=0

e In other words, we can switch the order of infinite sums provided that the
entire sum s absolutely convergent. You should go back and compare
this with Page 4 of the Week 1 notes!

e Proof. (A sketch only; this proof is considerably more complex than
the other proofs, and is optional reading) The second equality follows
easily from Proposition 23 (and Proposition 29 in Week 2 notes). We
shall just prove the first equality, as the third is very similar (basically
one switches the role of n and m).

Let us first consider the case when f(n,m) is always non-negative (we
will deal with the general case later). Write L := Z(n,m)ENXN f(n,m);
our task is to show that >~ (3-*_, f(n,m)) converges to L.

One can easily show that >_, . cx f(n,m) < L for all finite sets X
(Why? Use a bijection g between N x N and N, and then use the fact
that g(X) is finite, hence bounded). In particular, for every n € N and
M € N we have Z%:O f(n,m) < L, which implies by Proposition 25 of
Week 3/4 notes that Y~ f(n, m) is convergent for each m. Similarly,
for any N € N and M € N we have (by Corollary 12)

SN fm)< > fnm) <L

n=0 m=0 (n,m)ex

where X is the set {(n,m) € N x N :n < N,m < M} which is finite
by Q8 of Assignment 3. Taking suprema of this as M — co we have
(by limit laws, and an induction on N)

.2 fm <L

n=0 m=0
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By Proposition 25 of Week 3/4 notes, this implies that Y >  >™>  f(n,m)

converges, and
> ) fnm<L

n=0 m=0

To finish the proof, it will suffice to show that
S fmy > £
n=0 m=0

for every € > 0 (why will this be enough? Prove by contradiction). So,
let £ > 0. By definition of L, we can then find a finite set X C N x N
such that »7, . cx f(n,m) > L —e (why?). This set, being finite,
must be contained in some set of the form Y := {(n,m) € NxN :n <
N;m < M} (why? use induction), thus by Corollary 12

ZZf"m Z f(n,m) > Z f(n,m)>L—¢

n=0 m=0 (n,m)eYy (n,m)eX
and hence
N oo N M
S fnm) > Y05 flnm) = 3 fnm) > L
n=0 m=0 n=0 m=0 n=0 m=0
as desired.

This proves the claim when the f(n, m) are all non-negative. A similar
argument works when the f(n,m) are all non-positive (in fact, one can
simply apply the result just obtained to the function —f(n,m), and
then use limit laws to remove the —. For the general case, note that
any function f(n,m) can be written (why?) as fi(n,m) + f_(n,m),
where f,(n,m) is the positive part of f(n,m) (i.e. it equals f(n,m)
when f(n,m) is positive, and 0 otherwise, and f_ is the negative part
of f(n,m) (it equals f(n, m) when f(n,m) is negative, and 0 otherwise.
It is easy to show that if Z (nm)eNxN f(n,m) is absolutely convergent,
then so is ) (mm)eNxN f+(n m) and Z (nm)eNxN /- (n,m). So now
one applies the results just obtained to f+ and to f_ and adds them
together using limit laws to obtain the result for general f. O
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X %k ok ok ok

The root and ratio tests.

Now we can state and prove the famous root and ratio tests for con-
vergence.

Theorem 26 (Root test). Let > " a, be a series of real numbers,
and let o := limsup,_, ., |a|"/™.

(a) If @ < 1, then the series Y > @, is absolutely convergent (and
hence conditionally convergent).

(b) If & > 1, then the series > .- a, is conditionally divergent (and
hence absolutely divergent).

(¢) If a =1, we do not assert any conclusion.

Proof. First suppose that &« < 1. Note that we must have o > 0,
since |a,|/™ > 0 for every n. Then we can find an ¢ > 0 such that
0 < a+¢e <1 (for instance, we can set € := (1 —«)/2). By Proposition
27(a) of Week 3/4 notes, there exists an N > m such that |a, |/ < a+e
for all n > N. In other words, we have |a,| < (a+¢)" for all n > N.
But from the geometric series we have that > - (€)™ is absolutely
convergent, since 0 < o+ < 1 (note that the fact that we start from
N is irrelevant by Proposition 10(c)). Thus by the comparison test,
we see that Y~ . a, is absolutely convergent, and thus > " a, is
absolutely convergent, by Proposition 10(c) again.

Now suppose that @ > 1. Then by Proposition 27(b) of week 3/4
notes, we see that for every N > m there exists an n > N such that
la,|'/™ > 1, and hence that |a,| > 1. In particular, (a,)>  is not
1-close to 0 for any N, and hence (a,)$2,, is not eventually 1-close to
0. In particular, (a,)2,, does not converge to zero. Thus by the zero
test, Y - a, is conditionally divergent.

When o = 1, there is nothing to prove. [l

As we shall see later, there are cases when o = 1 when the series
> ., an converges, and there are other cases when o = 1 but the
series Y~ ay, diverges.
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The root test is phrased using the limit superior, but of course if
lim,, 0 |a,|"/™ converges then the limit is the same as the limit su-
perior. Thus one can phrase the root test using the limit instead of the
limit superior, but only when the limit exists.

The root test is sometimes difficult to use; however we can replace roots
by ratios using the following lemma.

Lemma 27. Let (c,)%2,, be a sequence of positive numbers. Then we
have

c
lim inf < L <lim inf cl/” < lim sup cl/” < lim sup il

n—oo  Cp n—00 n—»00 n—oo Cn

Proof. There are three inequalities to prove here. The middle inequal-
ity follows from Proposition 27(c) from Week 3/4 notes. We shall prove
the last inequality, and leave the first one as homework.

Write L := limsup,,_, 02:1. If L = 400 then there is nothing to prove

(since x < 400 for every extended real number ), so we may assume
that L is a finite real number. (Note that L cannot equal —oo; why?).
Since “*L is always positive, we know that L > 0.

Let € > 0. By Proposition 27(a) from Week 3/4 notes, we know that
there exists an N > m such that “* < L 4 ¢ for all n > N. This
implies that ¢, 11 < ¢,(L +¢) for all n> N. By induction this implies
that

cn <en(L+e)" N foralln > N

(why?). If we write A := ¢y (L +¢) %, then we have
cn < A(L+¢e)"

and thus
C'}z/n S Al/n(L+6)

for all n > N. But we have

lim AY"(L+¢e)=L+e¢

n—oo
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by the limit laws and Lemma 6. Thus by the comparison principle
(Lemma 28 of Week 3/4 notes) we have

lim sup i/ < L +e.

n—o0

But this is true for all € > 0, so this must imply that

lim sup ¢/ < L

n—oo

(why? prove by contradiction), as desired. O
From Theorem 26 and Lemma 27 we immediately obtain

Corollary 28 (Ratio test). Let Y a, be a series of non-zero num-
bers. (The non-zero hypothesis is required so that the ratios |a,11|/|ax|
are well-defined).

(a) If limsup,,_, “TT‘” < 1, then the series > °  is absolutely con-

vergent (hence conditionally convergent).

(b) If liminf, |a2+1‘ > 1, then the series > . is conditionally di-

n‘ =m
vergent (hence absolutely divergent).

Another consequence of Lemma 27 is the following limit:
Proposition 29. We have lim,_,o, n*/" = 1.
Proof. By Lemma 27 we have

lim sup n/" <lim sup (n +1)/n=limsup 1 +1/n =1

n—0o0 n—o0 n—oQ

by Proposition 17 of Week 3/4 notes and limit laws. Similarly we have

lim inf n'/™ > lim inf (n41)/n =lim inf 1+1/n = 1.
n—00

n—o n—oQ

The claim then follows from Proposition 27(ce) of Week 3/4 notes. O

From this Proposition, we see in particular that the series Y ", 1/n
and ) o2 1/n* both verify case (c) of the ratio test (Theorem 26). But
we know from Corollary 21 that the first series is divergent, while the
second series is absolutely convergent. Thus case (c) of the ratio test
really is inconclusive.
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X %k ok ok ok

Real exponentiation

We finally return to the topic of exponentiation that we started at
the beginning of this week’s notes. We have already defined z? for all
rational ¢ and positive real numbers x, but we have not yet defined x®
when « is real. We now rectify this situation using limits (in a similar
way as to how we defined all the other standard operations on the real
numbers). First, we need a lemma:

Lemma 30. Let z > 0, and let « be a real number. Let (¢,)%; be any
sequence of rational numbers converging to a.. Then (2%)%, is also a
convergent sequence. Furthermore, if (¢},)%°, is any other sequence of
rational numbers converging to «, then (z%)% , has the same limit as
(z™)nL: ’

lim z% = lim z%.

n—oo n—oo
Proof. There are three cases: ¢ < 1, x = 1, and z > 1. The case
x =1 is rather easy (because then 7 = 1 for all rational ¢). We shall
just do the case > 1, and leave the case x < 1 (which is very similar)

to the reader.

Let us first prove that (%)%, converges. By Proposition 7 it is enough

to show that (%)%, is a Cauchy sequence.

To do this, we need to estimate the distance between % and z%; let
us say for the time being that ¢, > ¢, so that 2% > x% (since z > 1).
We have

d(:I/-'In’me) = i — pIm — pIm (:L-'In_'IW _ 1)

Since (gn)e, is a convergent sequence, it has some upper bound M;
since z > 1, we have 2% < M. Thus

d(z®™, z%) = g7 — 37| < M (g%~ — 1),

Now let ¢ > 0. We know by Lemma 6 that the sequence (z'/%)%, is
eventually ex~™-close to 1. Thus there exists some K > 1 such that

VK 1| < ex™™.
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Now since (g,)32, is convergent, it is a Cauchy sequence, and so there

is an N > 1 such that g, and g,, are 1/K-close for all n,m > N. Thus
we have

d(z®, 2%m) = gM (x99 — 1) < xM(xl/K —1) <aMex™ =¢

for every n, m > N such that g, > ¢,,. By symmetry we also have this
bound when n,m > N and ¢, < gn,. Thus the sequence (z%)  is
e-steady. Thus the sequence (z%)2° , is eventually e-steady for every
e > 0, and is thus a Cauchy sequence as desired. This proves the
convergence of (z)> .

Now we prove the second claim. It will suffice to show that

. o
lim g% % =1,
n—oo

since the claim would then follow from limit laws (since 2% = g% % z%).

Write 7, := ¢, — ¢,; by limit laws we know that (r,)%, converges to
0. We have to show that for every ¢ > 0, the sequence (z')5°, is
eventually e-close to 1. But from Lemma 6 we know that the sequence
(z'/¥)2 | is eventually e-close to 1. Since limy_,, 2~ /¥ is also equal to
1 by Lemma 6, we also know that (z~1/%)  is also eventually e-close to
1. Thus we can find a K such that z'/% and z7%/¥ are both e-close to
1. But since (7,)$2, is convergent to 0, it is eventually 1/K-close to 0,
so that eventually —1/K < r, < 1/K, and thus 2~/% < g™ < g/K.
In particular 2™ is also eventually e-close to 1 (see Proposition 2(f) of

Week 2 notes), as desired. O
We may now make the following definition.

Definition. Let z > 0 be real, and let a be a real number. We define
the quantity z® by the formula z® = lim,,_,,, 2%, where (g,)%°, is any
sequence of rational numbers converging to a.

Let us check that this definition is well-defined. First of all, given
any real number o we always have at least one sequence (g,)%; of
rational numbers converging to «, by the definition of real numbers
(and Proposition 19 of Week 3/4 notes). Secondly, given any such
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sequence (¢,)2, the limit lim,_,,, 2% exists by Lemma 30. Finally,
even though there can be multiple choices for the sequence (g,)2,,
they all give the same limit by Lemma 30 again. Thus this definition
is well-defined.

If « is not just real but rational, i.e. a = ¢ for some rational ¢, then this
definition could in principle be inconsistent with our earlier definition
of exponentiation. But in this case « is clearly the limit of the sequence
()%, so by definition 2% = lim,,_,o, 27 = z9. Thus the new definition
of exponentiation is consistent with the old one.

Proposition 31. All the results of Lemma 4, which held for rational
numbers ¢ and r, continue to hold for real numbers ¢ and r.

Proof. We demonstrate this for the identity 27" = 22" (i.e. the first
part of Lemma 4(b)); the other parts are similar and are left to the
reader. The idea is to start with Lemma 4 for rationals and then take
limits to obtain Lemma 4 for reals.

Let ¢ and r be real numbers. Then we can write ¢ = lim,,_,, g, and
r = lim, o 7, for some sequences (g,)32, and (r,)>, of rationals, by
the definition of real number (and Proposition 19 of Week 3/4 notes).
Then by limit laws, ¢ + r is the limit of (g, + 7,)2 ;. By definition of
real exponentiation, we have
29" = lim 2™,  2%= lim z%; 2" = lim 2"".
n—0o0 n—oo n—oo

But by Lemma 4(b) (applied to rational exponents) we have ™ =

2% z™ . Thus by limit laws we have 97" = z%z", as desired. The other
parts of Lemma 4 are proven similarly. O
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