Math 131AH - Week 10
Textbook pages: 120-133.
Topics covered:

The first fundamental theorem of calculus

The second fundamental theorem of calculus

Products and absolute values of Riemann integrable functions
The change of variables formula

Integration by parts
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A little more on the Riemann-Stieltjes integral

For sake of completeness, and because one of the lemmas here will be
useful later, we now give more detail on the Riemann-Stieltjes integral
than what we gave in last week’s notes. Briefly, the theory of this
integral is almost identical to that of the Riemann integral, except that
the notion of length of an interval must be replaced by a more general
version of a-length.

One of the key theorems from last week’s notes - Theorem 3, to be
precise - concerned length and partitions, and in particular showed that
[I| =3 ,cp |J| whenever P was a partition of I. We now generalize
this slightly.

Definition Let I be an generalized interval, and let o : X — R be a
function defined on some domain X which contains I. Then we define
the expression «fI] as follows. If I is a point or the empty set, we set
a[I] = 0. If I is an interval of the form [a, b], [a, b), (a, b], or (a,b), then
we set afI] = a(b) — aa). We refer to «[I] as the a-length of I.

Example Let a : R — R be the function a(z) := z?. Then «[2,3]] =
a(3)—a(2) = 9—4 = 5, while o[(—3, —2)] = —5. Meanwhile a[{2}] =0
and «off)] = 0.



Example Let o : R — R be the identity function a(z) := x. Then
a[I] = |I| for all generalized intervals I (why?) Thus the notion of
length is a special case of the notion of a-length.

We sometimes write a|? or a(x)|2=? instead of o[, b]].
We now generalize Theorem 3 as follows.

Lemma 1. Let I be a generalized interval, let o : X — R be a function
defined on some domain X which contains I, and let P be a partition

of I. Then we have
all] = alJ].
JeP

Proof. This is exactly the same as the proof of Theorem 3 in Week 9
notes, the only difference being that we must replace || with «[I], | K|
with o[K], etc. The one thing we have to check is that

oIl = a|K]+ o[l — K|

when I is [a,b], [a,b), (a,b], or (a,b), K is [c,b], [c,b), (c,b], or (c,b),
and a < ¢ < b. But this amounts to verifying the identity

a(b) — a(a) = (a(b) — a(c)) + (a(c) — a(a))
but this follows from the laws of algebra. O

We can now define a generalization of the piecewise constant integral
from last week’s notes.

Definition. Let I be a generalized interval, and let P be a partition
of I. Let o : X — R be a function defined on some domain X which
contains I, and let f : I — R be a function which is piecewise constant
with respect to P. Then we define

p.C. /[P]f do := Z cjalJ]

JeP

where c; is the constant value of f on J.



e Compare this to the definition on page 5 of Week 9 notes.
e Example. Let f :[1,3] — R be the function

. 4 when z € [152)
f(z) = { 2  when z € [2, 3],

let o : R — R be the function a(z) := 22, and let P be the partition
P :={[1,2),[2,3]}. Then

p.cC. /[P] [ da = cugaf(l,2)] + cp g2, 3]]

= 4(a(2) — a(1)) + 2(a(3) — a(2)) =4 x 3+ 2 x 5 = 22.

e Example. Let oo : R — R be the identity function «(z) := z. Then
for any generalized interval I, any partition P of I, and any function f
piecewise constant with respect to P, we have p.c. f[P] fda=np.c. f[P] f

(why?).

e By repeating the proof of Proposition 7 of Week 9 notes, we can obtain
an exact analogue of Proposition 7 in which all the integrals p.c. f[P] f

are replaced by p.c. f[P] f da. We can thus define p.c. |, ;[ da for any
piecewise constant function f: I — R and any o : X — R defined on
a domain containing 7, in analogy to before, by the formula

p.c./f da = p.c./ f da
I P

for any partition P on I with respect to which f is piecewise constant.

e Up until now we have made no assumption on «. Let us now assume
that « is monotone increasing, i.e. a(y) > a(z) whenever z,y € X are
such that y > x. This implies that (1) > 0 for all generalized intervals
in X (why?). From this one can easily verify that all the results from
Theorem 8 from last week’s notes continue to hold when the integrals
p.c. f[f are replaced by p.c. f[f da, and lengths |I| are replaced by
a-lengths «o(I).



e We can then define upper and lower Riemann-Stieltjes integrals TI fda
and [ . f da whenever f : I — R is bounded and « is defined on a

domain containing I, by the usual formulae

/ f da = inf{p.c. / g da : g is a piecewise constant function on I which majorizes f}
I I

and

/ f da = sup{p.c. / gda : g is a piecewise constant function on I which minorizes f}.
J I

We then say that f is Riemann-Stieltjes integrable on I with respect to
« if the upper and lower Riemann-Stieltjes integrals match, in which

case we set .
/fda::/fdaz/fda.
1 1 J g

e As before, when « is the identity function a(x) := z then the Riemann-
Stieltjes integral is identical to the Riemann integral; thus the Riemann-
Stieltjes integral is a generalization of the Riemann integral. (We shall
see another comparison between the two integrals a little later, in
Corollary 7). Because of this, we sometimes write [, f as [, f dz or

[, f(z) de.

e Most (but not all) of the remaining theory from Week 9 notes then can
be carried over without difficulty, replacing Riemann integrals with
Riemann-Stieltjes integrals and lengths with a-lengths. (There are a
couple results which break down; Theorem 13(g), Proposition 16, and
Proposition 17 are not necessarily true when « is discontinuous at key
places (e.g. if f and « are both discontinuous at the same point, then
| ; [ da is unlikely to be defined). Also, Theorem 14 is still true, but
one has to be careful with the proof; the problem here is that some
of the references to the length of |Ji| should remain unchanged, and
other references to the length of |Ji| should be changed to the a-length
a(Jy) - basically, all of the occurrences of |Ji| which appear inside
a summation should be replaced with «(Jy), but the rest should be
unchanged). Since we will not use Riemann-Stieltjes integrals that
much in this course, we will not go into detail into the subtleties here,
but further information can be found in the textbook.
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The two fundamental theorems of calculus

e We now have enough machinery to connect integration and differentia-
tion via the familiar fundamental theorem of calculus. Actually, there
are two such theorems, one involving the derivative of the integral, and
the other involving the integral of the derivative.

e First Fundamental Theorem of Calculus. Let a < b be real num-
bers, and let f : [a,b] — R be a Riemann integrable function. Let
F : [a,b] - R be the function

F(z) := f-

[a,z]

Then F is continuous. Furthermore, if 2o € [a,b] and f is continuous
at xo, then F is differentiable at x¢, and F”(x¢) = f (o).

e Proof. Since f is Riemann integrable, it is bounded (by definition of
Riemann integrability). Thus we have some real number M such that
—M < f(z) < M for all x € [a, b].

e Now let z < y be two elements of [a, b]. Then notice that

F(y) - F(z) = /[ e /[ =]

by Theorem 13(h) of last week’s notes. By Theorem 13(e) of last week’s
notes we thus have

/ < M =p.c. M=M(y—z)
[z,9] [z.9] [z.y]

and
/ f> —M =p.c. -M=-M(y— )
[z.9] [z.y] [z,y]

and thus
[F(y) — F(z)| < M(y — ).



This is for y > z. By interchanging x and y we thus see that
[F(y) — F(z)| < M(z —y)

when z > y. Also, we have F(y) — F(z) = 0 when z = y. Thus in all
three cases we have

|F(y) — F(z)| < M|z —y|.

Now let = € [a, b], and let (z,)32, be any sequence in [a, b] converging
to . Then we have

—M|x, — x| < F(z,) — F(z) < M|z, — x|

for each n. But —M |z, — z| and M|z, — x| both converge to 0 as
n — 00j so by the squeeze test F(x,) — F(x) converges to 0 as n — oo,
and thus lim, ,o F'(z,) = F(z). Since this is true for all sequences
Tp, € [a, b] converging to x, we thus see that F' is continuous at z. Since
x was an arbitrary element of [a, b], we thus see that F' is continuous.

Now suppose that ¢ € [a, b], and f is continuous at xy. Choose any ¢ >
0. Then by continuity, we can find a 6 > 0 such that |f(z) — f(zo)| < ¢
for all z in the generalized interval I := [zy — d, 29 + 6] N [a,b], or in
other words

flzo) —e < f(z) < f(xo) + € forall z € I.
We now show that

[F(y) — F(xo) — f(z0)(y — 20)| < €ly — 2o
for all y € I, since Proposition 12 from Weeks 7/8 notes will then imply
that F is differentiable at z, with derivative F'(zy) = f(x¢) as desired.

Now fix y € I. There are three cases. If y = xg, then F(y) — F(zq) —
f(zo)(y — zo) = 0 and so the claim is obvious. If y > x(, then

F(y) — F(z) = g

[-TO’y]



Since zg,y € I, and I is a connected set, then [z, y] is a subset of I,
and thus we have

f(wo) —e < f(x) < flwo) + ¢ for all z € [z, y],
and thus

(f (o) —€)(y — m0) < f < (f(@o) +)(y — o)

[$05y]
and so in particular

[F(y) = F(z0) = f(z0)(y — 20)| < ely — o

as desired. The case y < xg is similar and is left to the reader. [l

Example. Recall in HW7 that we constructed a monotone function
f : R — R which was discontinuous at every rational and continuous
everywhere else. This monotone function is Riemann integrable on
[0,1]. If we define F : [0,1] — R by F(z) := f[O,z] f, then F is a
continuous function which is differentiable at every irrational number.
(Tt turns out to be non-differentiable at every rational number; this can
be shown with the aid of the mean value theorem).

Very informally, the first fundamental theorem of calculus asserts that

(| D@)=f(=)

[a,z]
given a certain number of assumptions on f. Roughly, this means that
the derivative of an integral recovers the original function. Now we
show the reverse, that the integral of a derivative recovers the original
function.

Definition. Let I be a generalized interval, and let f : I — R be a
function. We say that a function F': I — R is an antiderivative of f if
F is differentiable on I and F'(z) = f(z) for all x € I.

Second Fundamental Theorem of Calculus. Let a < b be real
numbers, and let f : [a,b] — R be a Riemann integrable function. If
F :[a,b] — R is an antiderivative of f, then

f=F(b) - F(a).

[a,b]



Proof. We will use Riemann sums. The idea is to show that
U(f,P) > F(b) - F(a) = L(f,P)

for every partition P of [a,b]. The left inequality asserts that F'(b) —
F(a) is a lower bound for {U(f,P) : P is a partition of [a, b}, while
the right inequality asserts that F'(b) — F'(a) is an upper bound for
{L(f,P) : P is a partition of [a,b]}. But by Proposition 12 of last
week’s notes, this means that

f> F(b) - F(a) z/ f,

[a,b] [a,b]

but since f is assumed to be Riemann integrable, both the upper and
lower Riemann integral equal f[a . f- The claim follows.

It remains to show the bound U(f,P) > F(b) — F(a) > L(f,P). We
shall just show the first bound U(f,P) > F(b) — F'(a); the other bound

is similar.
Let P be a partition of [a, b]. From Lemma 1 we have
PO) - Fa)= Y Fl= Y FlJ)
JeP JeP:J+£0
while from definition we have
U(f,P)= > sup f(2)|J].
JeP:J+0 o€

Thus it will suffice to show that

F[J] < sup f(z)|J]

e
for all J € P (other than the empty set).

When J is a point then the claim is clear, since both sides are zero.
Now suppose that J = [c, d], (¢, d], [c, d), or (¢, d) for some ¢ < d. Then
the left-hand side is F[J] = F(d) — F(c). By the mean-value theorem,

8



this is equal to (d — ¢)F'(e) for some e € J. But since F'(e) = f(e), we
thus have

FlJ] = (d—=c)f(e) = f(e)|J| < sup f(z)J]

xeJ

as desired. O

Of course, as you are all aware, one can use the second fundamen-
tal theorem of calculus to compute integrals relatively easily, provided
that you can find an anti-derivative of the integrand f. Note that the
first fundamental theorem of calculus ensures that every continuous
Riemann integrable function has an anti-derivative. (For discontinu-
ous functions, the situation is a more complicated; we will return to
this issue in Math 131B, when we have a better notion of integral.
Also, not every function with an anti-derivative is Riemann integrable;
as an example, consider the function F' : [—1,1] — R defined by
F(z) := z%sin(1/2%) when z # 0, and F(0) := 0. Then F is dif-
ferentiable everywhere (why?), so F' has an antiderivative, but F” is
unbounded (why?), and so is not Riemann integrable.).

We now pause to mention the infamous “+C” ambiguity in anti-derivatives:

Lemma 2. Let I be a generalized interval, and let f : I — R be a
function. Let F': I — R and G : I — R be two antiderivatives of f.
Then there exists a real number C such that F(z) = G(z) + C for all
xzel.

Proof. The simplest proof is via the mean-value theorem. If I is the
empty set then the claim is trivial, so suppose that [ is non-empty. Let
H : I — R be the function H := F' — (G, then H is differentiable and
H'(z) = F'(z) — G'(z) = f(z) — f(z) = 0 for all x € I. Then if we
apply the mean-value theorem to H we see that for every z < z’ in I
there exists a y € [z, 2] such that H(z') — H(z) = H'(y)(z' — x) =0,
thus H(z) = H(z') for all =,z € [a,b]. Thus H is a constant function
(why?), and the claim follows by setting C' to be the constant value of
H on I. (One can also prove this lemma using the second Fundamental
theorem of calculus (how?), but one has to be careful since we do not
assume f to be to be Riemann integrable.) O



A little later in these notes we shall give some consequences of the
fundamental theorems of calculus.

X %k sk ok ok

Products and absolute values of Riemann integrals

We have already given two large classes of Riemann integrable func-
tions; piecewise continuous and piecewise monotone functions. For the
next few applications, we shall also need some further ways to create
Riemann integrable functions.

Theorem 3. Let I be a generalized interval, and let f : I — R and
g : I — R be a Riemann integrable function. Then the functions
max(f,g) : I — R and min(f,g) : I — R defined by max(f, g)(z) :=
max(f(x), g(x)) and min(f, g)(x) := min(f(z), g(z)) are also Riemann
integrable.

Proof. We shall just prove the claim for max(f, g), the case of min(f, g)
being similar. First note that since f and g are bounded, then max(f, g)
is also bounded.

Let ¢ > 0. Since [ = i . f, there exists a piecewise constant function
f I — R which minorizes f on I such that

fire ]

Similarly we can find a piecewise constant g : I — R which minorizes

g on I such that
/92/9_5,
I~ I

and we can find piecewise functions f, § which majorize f, g respec-

tively on I such that
/ f< / fte
I I

/§§/9+8-
I I

10

and



In particular, if » : I — R denotes the function

he=(f-f)+@—9

/h§4£.
I

On the other hand, max(f,g) is a piecewise constant function on I

we have

(why?) which minorizes max(f, g) (why?), while max(f,g) is similarly
a piecewise constant function on I which majorizes max(f, g). Thus

[mstro < [ mas(f,9) < [ maxto) < [max(7.3)

and so

0§71max(f, / max(f, g) < / max(f,g) — max(f, g)-

But we have
and similarly

and thus B
max(f(z),g(z)) < max(f(z), g(z)) + h(z).

Inserting this into the previous inequality, we obtain

0< 7 max(f,g) - 1 max(f,o) < s

To summarize, we have shown that

OS/ImaX(f,g)—l max(f, g) < 4e

I

11



for every . Since TI max(f,g) — fI max(f, g) does not depend on ¢,

we thus see that

71 max(f, g) — Z I max(f,g) =0

and hence that max(f, g) is Riemann integrable. O

Corollary 4. Let I be a generalized interval. If f : I — R is a
Riemann integrable function, then the positive part f, := max(f,0)
and the negative part f_ := min(f,0) are also Riemann integrable on
I. Also, the absolute value |f| = f, — f- is also Riemann integrable
on [.

Theorem 5. Let I be a generalized interval. If f : I — R and
g : I — R are Riemann integrable, then fg : I — R is also Riemann
integrable.

Proof. This one is a little trickier. We split f = f,+f_and g = g, +¢g_
into positive and negative parts; by Corollary 4, the functions f,, f_,
g+, g— are Riemann integrable. Since

fo=fig+ +fig +f 9+ +f g

then it suffices to show that the four individual functions f. g, frg—, f-g+, f-g—
are Riemann integrable. We will just show this for f, g,; the other three
are similar.

Since f, and g, are bounded and positive, there are M;, M, > 0 such
that
0< fi(zr) < M;and 0 < gy(z) < M,

for all x € I. Now let ¢ > 0 be arbitrary. Then, as in the proof of
Theorem 3, we can find a piecewise constant function f; minorizing f;

on I, and a piecewise constant function f, majorizing f, on I, such

that
/Iﬁ§/1f++5
[z [f-e

12

and



Note that f, may be negative at places, but we can fix this by replacing

fy by max(fy,0), since this still minorizes f (why?) and still has
integral greater than or equal to f; f1 — e (why?). So without loss of
generality we may assume that f,(x) > 0 for all z € I. Similarly we

may assume that f(z) < M, for all z € I; thus
0< fule) < folo) < Fola) < My
for all z € I.

Similar reasoning allows us to find piecewise constant g, minorizing
g+, and g1 majorizing g, such that

/ﬁ§/9++5
I I

and
/g_+2/g+—6,
I I
and
0 < g:(x) < g4 (x) < Trla) < My
for all x € I.

Notice that f, g, is piecewise constant and minorizes f, g, while f, g5
is piecewise constant and majorizes f;g,. Thus

0< 7If+g+ —1]f+g+ < /Iﬁﬁ_fjti

However, we have

fr(@)g5(2) — f1(2)g4(2) = F4(2)(F — g2) (@) + g4(2) (f+ — £+ (@)

< Mi(g5 — 94)(@) + Ma(f+ — fi())
for all x € I, and thus

0§7If+g+—llf+g+SMl/I(ﬁ_g_Jr)"‘M2/I(ﬁ_f_+)

13



< M;(2¢) + My(2e).

Again, since € was arbitrary, we can conclude that f,g, is Riemann
integrable, as before. Similar argument show that f.g_, f_g., f-g_
are Riemann integrable; combining them we obtain that fg is Riemann
integrable. U

X %k ok ok ok

Some consequences of the fundamental theorem of calculus

We can now give a number of useful consequences of the fundamental
theorems of calculus. The first is the familiar integration by parts
formula.

Integration by parts formula. Let I = [a,b], and let F': [a,b] - R
and G : [a,b] — R be differentiable functions on [a, b] such that F’ and
G' are Riemann integrable on I. Then we have

/‘FG:F@QM—HQQQ—/ FG.
[a,b]

[a,b]

Proof. Since F is differentiable on [a, b], it is continuous on the same
interval, and hence Riemann integrable (Corollary 15 of last week’s
notes), as is G. Since F’ and G’ are Riemann integrable by hypothesis,
we see that F'G' and F'G are Riemann integrable also by Theorem 5,
so both sides make sense.

Since F' and G are differentiable, then so is F'G, and we have (FG)' =
F'G+ FG'. From the second fundamental theorem of calculus we thus
have

/)F@+FG=FQMW:F@G@—F@G@,
[a,b]

and the claim follows. O

Next, we show that under certain circumstances, one can write a Riemann-

Stieltjes integral as a Riemann integral. We begin with piecewise con-
stant functions.

14



e Theorem 6. Let « : [a,b] — R be a monotone increasing function, and
suppose that « is also differentiable on [a, b], with o' being Riemann
integrable. Let f : [a,b] — R be a piecewise constant function on [a, b].
Then fo' is Riemann integrable on [a, b], and

/ f da= fa!.
[a,b] [a,b]

e Proof. Since f is piecewise constant, it is Riemann integrable, and
since o is also Riemann integrable, then fo'is Riemann integrable by
Theorem 5.

e Suppose that f is piecewise constant with respect to some partition
P of [a, b]; without loss of generality we may assume that P does not
contain the empty set. Then we have

da = p.c. da = J
f do pc/[P]f o J%)cja[]

where c¢; is the constant value of f on J. On the other hand, from
Theorem 8(h) of Week 9 notes (generalized to partitions of arbitrary
length - why is this generalization true?) we have

fo/zZ/fo/zZ/cJo/:ZcJ/o/.
[a.b] P’ P77 1P g

But by the second fundamental theorem of calculus, [, o/ = a[J], and
the claim follows. O

[a)b

e Corollary 7. Let « : [a,b] - R be a monotone increasing function,
and suppose that « is also differentiable on [a, b], with o/ being Riemann
integrable. Let f : [a,b] — R be a function which is Riemann-Stieltjes
integrable with respect to a on [a,b]. Then fao/ is Riemann integrable
on [a, b], and

f da= fa!.
[a,b] [a,b]

e Proof. Note that since f and o' are bounded, then fo' must also be
bounded. Also, since « is monotone increasing and differentable, o/ is
non-negative.

15



Let ¢ > 0. Then, we can find a piecewise constant function f majorizing
f on [a,b], and a piecewise constant function f minorizing f on [a, b],
such that

/ fda—eg/ fdag/ fdag/ f da+e.
[a,b] [a,b] [a,b] [a,b]

Applying Theorem 6, we obtain

fdoa—e< fo' < fo< fdo+e.

[a,b] [a,b] [a,b] [a,b]

Since o/ is non-negative and f minorizes f, then fo' minorizes fo.
Thus f[ b]ia’ < f[ b]fa’ (why?). Thus

fda—e< / fa.
[a,b] [a,b]

Similarly we have
fa' < fda+e.
[a,8] [a,t]
Since these statements are true for any £ > 0, we must have

fdas/ fa< | ja< | fda
] <_la,b]

[a,b [a,b] [a,b]

and the claim follows. O

Informally, Corollary 7 asserts that f da is essentially equivalent to
f ‘;—‘;dx, when « is differentiable. However, the advantage of the Riemann-
Stieltjes integral is that it still makes sense even when « is not differ-
entiable.

We now build up to the familiar change of variables formula. We first
need a preliminary lemma.

16



e Lemma 8. Let [a, b] be a closed interval, and let ¢ : [a, b] — [¢p(a), d(b)]
be a continuous monotone increasing function. Let f : [¢(a), ¢(b)] = R
be a piecewise constant function on [¢(a), #(b)]. Then fo¢ : [a,b] - R
is also piecewise constant on [a, b], and

/ fogdd— / !
[a,b] [¢(a),0(b)]

e Proof. Let P be a partition of [¢(a), #(b)] such that f is piecewise
constant with respect to P; we may assume that P does not contain
the empty set. For each J € P, let c; be the constant value of f on J,

thus
f=> cildl
/[qﬁ(a),czb(b) Z

7eP
For each generalized interval J, let ¢~*(.J) be the set ¢~!(J) := {z €
[a,b] : ¢(x) € J}. Then ¢~*(J) is connected (why?), and is thus a
generalized interval. Furthermore, c; is the constant value of f o ¢ on
¢~ (J) (why?). Thus, if we define Q := {¢~*(J) : J € P} (ignoring
the fact that Q has been used to represent the rational numbers), then

Q partitions [a, b] (why?), and f o ¢ is piecewise constant with respect
to Q (why?). Thus

foods= f fopdo="3 csplo™ ()]
[a.b] JeP
But ¢[¢(J)] = |J| (why?), and the claim follows. O
e Change of variables formula, first version. Let [a,b] be a closed
interval, and let ¢ : [a,b] — [¢(a),d(b)] be a continuous monotone
increasing function. Let f : [¢(a), #(b)] = R be a Riemann integrable

function on [¢(a), #(b)]. Then f o ¢ : [a,b] = R is Riemann-Stieltjes
integrable with respect to ¢ on [a, b], and

[ Jovds= /

e Proof. This will be obtained from Lemma 8 similarly to how Corollary
7 was obtained from Theorem 6. First observe that since f is Riemann
integrable, it is bounded, and then f o ¢ must also be bounded (why?).

17



Let ¢ > 0. Then, we can find a piecewise constant function f majorizing
f on [¢(a), ¢(b)], and a piecewise constant function f minorizing f on

[¢(a), d(b)], such that

/ f—sg/ fs/ 7s/ f+e.
[#(a),¢(b)] [¢(a),0(0)] [#(a),¢(b)] [#(a),8(b)]
Applying Lemma 8, we obtain

/" f—es/‘fo¢d¢s 7@¢d¢5/° Fie
[9(a),p(b)] [ab] [a,b] [9(a),0(b)]

Since f o ¢ is piecewise constant and minorizes f o ¢, we have

zo¢d¢s/" fodd

[a,b] L_[a,b]
while similarly we have

.Am7°¢d¢2 fodds.

Thus

/ ﬂ%é/ fodds< N¢M§/ fae
[6(a),6(6) J o 0,8 [6(a),6(0)]

Since € > 0 was arbitrary, this implies that

/‘ f< | fosds< fo¢d¢§/n f
B@o® " jap 0,8 [6(a),6(0)]

and the claim follows. O

Combining this formula with Corollary 7, one immediately obtains the
following familiar formula:

Change of variables formula, second version. Let [a,b] be a
closed interval, and let ¢ : [a,b] — [¢(a),d(b)] be a differentiable
monotone increasing function such that ¢’ is Riemann integrable. Let
f :[¢o(a), d(b)] = R be a Riemann integrable function on [¢(a), #(b)]-
Then (f o ¢)¢' : [a,b] — R is Riemann integrable on [a, b], and

‘/ (fod)d = 3
[a,b] [9(a),6(b)]
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