Problem 1. Let x be a real number, and let n, m be natural numbers. Without using any
of the exponent laws (other than the definition of exponentiation; see reference sheet), show
that "™ = g"p™

This question is somewhat similar to Q4 of HW1.

We fix n and prove by induction on m. When m = 0, we have to show that z"t0 = z"g0.

But the left-hand side is "% = z™, while the right-hand side is 2 x 1 = 2™, so we are done
when m = 0.

Now suppose inductively that we have already proven that z"t™ = z"z™; we now wish to
show znt(m++) = gngmt+  The left-hand side is z("t™++ = gnt™ x 2 by definition of
exponentiation; by induction hypothesis this is equal to (z"x™)z. Meanwhile, the right-hand
side is z"z™*T+ = z"(z™z). The two sides are thus equal thanks to the associativity of
multiplication.

(One can also proceed by inducting on n instead of m, but one then also needs to use the
fact that multiplication is commutative as well as associative).




Problem 2. Let (a,)32, be a sequence of real numbers, such that ap+4+ > a, for each
natural number n. Prove that whenever n and m are natural numbers such that n > m, then
we have a, > a,,.

This question is somewhat similar to Q4(a) of HW2.

For this problem it makes a difference which variable to induct on. Inducting on m will
lead to trouble; but inducting on n is not too bad. Here’s how that goes. Fix m, and let
P(n) be the property that “if n > m, then a,, > a,,”. The property P(0) is vacuously true
(because 0 > m is false). Now suppose inductively that P(n) is true; we need to show that
P(m + +) is true. There are three cases: n++ <m,n++=m++, and n++ > m + +.
If n + + < m then P(m + +) is again vacuously true. If n + + = m + + then we need to
show that a4+ > an, but this is true by hypothesis. If n + + > m + +, then we also have
n > m, and so by the inductive hypothesis P(n) we have a,, > a,,. But by hypothesis we
also have a,, .4 > a,, thus by transitivity of order a,; > a.,, and hence P(n + +) is also
true. Thus by induction P(n) is true for all n, and we are done.

If you are not happy with vacuously true statements, another way to proceed is as follows.
Let n > m; then n = m + b for some non-zero natural number b, and thus n = m + ¢+ + for
some natural number ¢. To prove that a, > an,, it thus suffices to show that amictt > am
for all natural numbers m and c.

Fix m; we induct on ¢. When ¢ = 0 we need to show that a,,1o++ > am, but this follows
from hypothesis since a,, 1+ > a,,. Now suppose inductively that a,,c++ > a,; we need
to show that a4 (c44)44+ > am- But by hypothesis we have a4 (c4+)+4+ > @mtct+, S0 by
transitivity of order we have a4 (c44)44 > @ as desired.

A more exotic way to prove this statement is by the well-ordering principle and contradiction.
Fix m, and let X be the set of all n such that n > m and that a, < a,,. If we can show that
X is empty, then we are done (why?). Suppose for contradiction that X is not empty. Then
by the well-ordering principle, X has a minimum element ng; thus no > m and an, < an.
Since amy+ > am, we have ng # m + +, thus ng = n + + for some n > m. But we have
Gny, = Qnt+ > ap, thus by transitivity of order a, < a,. But then this implies that n € X,
which contradicts the fact that ng is the minimum of X, since n < nyg.

It is also possible (though not so easy) to prove this problem using the principle of infinite
descent and contradiction; I’ll leave that to you as a challenge.




Problem 3. Let A and B be finite sets. Show that AUB and AN B are also finite sets, and
#(A) + #(B) = #(AUB) + #(AN B)

where #(A) denotes the number of elements in A, etc.

This question is somewhat similar to Q1 of HW3.

One way to prove this is to use Proposition 1 from week 3/4 notes. Since A and B are finite,
then AU B is finite from Proposition 1(b); since AN B is a subset of AU B, this implies that
AN B is finite by Proposition 1(c).

In what follows it may be clearer to understand what is going on by drawing a Venn diagram
(this would of course not be part of the formal proof, but definitely aids in visualization).

Note that AU B is the union of B and A\B (why?), and that A\B is a subset of A and hence
finite by Proposition 1(c). Also, B and A\B are disjoint. Thus by Proposition 1(c) we have
#(AU B) = #(B) + #(A\B).

Adding #(A N B) to both sides we have
#(AUB) +#(ANB) = #(B) + #(A\B) + #(AN B).

But the sets (A\B) and (AN B) are disjoint, and their union is A (why?), so by Proposition
1(c) again we have

#(A) = #(A\B) + #(AN B).

Combining these two equations we get the result.

A different way to proceed is by induction. Suppose A has n elements and B has m elements.
We need to show that AU B and AN B are finite, and that #(4A U B) + #(4 N B) equals
n+m.

We fix n and induct on m. First suppose that m = 0. Then B is empty, and so AUB = A
and AN B = (). Thus #(AU B) + #(AN B) = #(A) + #(0) = n + 0 as desired.

Now suppose inductively that we have already proven the claim for m, and now want to prove
it for m + +. Thus, let B be a set with m + + elements. Let x be any element of B; then by
Lemma 31 of Week 2 notes B — {z} has m elements. Write B' := B — {z}; if we apply the
induction hypothesis to B’, we see that AU B’ and AN B’ are finite, and

#(AUB)+#(ANB)=n+m.

Now we have to somehow put z back in. We know that B = B' U {z}. (Again, a Venn
diagram may be helpful to understand the proof at this point). By definition of B’ we know



that z is not an element of B’. There are two cases: either z is an element of A, or z is not
an element of A.

If z is an element of A, then A U B is the same set as A U B’ (why?), while AN B is
equal to AN B’ union {z} (why?). By Proposition 1(a) of Week 3/4 notes we thus have
#(ANB) = #(ANB')+1, while #(AUB) = #(AUB'). Substituting these into the previous
equation we obtain #(AU B) + #(AN B) =n+m + + as desired.

Now suppose z is not an element of A. Then A U B is the equal to set AU B’ union {z}
(why?), while AN B is the same set as AN B’ (why?). By Proposition 1(a) of Week 3/4 notes
we thus have #(AU B) = #(AU B’) + 1, while #(A N B) = #(A N B’). Substituting these
into the previous equation we obtain #(AU B) + #(ANB) =n + m + + as desired.




Problem 4. Let (a,)%2, be a sequence of rational numbers which is bounded. Let (b,)5,
be another sequence of rational numbers which is equivalent to (a,)22,. Show that (b,)5,
is also bounded

This question is somewhat similar to Q5 of HW2.
Note that we do not assume in this problem that (a,)32 4 or (b,)5°, are Cauchy sequences.

Since (an)22, is bounded, we know that there is a real number M such that |a,| < M for all
natural numbers n. (Note: when we say a sequence is bounded, we mean that it has both an
upper bound and a lower bound, not just one of the two). Also, since (a,)52, and (b,)32,
are equivalent, we know that they are eventually 1-close (for instance), which means that
there is a natural number N such that |a, — b,| <1 for all n > N.

If n > N, then from the triangle inequality we have
[bn] < lan| + |bn — an| = |an| + |an —bp| < M +1;

note that other permutations of the triangle inequality may not work properly because the
inequality signs may go the wrong way. To handle the case n < N, we observe that the
sequence (bn)fz_o1 is finite, hence bounded by some number M’ i.e. |b,| < M' for all n < N.
Thus if we set M" := max(M + 1, M'), then we have |b,| < M" for all natural numbers n
(in both cases n > N and n < N). Thus the sequence (b,,)%2, is bounded.

Notice that one has to deal with the case n < N separately, because the two sequences a,,
and b, are only eventually 1-close; they aren’t necessarily 1-close to start with.




Problem 5. Let E be a subset of the real numbers R, and suppose that E has a least upper
bound M which is a real number, i.e. M = sup(E). Let —E be the set

—E:={-z:z € E}.

Show that —M is the greatest lower bound of —F, i.e. —M =inf(—E).

This question is not similar to any problem in HW1-3 (though it is similar to Q8(a) on HW4).

We need to show that —M is the greatest lower bound of —FE. This requires us to do two
things. First, we must show that —M is a lower bound for —FE. Secondly, for any other lower
bound M' of —E, we must show that —M > M'.

We show the former first. Let —x be any element of —E; we have to show that —M < —z.
But we know that 2 < M since z € E (by definition of —F) and M is an upper bound for
E. Thus —M < —z as desired. (If z < M then M — z is positive or zero, hence —M — (—z)
is negative or zero, hence —M < —zx).

Now we show the latter. Let M’ be another bound of —F, thus M’ < —z for all x € E. Thus
—M' >z forall x € E,i.e. —M' is an upper bound of E. Since M is the least upper bound
of E, we thus have —M' > M, and thus M' < —M, as desired.







