Mathematics 131AH Terence Tao Final, Mar 19, 2003

Instructions: Do nine out of the 12 problems; they are all of equal value. There is plenty of working space, and a blank page at the end. On the first page you will be supplied a list of standard definitions for easy reference.

You may use any result from the textbook or notes (or from any other mathematics book); you do not need to give precise theorem numbers or page numbers (e.g. saying "by a theorem from the notes" will suffice). You are encouraged to be verbose in your proofs and explanations; a chain of equations with no explanation given may be insufficient for full credit.

You may enter in a nickname if you want your final score posted.

Good luck!

-
_

Problem 1 (10 points).
Problem 2 (10 points).
Problem 3 (10 points).
Problem 4 (10 points).
Problem 5 (10 points).
Problem 6 (10 points).
Problem 7 (10 points).
Problem 8 (10 points).
Problem 9 (10 points).
Problem 10 (10 points)
Problem 11 (10 points)
Problem 12 (10 points)
Best 9 of 12 (90 points):

Definitions

- Absolutely convergent series. Let $\sum_{n=m}^{\infty} a_n$ be a formal series of real numbers. We say that this series is *absolutely convergent* if the series $\sum_{n=m}^{\infty} |a_n|$ is convergent.
- Adherent points. Let X be a subset of \mathbf{R} , let $\varepsilon > 0$, and let $x \in \mathbf{R}$. We say that x is ε -adherent to X iff there exists a $y \in E$ which is ε -close to x. We say that x is adherent to X iff it is ε -adherent to X for every $\varepsilon > 0$.
- Bounded functions. Let X be a subset of **R**, and let $f: X \to \mathbf{R}$ be a function. We say that f is bounded if there exists a number M such that $|f(x)| \leq M$ for all $x \in X$.
- Bounded sequences. Let $(a_n)_{n=0}^{\infty}$ be a sequence of real numbers. We say this sequence is bounded if there exists a number M such that $|a_n| \leq M$ for all $n \in \mathbb{N}$.
- Closure. Let X be a subset of **R**. The *closure* of X, sometimes denoted \overline{X} is defined to be the set of all the adherent points of X.
- Connected sets. Let X be a subset of \mathbf{R} . We say that X is connected iff the following property is true: whenever x, y are elements in X such that x < y, the interval [x, y] is a subset of X (i.e. every number between x and y is also in X).
- Continuity. Let X be a subset of **R**, and let $f: X \to \mathbf{R}$ be a function. Let x_0 be an element of X. We say that f is continuous at x_0 iff we have

$$\lim_{x \to x_0; x \in X} f(x) = f(x_0).$$

We say that f is continuous on X iff f is continuous at x_0 for every $x_0 \in X$.

- Convergent series. Let $\sum_{n=m}^{\infty} a_n$ be a formal infinite series. For any integer $N \geq m$, we define the N^{th} partial sum S_N of this series to be $S_N := \sum_{n=m}^N a_n$. If the sequence $(S_N)_{n=m}^{\infty}$ converges to some limit L as $N \to \infty$, then we say that the infinite series $\sum_{n=m}^{\infty} a_n$ is convergent, and converges to L; we also write $L = \sum_{n=m}^{\infty} a_n$.
- Differentiable functions. Let X be a subset of \mathbf{R} , and let $f: X \to \mathbf{R}$ be a function. Let $x_0 \in X$ be an element of X which is also a limit point of X. If the limit

$$\lim_{x \to x_0; x \in X - \{x_0\}} \frac{f(x) - f(x_0)}{x - x_0}$$

converges to some real number L, then we say that f is differentiable at x_0 on X with derivative L, and write $f'(x_0) := L$. If f is differentiable at every element of X, we say that f is differentiable on X.

• Generalized interval. A generalized interval is a subset I of \mathbf{R} which is either an interval (i.e. a set of the form [a,b], (a,b), [a,b), or (a,b]); a point $\{a\}$; or the empty set \emptyset .

- **Length.** If I is a generalized interval, we define the *length* of I, denoted |I| as follows. If I is one of the intervals [a, b], (a, b), [a, b), or (a, b] for some real numbers a < b, then we define |I| := b a. Otherwise, if I is a point or the empty set, we define |I| = 0.
- α -Length. If I is a generalized interval and α is a monotone increasing function on a domain containing I, we define the α -length of I, denoted $\alpha[I]$ as follows. If I is one of the intervals [a, b], (a, b), [a, b), or (a, b] for some real numbers a < b, then we define $\alpha[I] := \alpha(b) \alpha(a)$. Otherwise, if I is a point or the empty set, we define |I| = 0.
- Limiting values of functions. Let X be a subset of \mathbf{R} , let $f: X \to \mathbf{R}$ be a function, let E be a subset of X, x_0 be an adherent point of E, and let E be a number. We say that f converges to E at E and write $\lim_{x\to x_0;x\in E} f(x)=E$, iff for every $\varepsilon>0$, there exists a $\delta>0$ such that $|f(x)-E|\leq \varepsilon$ for all $x\in E$ such that $|x-x_0|<\delta$.
- Majorizing/Minorizing. Let $f: X \to \mathbf{R}$ and $g: X \to \mathbf{R}$ be functions. We say that f majorizes g if $f(x) \geq g(x)$ for all $x \in X$, and f minorizes g if $f(x) \leq g(x)$ for all $x \in X$.
- Monotone increasing. Let $f: X \to \mathbf{R}$ be a function. We say that f is monotone increasing iff we have $f(y) \ge f(x)$ whenever $x, y \in X$ are such that y > x.
- Partitions. Let I be a generalized interval. A partition of I is a finite set \mathbf{P} of generalized intervals contained in I, such that every x in I lies in exactly one of the generalized intervals J in \mathbf{P} .
- **Piecewise constant functions.** Let I be a generalized interval, let $f: I \to \mathbf{R}$ be a function, and let \mathbf{P} be a partition of I. We say that f is piecewise constant with respect to \mathbf{P} if for every $J \in \mathbf{P}$, f is constant on J. We say that f is piecewise constant on I if it is piecewise constant with respect to some partition \mathbf{P} of I.
- Piecewise constant integrals. Let I be a generalized interval, and let $f: I \to \mathbf{R}$ be a function which is piecewise constant with respect to some partition \mathbf{P} of I. Then we define the piecewise constant integral $p.c. \int_I f$ of f by the formula

$$p.c.\int_I f := \sum_{J \in \mathbf{P}: J \neq \emptyset} c_J |J|,$$

where for each J we let c_J be the constant value of f on J. More generally, if α is a monotone increasing function on a domain containing I, we define

$$p.c. \int_{I} f \ d\alpha := \sum_{J \in \mathbf{P}: J \neq \emptyset} c_{J} \alpha[J].$$

• Riemann integral. Let $f: I \to \mathbf{R}$ be a bounded function defined on a generalized interval I. We define the *upper Riemann integral* $\overline{\int}_I f$ by the formula

$$\overline{\int}_I f := \inf\{p.c. \int_I g : g \text{ is a piecewise constant function on } I \text{ which majorizes } f\}$$

and the lower Riemann integral $\int_{-T} f$ by the formula

$$\underline{\int}_I f := \sup \{ p.c. \int_I g : g \text{ is a piecewise constant function on } I \text{ which minorizes } f \}.$$

If $\overline{\int}_I f = \underline{\int}_I f$, we say that f is Riemann integrable and write $\int_I f = \overline{\int}_I f = \underline{\int}_I f$.

• Riemann-Stieltjes integral. Let $f:I\to \mathbf{R}$ be a bounded function defined on a generalized interval I. We define the upper Riemann-Stieltjes integral $\overline{\int}_I f \ d\alpha$ by the formula

$$\overline{\int}_I f \, d\alpha := \inf\{p.c. \int_I g \, d\alpha : g \text{ is a piecewise constant function on } I \text{ which majorizes } f\}$$

and the lower Riemann-Stieltjes integral $\underline{\int}_I f \ d\alpha$ by the formula

$$\underline{\int}_I f \, d\alpha := \sup \{ p.c. \int_I g \, d\alpha : \text{ is a piecewise constant function on } I \text{ which minorizes } f \}.$$

If
$$\int_I f \ d\alpha = \int_I f \ d\alpha$$
, we say that f is Riemann-Stieltjes integrable and write $\int_I f \ d\alpha = \int_I f \ d\alpha$.

• Uniformly continuous functions. Let X be a subset of \mathbf{R} , and let $f: X \to \mathbf{R}$ be a function. We say that f is uniformly continuous if, for every $\varepsilon > 0$, there exists a $\delta > 0$ such that f(x) and $f(x_0)$ are ε -close whenever $x, x_0 \in X$ are two points in x are δ -close.

Problem 1. Let $f: \mathbf{R} \to \mathbf{R}$ be a differentiable function whose derivative $f': \mathbf{R} \to \mathbf{R}$ is a bounded function. Show that f is uniformly continuous. (Hint: use the mean-value theorem to get some sort of upper bound on |f(x) - f(y)| for $x, y \in \mathbf{R}$).

Since f' is bounded, there exists an M > 0 such that $|f'(z)| \leq M$ for all real numbers z.

Lemma. For any real numbers x and y, we have $|f(x) - f(y)| \le M|x - y|$.

Proof. The claim is obvious for x = y. The remaining cases are x > y and x < y; without loss of generality we may take x > y. By the mean value theorem, there exists a $z \in [x, y]$ such that $\frac{f(x)-f(y)}{x-y} = f'(z)$; taking absolute values, we obtain $\frac{|f(x)-f(y)|}{|x-y|} \le M$, and the claim follows. (Note: one can also prove this Lemma using the fundamental theorem of calculus, although this may require the additional assumption that f' is Riemann integrable).

Now let $\varepsilon > 0$. We need to find a $\delta > 0$ such that $|f(x) - f(y)| \le \varepsilon$ whenever $|x - y| \le \delta$. But if $|x - y| \le \delta$, then $|f(x) - f(y)| \le M\delta$ by the above lemma. Thus if we choose δ to equal ε/M , we see that $|f(x) - f(y)| \le \varepsilon$ whenever $|x - y| \le \delta$, as desired.

Note: one can also proceed using the equivalent sequences formulation of uniform continuity.

Problem 2. Let $\sum_{n=0}^{\infty} a_n$ be an absolutely convergent series of real numbers such that $\sum_{n=0}^{\infty} |a_n| = 0$. Show that $a_n = 0$ for every natural number n.

We prove by contradiction. Suppose that there existed a natural number n such that $a_n \neq 0$. Then $|a_n| > 0$. Then for any N > n, we have

$$\sum_{m=0}^{N} |a_m| = \sum_{m=0}^{n-1} |a_m| + |a_n| + \sum_{m=n+1}^{N} |a_m| \ge |a_n|;$$

taking limits as $N \to \infty$, we obtain

$$\sum_{m=0}^{\infty} |a_m| \ge |a_n|.$$

But this contradicts the assumption that $\sum_{n=0}^{\infty} |a_n| = 0$.

Problem 3. Let $f:[0,\infty)\to \mathbf{R}$ be a monotone decreasing function which is non-negative (i.e. $f(x)\geq 0$ for all $x\geq 0$). Suppose that there exists a number M>0 such that $\int_{[0,N]}f\leq M$ for all natural numbers N. Show that the sum $\sum_{n=1}^{\infty}f(n)$ is convergent. (Note: you may only use the integral test for this problem if you provide an explanation as to why the integral test works). Hint: what is the relationship between the sum $\sum_{n=1}^{N}f(n)$ and the integral $\int_{[0,N]}f$?

Lemma. For any natural number $N \ge 1$, we have $\sum_{n=1}^{N} f(n) \le \int_{[0,N]} f$.

Proof. First observe that $\int_{[0,N]} f = \int_{[0,N)} f$, because $\int_{\{N\}} f = 0$ (why?). Observe that the set

$$\mathbf{P} := \{[j-1,j): 1 \leq j \leq N; j \text{ is a natural number}\}$$

is a partition of [0, N) (why?). Now define the function $g : [0, N) \to \mathbf{R}$ by setting g(x) := f(j) for all $x \in [j-1,j)$ and all natural numbers $1 \le j \le N$. By construction g is piecewise constant with respect to \mathbf{P} , and minorizes f since f is monotone decreasing, so

$$\int_{[0,N)} f \ge p.c. \int_{[0,N)} g = \sum_{j=1}^{N} f(j) |[j-1,j)| = \sum_{j=1}^{N} f(j)$$

and the claim follows.

From the Lemma we see that

$$\sum_{n=1}^{N} f(n) \le M$$

for all N; in other words, the partial sums of f(n) are bounded. Since f(n) is non-negative, we thus see that $\sum_{n=1}^{N} f(n)$ is absolutely convergent.

Problem 4. Let X be a finite subset of **R**. Show that $\overline{X} = X$, i.e. the closure of X is the same set as X itself.

We have to show that every element of X is also an element of \overline{X} , and vice versa. Clearly every element of X is adherent to X (since it is 0-close to X), and so lies in \overline{X} . Now suppose, conversely, that x is an element of \overline{X} . We have to show that $x \in X$.

Suppose for contradiction that $x \notin X$. Since X is finite, it takes the form $\{x_1, x_2, \ldots, x_n\}$ for some real numbers x_1, \ldots, x_n . The numbers $x - x_j$ are non-zero for all $j = 1, \ldots, n$, so in particular $|x - x_j| > 0$ for all $j = 1, \ldots, n$. Let $|x - x_k|$ be the minimum of all the $|x - x_j|$, then $|x - x_k|$ is also positive. If we set $\varepsilon = |x - x_k|/2$, ten x is not ε -close to x_k or to any other x_j , and so x is not adherent to X, a contradiction.

An alternate way to proceed is to use induction on the cardinality of X. One way to do this is to show that if x is adherent to $X \cup \{y\}$, then either x is adherent to X or x is equal to y.

Problem 5. Let a < b be real numbers, and let $f : [a,b] \to \mathbf{R}$ be a Riemann integrable function. Let $g : [-b,-a] \to \mathbf{R}$ be defined by g(x) := f(-x). Show that g is also Riemann integrable, and $\int_{[-b,-a]} g = \int_{[a,b]} f$.

Lemma. Let I be a generalized interval, and let -I be the set $-I := \{-x : x \in I\}$. Then -I is also a generalized interval, and |-I| = |I|.

Proof. If I is a point or the empty set then this is easy to check. If I is an interval such as [a,b], (a,b), [a,b), or (a,b], then -I is an interval of the form [-b,-a], (-b,-a), (-b,-a], or [-b,-a), and has length -a-(-b)=b-a=|I|.

Lemma. Let $f:[a,b]\to \mathbf{R}$ be a piecewise constant function, and let $g:[-b,-a]\to \mathbf{R}$ be the function g(x):=f(-x). Then $p.c.\int_{[-b,-a]}g=p.c.\int_{[a,b]}f$.

Proof. Let's say that f is piecewise constant with respect to some partition \mathbf{P} of [a,b], and let's say that f has constant value c_J on each interval J on \mathbf{P} . Then p.c. $\int_{[a,b]} f = \sum_{J \in \mathbf{P}} c_J |J|$ (we may assume that \mathbf{P} does not contain the empty set interval). Since f is constant on J, g is constant on -J with the same constant value c_J . Since the intervals $\{-J: J \in \mathbf{P}\}$ partition -[a,b] = [-b,-a] (why?), we thus have (by the above Lemma)

$$p.c. \int_{[a,b]} g = \sum_{J \in \mathbf{P}} c_J |-J| = \sum_{J \in \mathbf{P}} c_J |J| = p.c. \int_{[a,b]} f$$

as desired.

Now let $f:[a,b] \to \mathbf{R}$ be a Riemann integrable function. Let $\varepsilon > 0$, then we can a piecewise constant function \overline{f} majorizing f such that

$$p.c. \int_{[a,b]} \overline{f} \le \int_{[a,b]} f + \varepsilon.$$

By the above Lemma we thus have

$$p.c. \int_{[-b,-a]} \overline{g} \le \int_{[a,b]} f + \varepsilon$$

where $\overline{g}:[-b,-a]\to \mathbf{R}$ is the function $\overline{g}(x):=\overline{f}(-x)$. Since \overline{f} majorizes f,\overline{g} majorizes g, and so

$$\overline{\int}_{[-b,-a]} g \le \int_{[a,b]} f + \varepsilon$$

A similar argument shows that

$$\underline{\int}_{[-b,-a]} g \geq \int_{[a,b]} f - \varepsilon.$$

Since the upper Riemann integral is always greater than or equal to the lower Riemann integral, we thus see that both the upper and lower Riemann integrals of g are ε -close to

 $\int_{[a,b]} f$. Since ε is arbitrary, this means that $\overline{\int}_{[-b,-a]} g = \int_{[-b,-a]} f$, and the claim follows.

(It is also possible to proceed by taking an antiderivative F of f, defining G(x) := F(-x), and then showing that G' = g and applying the fundamental theorem of calculus).

Problem 6. Let a < b be real numbers, and let $f : [a,b] \to \mathbf{R}$ be a continuous, non-negative function (so $f(x) \ge 0$ for all $x \in [a,b]$). Suppose that $\int_{[a,b]} f = 0$. Show that f(x) = 0 for all $x \in [a,b]$. (Hint: argue by contradiction).

Suppose for contradiction that there exists an $x \in [a,b]$ such that $f(x) \neq 0$; since f is nonnegative, this means that f(x) > 0. Let $\varepsilon := f(x)/2$; by continuity, we know that there exists a $\delta > 0$ such that $|f(y) - f(x)| \leq \varepsilon$ whenever $y \in [a,b]$ is such that $|y - x| < \delta$. In particular, we see that $f(y) \geq f(x)/2$ for all y in the interval $I = [x - \delta, x + \delta] \cap [a,b]$. Thus if we let $g: [a,b] \to \mathbf{R}$ be the function such that g(y) := f(x)/2 for $y \in I$, and g(y) = 0 otherwise, then g is piecewise constant minorizes f, thus $\int_I f \geq p.c. \int_I g = |I|f(x)/2 > 0$, a contradiction.

Problem 7. Let sgn : $\mathbf{R} \to \mathbf{R}$ be the function

$$\operatorname{sgn}(x) := \begin{cases} 1 & \text{when } x > 0 \\ 0 & \text{when } x = 0 \\ -1 & \text{when } x < 0. \end{cases}$$

Let $f:[-1,1] \to \mathbf{R}$ be a continuous function. Show that f is Riemann-Stieltjes integrable with respect to sgn, and $\int_{[-1,1]} f \, d\text{sgn} = 2f(0)$. (Hint: for every $\varepsilon > 0$, find piecewise constant functions majorizing and minorizing f whose Riemann-Stieltjes integral is ε -close to 2f(0)).

Since f is continuous, it is bounded on [-1,1], and so there exists an M such that $-M \le f(x) \le M$ for all $x \in [-1,1]$.

Let $\varepsilon > 0$. There exists $0 < \delta < 1$ such that f(x) is ε -close to f(0) for all $x \in [-\delta, \delta]$. Thus if we define $\overline{f} : [-1, 1] \to \mathbf{R}$ by setting $\overline{f}(x) := f(0) + \varepsilon$ for $x \in [-\delta, \delta]$, an $\overline{f}(x) := M$ on the remaining intervals $[-1, -\delta)$ and $(\delta, 1]$, then \overline{f} is piecewise constant and majorizes f. Since $[-1, -\delta)$ and $(\delta, 1]$ has sgn-length 0, and $[-\delta, \delta]$ has sgn-length 2, we have

$$p.c. \int_{[-1,1]} \overline{f} dsgn = 0 \times M + 2 \times (f(0) + \varepsilon) + 0 \times M = 2f(0) + 2\varepsilon.$$

Thus we have

$$\overline{\int}_{[-1,1]} f d \operatorname{sgn} \le 2f(0) + 2\varepsilon.$$

A similar argument gives that

$$\underline{\int_{[-1,1]} f \, d \operatorname{sgn} \ge 2f(0) - 2\varepsilon.$$

By arguing as in Question 5 we thus see that

$$\int_{-[-1,1]} f d \operatorname{sgn} = 2f(0)$$

as desired.

Problem 8. Let a < b be real numbers, and let $f : [a, b] \to \mathbf{R}$ be a monotone increasing function. Let $F : [a, b] \to \mathbf{R}$ be the function $F(x) := \int_{[a, x]} f$. Let x_0 be an element of (a, b). Show that F is differentiable at x_0 if and only of f is continuous at x_0 . (Hint: One direction is taken care of by one of the fundamental theorems of calculus. For the other, consider left and right limits of f and argue by contradiction).

Suppose for contradiction that F' is differentiable at x_0 , but f is not continuous at x_0 . Let $A := \sup\{f(x) : x \in [a, x_0)\}$, and $B := \inf\{f(x) : x \in (x_0, b]\}$. Since f is monotone increasing, then $A \le f(x_0) \le B$.

We claim that in fact A < B. To see this, suppose for contradiction that A = B, which implies $A = B = f(x_0)$. Then for any ε , there exists an $x_- \in [a, x_0)$ such that $f(x_-) > A - \varepsilon = f(x_0) - \varepsilon$, while similarly there exists $x_+ \in (x_0, b]$ such that $f(x_+) < B + \varepsilon = f(x_0) + \varepsilon$. Since f is monotone increasing, this implies that f is ε -close to $f(x_0)$ on $[x_-, x_+]$. In particular, if we set $\delta := \min(|x_0 - x_-|, |x_0 - x_+|) > 0$, then f(x) is ε -close to $f(x_0)$ when x is δ -close to x_0 . Since ε was arbitrary, we see that f is continuous at x_0 , contradiction.

Now compute left and right limits of F'. If $x > x_0$ then

$$\frac{F(x) - F(x_0)}{x - x_0} = \frac{\int_{(x_0, x]} f}{x - x_0} \ge \frac{B(x - x_0)}{x - x_0} = B,$$

and so taking limits we see that $F'(x) \geq B$. Conversely, if $x < x_0$ then

$$\frac{F(x) - F(x_0)}{x - x_0} = \frac{-\int_{[x, x_0)} f}{x - x_0} \ge \frac{-A(x_0 - x)}{x - x_0} = A,$$

and so taking limits we see that $F'(x) \leq A$. But these facts contradict the fact that A < B, obtained earlier.

Problem 9. Let I be a generalized interval, let $f: I \to \mathbf{R}$ be a Riemann integrable function, and let \mathbf{P} be a partition of I. Show that

$$\int_{I} f = \sum_{I \in \mathbf{P}} \int_{J} f.$$

The quickest proof is the following. For each J in \mathbf{P} , let $f_J: I \to \mathbf{R}$ be the function defined by setting $f_J(x) := f(x)$ for $x \in J$, and $f_J(x) = 0$ otherwise. Then (Theorem 13(g) of Week 9) we have $\int_J f = \int_I f_J$. Also, we have

$$\sum_{J \in \mathbf{P}} \int_{I} f_{J} = \int_{I} \sum_{J \in \mathbf{P}} f_{J}$$

(this follows from Theorem 13(a) of Week 9 and induction on the cardinality of **P**). But for any $x \in I$, the summands in $\sum_{J \in \mathbf{P}} f_J(x)$ are mostly zero, except for the single generalized interval $J \in \mathbf{P}$ which contains x, and on this interval $f_J(x) = f_J(x)$. Thus $\sum_{J \in \mathbf{P}} f_J(x) = f(x)$, and the claim follows.

Problem 10. Let $(a_n)_{n=0}^{\infty}$ be a sequence which is not bounded. Show that there exists a subsequence $(b_n)_{n=0}^{\infty}$ of $(a_n)_{n=0}^{\infty}$ such that $\lim_{n\to\infty} 1/b_n$ exists and is equal to zero.

Define the sequence $n_0 < n_1 < n_2 < n_3 < \dots$ as follows. Choose $n_0 := 0$. n_1 to be a natural number larger than n_0 such that $|a_{n_1}| \ge 1$; such a number exists since $(a_n)_{n=0}^{\infty}$ is unbounded. Then, choose n_2 to be a natural number larger than n_1 such that $|a_{n_2}| > 2$; again, this exists since $(a_n)_{n=0}^{\infty}$ is unbounded. Proceeding recursively in this manner, we can construct an increasing sequence n_k such that $|a_{n_k}| > k$. If we set $b_k := a_{n_k}$, then $(b_k)_{k=0}^{\infty}$ is a subsequence of $(a_n)_{n=0}^{\infty}$ and $|b_k| \ge k$ for all k. Thus $-1/k \le 1/b_k \le 1/k$ for all k, and hence $1/b_k$ converges to 0 as desired, by the squeeze test.

Problem 11. Let X be a subset of \mathbf{R} , let x_0 be an adherent point of X, and let $f: X \to \mathbf{R}$, $g: X \to \mathbf{R}$, and $h: X \to \mathbf{R}$ be functions on X such that $f(x) \leq g(x) \leq h(x)$ for all $x \in X$. Let L be a real number, and suppose that

$$\lim_{x \to x_0; x \in X} f(x) = \lim_{x \to x_0; x \in X} h(x) = L.$$

Show that $\lim_{x\to x_0;x\in X} g(x) = L$. (Note: You may only use the squeeze test for *functions* if you explain why this test works. On the other hand, the squeeze test for *sequences* is in the notes and thus may be used to help solve this problem).

Let x_n be any sequence in X converging to x_0 . We have to show that $g(x_n)$ converges to L as $n \to \infty$. But we already know that $f(x_n)$ converges to L and $h(x_n)$ converges to L. Since $f(x_n) \le g(x_n) \le h(x_n)$, the claim then follows from the squeeze test (for sequences).

Problem 12. Let a < b be real numbers, and let $\phi : [a, b] \to \mathbf{R}$ be a continuous, strictly monotone increasing function. Let \mathbf{P} be a partition of [a, b]. Let \mathbf{Q} be the set

$$\mathbf{Q} := \{ \phi(J) : J \in \mathbf{P} \}$$

where $\phi(J) := \{\phi(x) : x \in J\}$. Show that the sets $\phi(J)$ are all generalized intervals, and show that **Q** is a partition of $[\phi(a), \phi(b)]$. (Hint: for the first part, show that $\phi(J)$ is connected).

Since ϕ is continuous and strictly monotone increasing, it is invertible on $[\phi(a), \phi(b)]$ and the inverse is also continuous and strictly monotone increasing (Proposition 3 of Week 7/8 notes).

Since ϕ is continuous on [a,b], it is uniformly continuous. Since J is bounded, $\phi(J)$ is thus also bounded. Now we show that $\phi(J)$ is connected. Let x < y be elements of $\phi(J)$, then $\phi^{-1}(x) < \phi^{-1}(y)$, and $[\phi^{-1}(x), \phi^{-1}(y)]$ is a subset of $\phi(J)$. Since ϕ is continuous and strictly monotone, then $\phi([\phi^{-1}(x), \phi^{-1}(y)])$ is equal to $[\phi(\phi^{-1}(x)), \phi(\phi^{-1}(y))] = [x, y]$. Since $\phi([\phi^{-1}(x), \phi^{-1}(y)])$ is a subset of $\phi(J)$, we thus see that [x, y] is contained inside $\phi(J)$. Thus $\phi(J)$ is connected; since it was also bounded, it is thus a generalized interval.

Now we show that **Q** is a partition of $[\phi(a), \phi(b)]$. First observe that ϕ maps [a, b] to $[\phi(a), \phi(b)]$, so all the intervals $\phi(J)$ are indeed contained in $[\phi(a), \phi(b)]$. Now we need to show that every x in $[\phi(a), \phi(b)]$ is contained in exactly one interval $\phi(J)$, where $J \in \mathbf{P}$. But this is the same as saying that $\phi^{-1}(x)$ is contained in exactly one interval J in **P**. Since $\phi^{-1}(x)$ lies in [a, b], this follows from the assumption that **P** is a partition of [a, b].