Mathematics 131AH
Terence Tao
Final, Mar 19, 2003

Instructions: Do nine out of the 12 problems; they are all of equal value. There is plenty
of working space, and a blank page at the end. On the first page you will be supplied a list
of standard definitions for easy reference.

You may use any result from the textbook or notes (or from any other mathematics book); you
do not need to give precise theorem numbers or page numbers (e.g. saying “by a theorem from
the notes” will suffice). You are encouraged to be verbose in your proofs and explanations; a
chain of equations with no explanation given may be insufficient for full credit.

You may enter in a nickname if you want your final score posted.

Good luck!
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Definitions

¢ Absolutely convergent series. Let > > a, be a formal series of real numbers. We
say that this series is absolutely convergent if the series > .~ |an| is convergent.

e Adherent points. Let X be a subset of R, let £ > 0, and let x € R. We say that z is
e-adherent to X iff there exists a y € E which is e-close to z. We say that z is adherent
to X iff it is e-adherent to X for every € > 0.

e Bounded functions. Let X be a subset of R, and let f : X — R be a function. We
say that f is bounded if there exists a number M such that |f(z)| < M for all z € X.

¢ Bounded sequences. Let (a,)52, be a sequence of real numbers. We say this se-
quence is bounded if there exists a number M such that |a,| < M for all n € N.

e Closure. Let X be a subset of R. The closure of X, sometimes denoted X is defined
to be the set of all the adherent points of X.

e Connected sets. Let X be a subset of R. We say that X is connected iff the following
property is true: whenever z,y are elements in X such that = < y, the interval [z,y] is
a subset of X (i.e. every number between z and y is also in X).

e Continuity. Let X be a subset of R, and let f : X — R be a function. Let zy be an
element of X. We say that f is continuous at zq iff we have

lim _ f(z) = f(zo).

z—zo;x€EX
We say that f is continuous on X iff f is continuous at xg for every zo € X.

e Convergent series. Let Zfzm an, be a formal infinite series. For any integer N > m,
we define the N** partial sum Sn of this series to be Sy = Eg:m an. If the sequence
(SN)S2,, converges to some limit L as N — oo, then we say that the infinite series
Yoo o Gn is convergent, and converges to L; we also write L =32 ay,.

e Differentiable functions. Let X be a subset of R, and let f : X — R be a function.
Let zg € X be an element of X which is also a limit point of X. If the limit

b {@ = 1)

z—zo;e€X —{zo} xr — X

converges to some real number L, then we say that f is differentiable at xo on X with
derivative L, and write f'(xo) := L. If f is differentiable at every element of X, we say
that f is differentiable on X.

e Generalized interval. A generalized interval is a subset I of R which is either an
interval (i.e. a set of the form [a,b], (a,b), [a,b), or (a,b]); a point {a}; or the empty
set 0.



Length. If I is a generalized interval, we define the length of I, denoted |I| as follows.
If I is one of the intervals [a, b], (a,b), [a,b), or (a,b] for some real numbers a < b, then
we define |I| := b — a. Otherwise, if I is a point or the empty set, we define |I| = 0.

a-Length. If I is a generalized interval and « is a monotone increasing function on a
domain containing I, we define the a-length of I, denoted a[I] as follows. If I is one
of the intervals [a, b], (a,b), [a,b), or (a,b] for some real numbers a < b, then we define
a[I] := a(b) — a(a). Otherwise, if I is a point or the empty set, we define |I| = 0.

Limiting values of functions. Let X be a subset of R, let f : X — R be a function,
let E be a subset of X, ¢ be an adherent point of E, and let L be a number. We say
that f converges to L at ¢ in E, and write lim,_,;,.0cr f(x) = L, iff for every € > 0,
there exists a 6 > 0 such that |f(z) — L| < ¢ for all z € E such that |2 — zo| < 6.

Majorizing/Minorizing. Let f : X — R and g : X — R be functions. We say that
f majorizes g if f(x) > g(z) for all x € X, and f minorizes g if f(z) < g(z) for all
zeX.

Monotone increasing. Let f : X — R be a function. We say that f is monotone
increasing iff we have f(y) > f(z) whenever z,y € X are such that y > z.

Partitions. Let I be a generalized interval. A partition of I is a finite set P of
generalized intervals contained in I, such that every z in I lies in exactly one of the
generalized intervals J in P.

Piecewise constant functions. Let I be a generalized interval, let f : I — R be a
function, and let P be a partition of I. We say that f is piecewise constant with respect
to P if for every J € P, f is constant on J. We say that f is piecewise constant on I if
it is piecewise constant with respect to some partition P of I.

Piecewise constant integrals. Let I be a generalized interval, and let f : I — R be
a function which is piecewise constant with respect to some partition P of I. Then we
define the piecewise constant integral p.c. [; f of f by the formula

p.c./f:: Z csld|,
I JEP:J#0

where for each J we let c¢; be the constant value of f on J. More generally, if a is a
monotone increasing function on a domain containing I, we define

p.c./lf da := Z cyalJ].

JEP:J#0D

Riemann integral. Let f : I — R be a bounded function defined on a generalized
interval I. We define the upper Riemann integral [ ,f by the formula

/ f:=inf{p.c. / g : g is a piecewise constant function on I which majorizes f}
I I



and the lower Riemann integral [ ! f by the formula

/ f = sup{p.c. / g : g is a piecewise constant function on I which minorizes f}.
Jdr I

If TIf = ilf, we say that f is Riemann integrable and write [, f = TIf = i[f'

Riemann-Stieltjes integral. Let f : I -+ R be a bounded function defined on a
generalized interval I. We define the upper Riemann-Stieltjes integral [ ,f do by the
formula

/ fda :=inf{p.c. / gda : g is a piecewise constant function on I which majorizes f}
I I

and the lower Riemann-Stieltjes integral [ ; f da by the formula

/ f da := sup{p.c. / g da : is a piecewise constant function on I which minorizes f}.
Jg I

If TI fda= i " [ da, we say that f is Riemann-Stieltjes integrable and write [, f do =
I.f da:ilf da.

Uniformly continuous functions. Let X be a subset of R, and let f : X — R be
a function. We say that f is uniformly continuous if, for every £ > 0, there exists a
0 > 0 such that f(z) and f(zo) are e-close whenever x,xy € X are two points in x are
d-close.



Problem 1. Let f: R — R be a differentiable function whose derivative f' : R — R is a
bounded function. Show that f is uniformly continuous. (Hint: use the mean-value theorem
to get some sort of upper bound on |f(z) — f(y)| for z,y € R).

Since f' is bounded, there exists an M > 0 such that |f'(z)| < M for all real numbers z.
Lemma. For any real numbers z and y, we have |f(z) — f(y)| < M|z —y|.

Proof. The claim is obvious for = y. The remaining cases are z > y and z < y; without
loss of generality we may take z > y. By the mean value theorem, there exists a z € [z, y]
such that %;j(y) = f'(z); taking absolute values, we obtain W < M, and the claim
follows. (Note: one can also prove this Lemma using the fundamental theorem of calculus,
although this may require the additional assumption that f’ is Riemann integrable). O

Now let € > 0. We need to find a § > 0 such that |f(z) — f(y)| < & whenever |z —y| < J. But
if [z —y| < 4, then |f(z) — f(y)| £ Mé by the above lemma. Thus if we choose § to equal
g/M, we see that |f(z) — f(y)| < € whenever |z — y| < 4, as desired.

Note: one can also proceed using the equivalent sequences formulation of uniform continuity.




Problem 2. Let ) >° ja, be an absolutely convergent series of real numbers such that
3> o lan| = 0. Show that a,, = 0 for every natural number n.

We prove by contradiction. Suppose that there existed a natural number n such that a, # 0.
Then |ap| > 0. Then for any N > n, we have

N n—1 N
S laml = 3 laml +lanl + 3" lam| > lanl;
m=0 m=0 m=n+1

taking limits as N — oo, we obtain

oo
Z lam| > |an|-
m=0

But this contradicts the assumption that > - |a,| = 0.




Problem 3. Let f : [0,00) = R be a monotone decreasing function which is non-negative
(ie. f(z) > 0 for all z > 0). Suppose that there exists a number M > 0 such that
f[o, n) < M for all natural numbers N. Show that the sum Y02, f(n) is convergent. (Note:
you may only use the integral test for this problem if you provide an explanation as to why
the integral test works). Hint: what is the relationship between the sum Z,ILI f(n) and the
integral f[o, w7

Lemma. For any natural number N > 1, we have Zgzl fn) < f[o N I

Proof. First observe that f[o mf= f[o ny f» because /, (nvy J =0 (why?). Observe that the
set
P:={[j—1,j) : 1 <j < N;jis anatural number}

is a partition of [0, N) (why?). Now define the function g : [0, N) — R by setting g(z) := f(j)
for all z € [j — 1,7) and all natural numbers 1 < j < N. By construction g is piecewise
constant with respect to P, and minorizes f since f is monotone decreasing, so

/ [ Zpec /
[0,N) [0

and the claim follows. O

N N
9= _fDIi—15) =D f4)
V) j=1 j=1

From the Lemma we see that

for all N; in other words, the partial sums of f(n) are bounded. Since f(n) is non-negative,
we thus see that Zgzl f(n) is absolutely convergent.




Problem 4. Let X be a finite subset of R. Show that X = X, i.e. the closure of X is the
same set, as X itself

We have to show that every element of X is also an element of X, and vice versa. Clearly
every element of X is adherent to X (since it is O-close to X), and so lies in X. Now suppose,
conversely, that z is an element of X. We have to show that x € X.

Suppose for contradiction that z ¢ X. Since X is finite, it takes the form {z;,z2,...,2,}
for some real numbers z1,...,%,. The numbers  — z; are non-zero for all j =1,...,n, soin
particular | — z;| > 0 for all j = 1,...,n. Let |x — x| be the minimum of all the |z — z;],

then |z — x| is also positive. If we set € = |z — z1|/2, ten z is not e-close to z, or to any
other z;, and so z is not adherent to X, a contradiction.

An alternate way to proceed is to use induction on the cardinality of X. One way to do this
is to show that if x is adherent to X U {y}, then either z is adherent to X or z is equal to y.




Problem 5. Let a < b be real numbers, and let f : [a,b] = R be a Riemann integrable
function. Let g : [-b,—a] — R be defined by g(z) := f(—z). Show that g is also Riemann

integrable, and f[—b,—a] g= f[a’b] f

Lemma. Let I be a generalized interval, and let —I be the set —I := {—z : z € I}. Then
—1I is also a generalized interval, and | — I| = |I|.

Proof. If I is a point or the empty set then this is easy to check. If I is an interval such as
[a,b], (a,b), [a,b), or (a,b], then —I is an interval of the form [—b, —a], (=b, —a), (=b, —a], or
[-b, —a), and has length —a — (—=b) = b—a = |1|. O
Lemma. Let f : [a,b] = R be a piecewise constant function, and let g : [-b,—a] — R be

the function g(z) := f(—z). Then p.c. f[_b _q 9 = DPeC. f[a b f

Proof. Let’s say that f is piecewise constant with respect to some partition P of [a, b], and
let’s say that f has constant value ¢; on each interval J on P. Then p.c. f[a . = epcsldl

(we may assume that P does not contain the empty set interval). Since f is constant on J,
g is constant on —J with the same constant value c¢y. Since the intervals {—J : J € P}
partition —[a,b] = [—b, —a] (why?), we thus have (by the above Lemma)

p.c./ g= ZCJ|—J| CJ|J| pc/ f
[ab] JeP JEP

as desired. O

Now let f : [a,b] — R be a Riemann integrable function. Let ¢ > 0, then we can a piecewise
constant function f majorizing f such that

p.c./ < f+e.
[a,0] [a,0]

By the above Lemma we thus have

p.c./ g< f+e
[—b,—a] [a,b]

where g : [-b, —a] — R is the function g(z) := f(—=). Since f majorizes f, g majorizes g,
and so

g< f+e
[—b,—a] [a,b]

A similar argument shows that

g> f—e
[a,b

—b,—a] |

Since the upper Riemann integral is always greater than or equal to the lower Riemann
integral, we thus see that both the upper and lower Riemann integrals of g are e-close to

10



f[a b f. Since ¢ is arbitrary, this means that T[_b 9= f

Jipad = f[a,b] f, and the claim

follows.

(It is also possible to proceed by taking an antiderivative F of f, defining G(z) := F(—x),
and then showing that G' = g and applying the fundamental theorem of calculus).

11



Problem 6. Let a < b be real numbers, and let f : [a,b] — R be a continuous, non-negative
function (so f(z) > 0 for all z € [a,b]). Suppose that f[a B f = 0. Show that f(z) =0 for all

z € [a,b]. (Hint: argue by contradiction).

Suppose for contradiction that there exists an x € [a, b] such that f(z) # 0; since f is non-
negative, this means that f(z) > 0. Let ¢ := f(z)/2; by continuity, we know that there
exists a § > 0 such that |f(y) — f(z)| < € whenever y € [a,b] is such that |y —z| < 4. In
particular, we see that f(y) > f(x)/2 for all y in the interval I = [z — §,2 + 6] N [a,b]. Thus
if we let g : [a,b] = R be the function such that g(y) := f(z)/2 for y € I, and g(y) =0
otherwise, then g is piecewise constant minorizes f, thus [, f > p.c. [, 9 = |I|f(z)/2 > 0, a
contradiction.

12



Problem 7. Let sgn : R — R be the function

1 when 2 > 0
sgn(z) =< 0 when z =0
—1  whenz < 0.

Let f : [-1,1] = R be a continuous function. Show that f is Riemann-Stieltjes integrable
with respect to sgn, and f[71 1] f dsgn = 2f(0). (Hint: for every e > 0, find piecewise constant
functions majorizing and minorizing f whose Riemann-Stieltjes integral is e-close to 2f(0)).

Since f is continuous, it is bounded on [—1,1], and so there exists an M such that —M <
f(z) < M for all z € [-1,1].

Let € > 0. There exists 0 < § < 1 such that f(z) is e-close to f(0) for all z € [-4,d]. Thus
if we define f : [-1,1] = R by setting f(z) := f(0) +¢ for z € [~4,6], an f(z) := M on the
remaining intervals [—1,—d) and (d,1], then f is piecewise constant and majorizes f. Since
[-1,—4) and (4,1] has sgn-length 0, and [—d, §] has sgn-length 2, we have

p.c./ fdsgn=0xM+2x (f(0)+¢)+0x M=2f(0) + 2.
[_111]

Thus we have

f dsgn < 2f(0) + 2e.
[_171]

A similar argument gives that

f dsgn > 2f(0) — 2e.
[_lal]

|~ ~

By arguing as in Question 5 we thus see that
/ f dsgn = 2£(0)
_{7171]

as desired.

13



Problem 8. Let a < b be real numbers, and let f : [a,b] =& R be a monotone increasing
function. Let F': [a,b] = R be the function F(z) := f[a,w] f- Let xg be an element of (a,b).
Show that F is differentiable at zq if and only of f is continuous at zo. (Hint: One direction
is taken care of by one of the fundamental theorems of calculus. For the other, consider left
and right limits of f and argue by contradiction).

Suppose for contradiction that F' is differentiable at zo, but f is not continuous at z.
Let A := sup{f(z) : z € [a,z0)}, and B := inf{f(z) : ¢ € (z¢,b]}. Since f is monotone
increasing, then A < f(zo) < B.

We claim that in fact A < B. To see this, suppose for contradiction that A = B, which implies
A = B = f(zg). Then for any e, there exists an z_ € [a, %) such that f(z_) > A —¢ =
f(zo) —e, while similarly there exists 4+ € (g, b] such that f(z4+) < B4+¢& = f(x¢)+e¢. Since
f is monotone increasing, this implies that f is e-close to f(zo) on [z_,z]. In particular, if
we set § := min(|zo — z_|, |zo — z4+|) > 0, then f(xz) is e-close to f(zo) when z is d-close to
xo- Since € was arbitrary, we see that f is continuous at z¢, contradiction.

Now compute left and right limits of F'. If z > ¢ then

F(@) = F(z0) _ Jwoa)/  Bla—w0) _
X — Xo r—Tyg = T —2X

)
and so taking limits we see that F'(x) > B. Conversely, if z < xo then

F(z) = F(zo) _ ~ oo/ | —Alwo 1)

> = A,
r — X9 r — X9 r — X0

and so taking limits we see that F’'(z) < A. But these facts contradict the fact that A < B,
obtained earlier.

14



Problem 9. Let I be a generalized interval, let f : I — R be a Riemann integrable function,
and let P be a partition of I. Show that

[l

JepP

The quickest proof is the following. For each J in P, let f; : I — R be the function defined
by setting f;(z) := f(z) for z € J, and f;(z) = 0 otherwise. Then (Theorem 13(g) of Week
9) we have [, f = [} f7. Also, we have

Z/IfJ:/IZfJ

Jep JeP

(this follows from Theorem 13(a) of Week 9 and induction on the cardinality of P). But for
any z € I, the summands in ) ;_p f7(x) are mostly zero, except for the single generalized
interval J € P which contains z, and on this interval fj(z) = fs(z). Thus };cp fs(z) =
f(z), and the claim follows.

15



Problem 10. Let (a,)32, be a sequence which is not bounded. Show that there exists a
subsequence (b,)2 4 of (a,)S2 4 such that lim,,_,, 1/b, exists and is equal to zero.

Define the sequence ng < nq < ny < n3z < ... as follows. Choose ng := 0. n; to be a
natural number larger than ng such that |a,,| > 1; such a number exists since (a,)22, is
unbounded. Then, choose ns to be a natural number larger than n; such that |a,,| > 2;
again, this exists since (a, )52, is unbounded. Proceeding recursively in this manner, we can
construct an increasing sequence ny, such that |a,,| > k. If we set by := an,, then (b)32,
is a subsequence of (a,)%2 and |bg| > k for all k. Thus —1/k < 1/b, < 1/k for all k, and
hence 1/bj, converges to 0 as desired, by the squeeze test.

16



Problem 11. Let X be a subset of R, let z¢ be an adherent point of X, and let f: X — R,
g:X = R, and h: X — R be functions on X such that f(z) < g(z) < h(z) for all z € X.
Let L be a real number, and suppose that

li = 1 h(x) = L.
:c—)wlor;r;EX f(ib') :c—)wlor;l;GX (.’L')
Show that lim,_,,,.zex g(z) = L. (Note: You may only use the squeeze test for functions if
you explain why this test works. On the other hand, the squeeze test for sequences is in the
notes and thus may be used to help solve this problem).

Let z, be any sequence in X converging to zg. We have to show that g(z,) converges to L
as n — co. But we already know that f(z,) converges to L and h(z,) converges to L. Since
f(zy) < g(xy) < h(zy), the claim then follows from the squeeze test (for sequences).

17



Problem 12. Let a < b be real numbers, and let ¢ : [a,b] — R be a continuous, strictly
monotone increasing function. Let P be a partition of [a, b]. Let Q be the set

Q:={¢(J):J e P}

where ¢(J) := {¢(z) : z € J}. Show that the sets ¢(J) are all generalized intervals, and show
that Q is a partition of [¢(a), #(b)]. (Hint: for the first part, show that ¢(J) is connected).

Since ¢ is continuous and strictly monotone increasing, it is invertible on [¢(a), ¢(b)] and
the inverse is also continuous and strictly monotone increasing (Proposition 3 of Week 7/8
notes).

Since ¢ is continuous on [a,b], it is uniformly continuous. Since J is bounded, ¢(J) is
thus also bounded. Now we show that ¢(J) is connected. Let z < y be elements of ¢(.J),
then ¢~1(z) < ¢~ 1(y), and [¢p~1(x), ¢ 1(y)] is a subset of ¢(J). Since ¢ is continuous and
strictly monotone, then ([~ (z), 6~ (4)]) is equal to [p(¢~ (z)), (¢~ (y))] = [z, y]. Since
#([¢p~1(x), 91 (y)]) is a subset of ¢(J), we thus see that [z, y] is contained inside ¢(J). Thus
¢(J) is connected; since it was also bounded, it is thus a generalized interval.

Now we show that Q is a partition of [¢(a),d(b)]. First observe that ¢ maps [a,bd] to
[¢(a), #(b)], so all the intervals ¢(J) are indeed contained in [¢(a), #(b)]. Now we need to
show that every z in [¢(a), ¢(b)] is contained in exactly one interval ¢(J), where J € P. But
this is the same as saying that ¢~!(z) is contained in exactly one interval J in P. Since
¢~1(x) lies in [a, b], this follows from the assumption that P is a partition of [a, b].
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