Supplemental handout - the decimal system. (Optional reading)

e We have spent the last two weeks painstakingly constructing the basic
number systems of mathematics: the natural numbers, integers, ratio-
nals, and reals. Natural numbers were simply postulated to exist, and
to obey five axioms; the integers then came via (formal) differences of
the natural numbers; the rationals then came from (formal) quotients
of the integers, and the reals then came from (formal) limits of the
rationals.

e This is all very well and good, but it does seem somewhat alien to one’s
prior experience with these numbers. In particular, very little use was
made of the decimal system, in which the digits 0,1,2,3,4,5,6,7,8,9
are combined to represent these numbers. Indeed, except for a number
of examples which were not essential to the main construction, the only
decimals we really used were the numbers 0, 1, and 2, and the latter
two can be rewritten as 0 + + and (0 + +) + +.

e The basic reason for this is that the decimal system itself is not es-
sential to mathematics. It is very convenient for computations, and
we have grown accustomed to it thanks to a thousand years of use,
but in the history of mathematics it is actually a comparatively recent
invention. Numbers have been around for about ten thousand years
(starting from scratch marks on cave walls), but the modern Hindi-
Arabic base 10 system for representing numbers only dates from the
11th century or so. Some early civilizations relied on other bases; for
instance the Babylonians used a base 60 system (which still survives
in our time system of hours, minutes, and seconds, and in our angular
system of degrees, minutes, and seconds). And the ancient Greeks were
able to do quite advanced mathematics, despite the fact that the most
advanced number representation system available to them was the Ro-
man numeral system I, 11,111, 1V,... which was horrendous for com-
putations of even two-digit numbers. And of course modern computing
relies on binary, hexadecimal, or byte-based (base 256) arithmetic in-
stead of decimal, while analog computers such as the slide rule do not
really rely on any number representation system at all. In fact, now
that computers can do the menial work of number-crunching, there is
very little use for decimals in modern mathematics. (Indeed, we rarely



use any numbers other than one-digit numbers or one-digit fractions
(as well as e, 7, i) explicitly in modern mathematical work; any more
complicated numbers usually get called more generic names such as n).

e Nevertheless, the subject of decimals does deserve a supplemental hand-
out, because it is so integral to the way we use mathematics in our
everyday life, and also because we do want to use such notation as
3.14159... to refer to real numbers, as opposed to the far clunkier
“LIM,_,sa,, where a; = 3.1, ao := 3.14, a3 := 3.141,...”.

e We begin by reviewing how the decimal system works for the positive
integers, and then continue on to the reals.
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The decimal representation of natural numbers.

e In this section we will avoid the usual convention of abbreviating a x b
as ab, since this would mean that decimals such as 34 might be mis-
construed as 3 x 4.

e Definition. A digit is any one of the ten symbols 0,1,2,3,...,9. We
equate these digits with natural numbers by the formulae 0 = 0, 1 =
04+, 2=1+ 4+, etc. all the way up to 9 = 8+ +. We also define the
number ten by the formula ten := 9 4+ +. (We cannot use the decimal
notation 10 to denote ten yet, because that presumes knowledge of the
decimal system and would be circular).

e Definition. Let z¢,z1,...,2, be a finite sequence of numbers (real,
rational, integer, or natural). We define the sum )  z;, or more
informally xg + 1 + ... 4+ x,, by the recursive formulae

0 n++ n
E T; 1= To; E zi = ( E Ti) + Tngy-

e Definition. A positive integer decimal is any string a,a,_1...ay of
digits, where n > 0 is a natural number, and the first digit a,, is non-
zero. Thus, for instance, 3049 is a positive integer decimal, but 0493



or 0 is not. We equate each positive integer decimal with a positive
integer by the formula

n
pOp_1-..00 = E a; X ten’.
i=0

Note in particular that this definition implies that
10 =0 x ten® + 1 x ten' = ten

and thus we can write ten as the more familiar 10. Also, a single digit
integer decimal is exactly equal to that digit itself, e.g. the decimal 3
by the above definition is equal to

3=3xten’ =3

so there is no possibility of confusion between a single digit, and a single
digit decimal. (This is a subtle distinction, and not one which is worth
losing much sleep over).

Now we show that this decimal system indeed represents the positive
integers. It is clear from the definition that every positive decimal
representation gives a positive integer, since the sum consists entirely
of natural numbers, and the last term a,ten™ is non-zero by definition.

Theorem 1. Every positive integer m is equal to exactly one positive
integer decimal (which is known as the decimal representation of m).

To prove Theorem 1, we shall use a variant of the principle of induction,
known as the principle of strong induction.

Principle of strong induction Let P(m) be a property pertaining
to a positive integer m. Suppose that for each m, we have the following
implication: if P(m') is true for all positive integers m’ < m less than
m, then P(m) is also true. Then we can conclude that P(m) is true
for all positive integers m.

In other words: if you can deduce P(1) from nothing, and you can
deduce P(2) from P(1), and you can deduce P(3) from (P(1) and P(2)),
and so forth, then you can deduce P(n) for every positive integer n.
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e Proof. We use the ordinary principle of induction to prove strong
induction. For any natural number n, let Q(n) denote the property
“P(m) is true for all positive integers m which are less than or equal
to n”. Then Q(0) is (vacuously) true, because there are no positive
integers less than or equal to zero. Now suppose inductively that Q(n)
is true. Then P(m’) is true for all m' < n + +, which implies by
hypothesis that P(n++) is also true. Thus P(m/) is in fact true for all
m' < n+ +, which implies that Q(n + +) is true. Thus by induction
Q(n) is true for all natural numbers n, which clearly implies that P(m)
is true for all positive integers m. U

e Proof of Theorem 1. We prove this by strong induction. Let P(m)
denote the statement “m is equal to exactly one positive integer deci-
mal”. Suppose we already know P(m’) is true for all positive integers
m' < m; we now wish to prove P(m).

e First observe that either m > ten orm € {1,2,3,4,5,6,7,8,9}. (Thisis
easily proved by ordinary induction). Suppose first that m € {1,2,3,4,5,6,7,8,9}.
Then m clearly is equal to a positive integer decimal consisting of a sin-
gle digit, and there is only one single-digit decimal which is equal to
m. Furthermore, no decimal consisting of two or more digits can equal
m, since if a, ... ap is such a decimal (with n > 0) we have

n
Ay -..00 = E a; X ten® > a, X ten' > ten > m.
i=0

Now suppose that m > ten. Then by the Euclidean algorithm we can
write
m=sXten+r

where s is a positive integer, and r € {0,1,2,3,4,5,6,7,8,9}. Since
s<sxXten<gXten+7r=m

we can use the strong induction hypothesis and conclude that P(s) is
true. In particular, s has a decimal representation



Multiplying by ten, we see that

p
s X ten = Zbi x ten' ™ = b, ... b0,
i—0

and then adding r we see that

P
m=s xten—f—T:Zbi x ten' ™t + 71 =1b,...bor.
i=0
Thus m has at least one decimal representation. Now we need to show
that m has at most one decimal representation. Suppose for contradic-
tion that we have at least two different representations

M= ay...00 = Gy .. .0
First observe by the previous computation that
Up...09 = (Qp ...a1) X ten + ag

and

ay,...ay = (a,...ay) X ten + ag

and so after some algebra we obtain
ap — ag = (ay ...a1 —ay, ...ay) X ten.

The right-hand side is a multiple of ten, while the left-hand side lies
strictly between —ten and +ten. Thus both sides must be equal to 0.
This means that ap = aj and a,, ...a; = al, ... a}. But by the previous
arguments, we know that a, ...a; is a smaller integer than a, ... a,.
Thus by the strong induction hypothesis, the number a,, ... ay has only
one decimal representation, which means that n’ must equal n and a;

must equal a; for all ¢+ = 1,...,n. Thus the decimals a,...ay and
al,...aq are in fact identical, contradicting the assumption that they
were different. 0

Once one has decimal representation, one can then derive the usual
laws of long addition and long multiplication to connect the decimal
representation of x +y or x X y to that of x or y. We won’t do so here,
though; you might try your hand at it if you have some energy.



e Once one has decimal representation of positive integers, one can of
course represent negative integers decimally as well by using the - sign.
Finally, we let 0 be a decimal as well. This gives decimal representations
of all integers. Every rational is then the ratio of two decimals, e.g.
335/113 or —1/2, though of course there may be more than one way
to represent a rational as such a ratio, e.g. 6/4 = 3/2.

e Since ten = 10, we will now use 10 instead of ten throughout, as is
customary.
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The decimal representation of real numbers

e We need a new symbol: the decimal point “.”.

e Definition. A real decimal is any sequence of digits, and a decimal
point, arranged as
+a,...ap.0 10 o...

which is finite to the left of the decimal point (so n is a natural number),
but infinite to the right of the decimal point, where =+ is either + or —,
and ay, . .. ag is a natural number decimal (i.e. either a positive integer
decimal, or 0). This decimal is equated to the real number

N
tap ... 000103 ... = £1 X (an ... a9+ LIMy oo ¥ _a_; X 107%).

i=1
e First, we check that this definition really does give a real number:

e Lemma 2. The sequence x, xs, ... defined by

N
TN = E a_; X 10™°
i=1

gives a Cauchy sequence of rationals. Furthermore, if z := LIMy_ o2,
then
oy <z <zy+107V.



Proof. Clearly each zy is a rational number. Now let us consider the
expression |z, — z,,| where n,m > N. By symmetry we may assume
that n > m. Then

m
Ty — Ty = Z a_; X 10*",
1=n+1
(why? to rigorously prove this, one needs associativity and commuta-
tivity of addition, together with induction) and thus
m
0<z,—2, < Z 9x 107"
i=n+1
But by the geometric series formula
k
Zar’ =a(r*™ —=1)/(r = 1)
i=0
for r # 1 (this formula is easily proved by induction), we thus have
0<z, — 2, <10 =10
In particular we have

|Tn — Tpn| < 107" whenever n,m > N.

Since for any ¢ we can find an N such that 107" < e, we thus see that
(z,)32, is a Cauchy sequence, and thus has a limit z. Also, since

0<z,—a2ny <10 "foralln> N,
we see after taking limits that
0<z—zy<107V
as desired. O

Next, we show that every real number has at least one decimal repre-
sentation:



e Theorem 3. Every real number x has at least one decimal represen-
tation *a,, ...ap.0_10_9....

e Proof. We first note that + = 0 has the decimal representation
0.000.... Also, once we find a decimal representation for z, we au-
tomatically get a decimal representation for —z by changing the sign
4. Thus it suffices to prove the theorem for real numbers z.

e Let n > 0 be any natural number. From the Archimedean property we
know that there is a natural number M such that M x 10~ > z. Since
0 x 107" < z, we thus see that there must exist a natural number s,
such that s, x 107" < z and s, + + x 107" > z. (If no such natural
number existed, one could use induction to conclude that s x 107" < x
for all natural numbers s, contradicting the Archimedean property).

Now consider the sequence sg, s1, S2, . ... Since we have
Sp X 107" <z < (s, +1) x 107"
we thus have
(10 x 8,) x 107+ ) < 2 < (10 x s, + 10) x 1075,

On the other hand, we have

Snpr X 1070 < g < (544 +1) x 107FF)
and hence we have

10 X s, < Spy+ + 1 and sp44 <10 x s, + 10.
From these two inequalities we see that we have

10 X 55 < 8pypqy <10 X% 5, +9
and hence we can find a digit a,, such that
Sp++ = 10 X 55, + ay,

and hence

Sy X 1070 = g x 107" + a5, x 107,
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From this identity and induction, we can obtain the formula
n
Sp X 107" =59 + Zai x 107~
=0

By Lemma 2, the right-hand side is a Cauchy sequence in n (clearly
the addition of sy does not affect this property). Thus, taking formal
limits of both sides, we obtain

LIM, o8y X 107" = 5o + LIM,_ o0 Z a; X 107"
i=0
However, we have s, x 107" < z for all n, thus
LIM, oS, X 107" <z

(this almost, but not quite, follows from Corollary 22 of Week 2 notes
(what is the problem?); it will however follow from material in the Week
3 notes. This will not be circular since we will not use the decimal
system in the rest of the course (except as examples)). Similarly, since

Spx 107" > —-10""

one can again take limits of both sides (assuming the material from
Week 3 notes) to obtain

LIM, o8, X 107" > x.
Thus we have
&= LIM; yooSn = 50 + LIMy oo ¥ a; x 107",
i=0

Since sq already has a positive integer decimal representation by The-
orem 1, we thus see that z has a decimal representation. ]

There is however one slight flaw with the decimal system: it is possible
for one real number to have two decimal representations.



e Proposition 4. The number 1 has two different decimal representa-
tions: 1.000... and 0.999.. ..

e Proof. The representation 1 = 1.000... is clear. Now let’s compute
0.999.... By definition, this is the limit of the Cauchy sequence

0.9,0.99,0.999,0.9999, . ...

But this sequence has 1 as a formal limit, as shown in the Week 2 notes.
O

e It turns out that these are the only two decimal representations of 1;
we leave this as an exercise for the reader. In fact, as it turns out, all
real numbers have either one or two decimal representations - two if
the real is a terminating decimal, and one otherwise. We won’t prove
this, as it is a little long and boring, but you might try it yourself if
you're interested.
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