1. Solutions to HW #8

Problem #2

Using Proposition 12, if the function f is differentiable at x_0 then fix $\epsilon > 0$. Then we have the existence of a δ neighborhood of x_0 such that the estimate $|f(x) - f(x_0)| \leq M + \epsilon |x - x_0|$ if x is in the δ neighborhood. In particular we may take $\epsilon < 1$ in the estimate. Thus $|f(x) - f(x_0)| \leq (M+1)\delta$ if x is in the δ neighborhood. Thus we are done (Why?).

Problem # 5(a)

We prove that at any maximum x_0 of the differentiable function f, $f'(x_0) = 0$. We know that the left sided limit and the right sided limit of $\frac{f(x) - f(x_0)}{x - x_0}$ exist and are equal. Assume that we are given δ such that if $|x - x_0| < \delta$ then $f(x) - f(x_0) \le 0$. In this neighborhood of x_0 , $\frac{f(x) - f(x_0)}{x - x_0} \ge 0$ if $x < x_0$ and $\frac{f(x) - f(x_0)}{x - x_0} \le 0$ if $x > x_0$. But then $\lim_{x \to x_0, x > x_0} \frac{f(x) - f(x_0)}{x - x_0} \le \sup_{x > x_0, |x - x_0| < \delta} \frac{f(x) - f(x_0)}{x - x_0} \le 0$ and $\lim_{x \to x_0, x < x_0, |x - x_0| < \delta} \frac{f(x) - f(x_0)}{x - x_0} \le \inf_{x < x_0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$. So we must have $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = 0$. The proof is similar in the case that x_0 is a minimum.

Problem # 8(a) All three cases are variants of the same argument, so we present only one. Suppose that $f:[a,b]\to\mathbb{R}$ is continuous on [a,b] and differentiable on (a,b) with f'(x)>0 whenever $x\in[a,b]$. If z< w are in [a,b], then the MVT applies by previous HW problems (what is the issue here?) . We have $\frac{f(w)-f(z)}{w-z}=f'(c)>0$ with $c\in[z,w]$. As w-z>0 a little algebra implies f(w)>f(z).