1. SoruTioNs To HW5
Problem #4 parts d and e

e If ¢ > 0 then z > y iff 29 > y9.
If ¢ > 0 then ¢ = 7} m,n > 0. We have from Problem 1 that v > y%.
Also, we know that if z and w are real numbers and n > 0 is an integer, then
2" > w". Hence 2P = (z7)™ > (y=)" = yP. Conversely, suppose 27 > y9.
Asqg="m,n>0z™ = (29)" > (y?)" = y™ But then another application
of problem one gives. ©

e If £ > 1 then z? > z" iff ¢ > r and opposite for z < 1. The case z < 1 follows
from the first case (why?). If ¢ > r then ¢ — r > 0. Thus by the previous,
297" > 1 and since z" > 0 2?7 > z". Conversely, we must show that if z > 1
and 77" > 1,a = g—r > 0. We may assume that a = % with ¢ > 0. Suppose
for a contradiction that b < 0 (Note that b # 0). If z > 1 then 1 > L so that

1> (1)~ or 1 > z*. But then 1 > (z%) by the assumption we made above.
That is we have shown that 1 > 297", contrary to the hypothesis. ¢

Problem #6

o A:If 3°°  a; converges, this means that the partial sums Sy, converge. Thus
the sequence {S;} is Cauchy. Fix € > 0. Choose N so large that the sequence
{Sk}k>n} is € steady. Then, if p> g > N, € > |S, — S| = | Xi_, ail, where
we have used the sum operations proved earlier in the HW, and with this we
are done. Conversely, using that |S, —S,| = | 33i_, ai], the hypothesis implies
that our sequence of partial sums is Cauchy. The BIG THEOREM tells us
that {Sk} therefore converges to some L. o

e B:|ay| =|Sp—Sn—1|. Thus {S;} convergent implies {S;} Cauchy. Thus given
€ > 0, there exists an N such that |S, — Sy| < € for p,¢ > N. But then by
the remark above, |a,| < eifn > N. ¢

e C: Suppose Y o a; is absolutely convergent. Then by A, given € > 0, there
exists N such that if p > ¢ > N, [S, = Sy < 3°7_ |ai| < €, with the first
inequality a result of lemma 8. Again using lemma 8, |Si| < >0 |a;| <
Yoo lailk < n. Thus given e, |> oo, a; < [Sk|+€ < 32 |ai| +eif kis
large enough. | Y7 a; < Yoo |a;| + € for € arbitrary, and we are done. ©

Problem # 10 The second statement follows from the first by problem 6,

so we prove the > ° n%z™ is absolutely convergent provided |z| < 1. Now,
limsup [*2+| = |z|limsup|(1 + ;)7. 1+ 5 converges to 1, so it suffices to

show (1 + %)’1 converges to 1. First suppose that ¢ = Zp,s > 0. We have

1< @1+ %)l <1+ % So if p = 1, we apply the squeeze theorem. If not

then the above inequalities give 1 < (1 + %)E < (14 L1)P. So the squeeze theorem
can be applied if (1+ %)p converges to 1. We prove this by induction, the case p =0
obvious. Suppose the assertion is true for p = k, then (1+ 2)P*1 = (1+1)P(1+ 1),
But now limit laws tell us that lim,(1 4+ 2)P*! = 1. For the general case of a
positive real number a, 1 < (14+1)* < (1+ 1)? whenever a < p. But then another
application of the squeeze theorem gives the result. The proof if ¢ < 0 similar,
using that ﬁ%— also converges to one. ¢



