1. Solutions to HW5

Problem #4 parts d and e

- If q>0 then x>y iff $x^q>y^q$. If q>0 then $q=\frac{m}{n}$ m,n>0. We have from Problem 1 that $x^{\frac{1}{n}}>y^{\frac{1}{n}}$. Also, we know that if z and w are real numbers and n>0 is an integer, then $z^n>w^n$. Hence $x^p=(x^{\frac{1}{n}})^m>(y^{\frac{1}{n}})^n=y^p$. Conversely, suppose $x^q>y^q$. As $q=\frac{m}{n}$ m,n>0 $x^m=(x^q)^n>(y^q)^n=y^m$ But then another application of problem one gives. \diamond
- If x>1 then $x^q>x^r$ iff q>r and opposite for x<1. The case x<1 follows from the first case (why?). If q>r then q-r>0. Thus by the previous, $x^{q-r}>1$ and since $x^r>0$ $x^q>x^r$. Conversely, we must show that if x>1 and $x^{q-r}>1$, a=q-r>0. We may assume that $a=\frac{b}{c}$ with c>0. Suppose for a contradiction that b<0 (Note that $b\neq 0$). If x>1 then $1>\frac{1}{x}$ so that $1>(\frac{1}{x})^{-b}$, or $1>x^b$. But then $1>(x^b)^{\frac{1}{n}}$ by the assumption we made above. That is we have shown that $1>x^{q-r}$, contrary to the hypothesis. \diamond

Problem #6

- A: If $\sum_{i=m}^{\infty} a_i$ converges, this means that the partial sums S_k converge. Thus the sequence $\{S_k\}_{k\geq N}$ is Cauchy. Fix $\epsilon>0$. Choose N so large that the sequence $\{S_k\}_{k\geq N}\}$ is ϵ steady. Then, if $p\geq q\geq N$, $\epsilon>|S_p-S_q|=|\sum_{i=q}^p a_i|$, where we have used the sum operations proved earlier in the HW, and with this we are done. Conversely, using that $|S_p-S_q|=|\sum_{i=q}^p a_i|$, the hypothesis implies that our sequence of partial sums is Cauchy. The BIG THEOREM tells us that $\{S_k\}$ therefore converges to some L. \diamond
- B: $|a_n| = |S_n S_{n-1}|$. Thus $\{S_i\}$ convergent implies $\{S_i\}$ Cauchy. Thus given $\epsilon > 0$, there exists an N such that $|S_p S_q| < \epsilon$ for p, q > N. But then by the remark above, $|a_n| < \epsilon$ if n > N.
- C: Suppose $\sum_{i=m}^{\infty} a_i$ is absolutely convergent. Then by A, given $\epsilon > 0$, there exists N such that if $p > q \ge N$, $|S_p S_q| \le \sum_{i=q}^p |a_i| < \epsilon$, with the first inequality a result of lemma 8. Again using lemma 8, $|S_k| \le \sum_{i=m}^n |a_i| \le \sum_{i=m}^\infty |a_i| k \le n$. Thus given ϵ , $|\sum_{i=m}^\infty a_i \le |S_k| + \epsilon \le \sum_{i=m}^\infty |a_i| + \epsilon$ if k is large enough. $|\sum_{i=m}^\infty a_i \le \sum_{i=m}^\infty |a_i| + \epsilon$ for ϵ arbitrary, and we are done. \diamond

Problem # 10 The second statement follows from the first by problem 6, so we prove the $\sum_{n=1}^{\infty} n^q x^n$ is absolutely convergent provided |x| < 1. Now, $\limsup |\frac{a_{n+1}}{a_n}| = |x| \limsup |(1+\frac{1}{n})^q|$. $1+\frac{1}{n}$ converges to 1, so it suffices to show $(1+\frac{1}{n})^q$ converges to 1. First suppose that $q=\frac{p}{s}p, s>0$. We have $1<(1+\frac{1}{n})^{\frac{1}{s}}<1+\frac{1}{n}$. So if p=1, we apply the squeeze theorem. If not then the above inequalities give $1<(1+\frac{1}{n})^{\frac{p}{s}}<(1+\frac{1}{n})^p$. So the squeeze theorem can be applied if $(1+\frac{1}{n})^p$ converges to 1. We prove this by induction, the case p=0 obvious. Suppose the assertion is true for p=k, then $(1+\frac{1}{n})^{p+1}=(1+\frac{1}{n})^p(1+\frac{1}{n})$. But now limit laws tell us that $\lim_n (1+\frac{1}{n})^{p+1}=1$. For the general case of a positive real number $\alpha, 1<(1+\frac{1}{n})^{\alpha}<(1+\frac{1}{n})^p$ whenever $\alpha< p$. But then another application of the squeeze theorem gives the result. The proof if q<0 similar, using that $\frac{1}{1+\frac{1}{n}}$ also converges to one. \diamond

1