1. SoruTioNs TO HW3

Problem #8

There are at least two ways to do this problem; a direct induction or the more
elegant use of the Fuclidean algorithm. We present the latter. We wish to exhibit
a bijection between the numbers {0,... ,nm — 1}. Given any number ¢ < nm — 1,
the Euclidean algorithm gives ¢ = pm + r with 0 < r < m and this representation
is unique. If X has cardinality n and Y has m, given by the bijections f and g
respectively, then we will use these to create a bijection h onto X x Y. Note that
we take f (g) to have domain {0,...,n — 1(m —1)}.

S.o0,let ¢ € {0,... ,nm — 1}, ¢ = pm + r. Define h(q) to be (f(p), g(r). Unique-
ness of the representation of q gives that this is well defined. h is one to one since
h(q) = h(¢') implies f(p) = f(p') and g(r) = g(r'). As f and g are one to one,
p=p and r =7, so ¢ = ¢'. Finally, given (z,y) € X x Y, since f and g are onto
there exist t € {0,...,n— 1} and z € {0,... ,m — 1} with f(¢) = z and g(z) = y.
So h(tm + z) = (z,y). ©

Problem # 9

Suppose X and Y are nonempty and for definiteness, X is uncountable. Then there
exists a bijection from X into X xY given by z — (z,y) withy € Y fixed. If X xY
is countable then a HW problem tells us this image is at most countable, and hence
X is at most countable, a contradiction. Therefore, X x Y is uncountable.

C. onversely, If X xY is uncountable, then if X and Y were both at most countable
would imply, through various HW problems, that X x Y would also be at most
countable. Therefore either X or Y are at most countable. ¢

Problem # 10
Suppose for a contradiction that that R \ Q is countable. Then R is countable,
being the union of two countable sets. But this contradicts Cantor’s Theorem that
R is uncountable. ¢

2. SOLUTIONS TO HW # 4

Problem # 5
{a,} is a sequence, increasing in n, that is bounded above by M finite. By the
definition of L = sup{a,} L < M. In particular, L is finite. Fix ¢ > 0 and con-
sider L — e. By definition of L this is no longer an upper bound, so there exists N
such that L — € < ay < L. But {a,} is increasing and L is the supremum imply
L—-—e<a, <LVn > N. e was chosen arbitrarily, so our sequence is eventually €
close to its sup for any € > 0. ¢

Problem #7 cdef

When doing these types of problems (multiple parts) usually one can use previously

proved results to build up to new results.
e Let Ak = inf{an}nzk and Bk = sup{an}nzk. Then Ak S Bk, Ak are in-
creasing (why?) and By are decreasing in k. Clearly, A, = inf{a,} <
A < sup A = liminf{a,} and similarly for the Bj’s, so we must show
liminf{a,} < limsup{a,}. Now for all n > k we have 4; < A, < B,.
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Thus Ay < BpVn,k (Why?). So first taking the supremum over k in this
inequality, liminfa, < B;,,Vm and then taking the infemum over m gives
liminf a,, <limsupa,. ¢

If ¢ is a limit point of the sequence, then Ve > 0 and VNN there exists n > N
such that A, —e¢ < ¢ < B, + ¢ (Why?). This means liminfa, —e¢ < ¢ <
lim sup a,, + € (Again, I have skipped a small step, How?). As € is arbitrary,
we are done. ©

We use (b) for this one. Given € > 0 VN, there exists n > N such that
Lt — ¢ <a, < L*. Note that since LT is finite, LT — € # L*. But this says
that Ve > 0 the sequence {a,} is continually € steady. Similarly for L~. o

If a,, converges to ¢ then we know a,, is Cauchy and hence bounded. Therefore,
L~ and L% are finite, and hence limit points. But {a,} has only one limit
point. So L= =c¢=L*t.

C. onversely, L~ = ¢ = LT , then given € > 0 we have the existence of N
large enough that L™ —e < a, < Lt +e¢. So Ve > 0, {a,} is eventually € close
to c.



