Problem 1. Let (X,dx) and (Y,dy) be metric spaces. Suppose that there is a bijection
f+X — Y such that

%dem,xg) < dy (f(21), f(22)) < 10dx (21, 2)

for all z1,22 € X.
Show that if X is complete, then Y must also be complete.

[A function f: X — Y is a bijection if it is one-to-one and onto. Equivalently, a function
f: X — Y is a bijection if it has an inverse f~': Y — X].

Solution: Let {y,} be a Cauchy sequence in Y. We have to show that {y,} converges in Y.

e Step 0: Define the sequence {z,} in X by z, = f~1(yn).

Here we are using the fact that f is invertible, so f~1 : Y — X is well defined.

e Step 1: Since {y,} is Cauchy, {x,} is Cauchy.
Proof: Let £ > 0. Since {y,} is Cauchy, we can find an N > 0 such that dy (Yn, ym) <
e/10 for all n,m > N. Since y, = f(x,) and ¥, = f(z,), we thus see from the
hypothesis that dx (2, xm) < € for all n,m > N. Thus z,, is Cauchy.

e Step 2: Since {x,} is Cauchy, {z,} converges.

This is just because X is complete.

e Step 3: Since {z,} converges, {y,} converges.

Proof: Let x,, converge to x. Then d(x,,x) — 0 as n — oo. From hypothesis, we thus
have d(f(zn), f(x)) — 0 as n — 00, 80 d(yn, f(x)) — 0 as n — co. Thus, y, converges.

Many of you got these steps reversed or otherwise out of order.



Problem 2. Let (X, d) be a metric space, and let f: X — R and g : X — R be continuous
functions from X to the real line R. Let R? be the plane with the Euclidean metric, and let
h : X — R? be the function

Show that h is continuous

Solution A (using sequential definition of continuity): Let {z,} be a sequence in X such that
xn, — x as n — o0o. We have to show that h(z,) — h(z) as n — .

Since f, g are continuous, f(z,) — f(z) and g(z,) — g(x) as n — co. Thus

lim | (wn) ~ ()] = lim_lg(ea) — g(r)| = 0.

n—oo

Squaring both sides and adding, then taking square roots, we get

Jim /17 (en) = F@)P + lgwn) = g() =0,

so (since we are using the Euclidean metric)

lim |h(z,) — h(x)| = 0.

Thus h(z,) — h(z) as desired.

Solution B (using epsilon-delta definition of continuity): Let € X and ¢ > 0. We have to
find a 6 > 0 such that h(B(x,d)) C B(h(z),e).

Since f is continuous, we can find a d; such that f(B(x,d1)) C B(f(x),e/2). Similarly we
can find a d3 such that g(B(z,d2)) C B(g(x),e/2).

Now let ¢ be the minimum of ¢; and d2. We claim that h(B(z,d)) C B(h(x),¢).

To see this, let y € B(x,d). Then y € B(x, 1) and y € B(z,d2), so f(y) € B(f(x),e/2) and
9(y) € Blg(x),¢/2). So |f(y) = f(x)| <&/2 and |g(y) — g(=)] < /2.

Since

Ih(y) — h(x)| = VI f(y) — f@)]2+ |g9(y) — g(x)]?
|h(y) — h(z)] < v/e?/d+e?/d< e

so h(y) € B(h(z),e) as desired.

we thus have

One can also use the inverse-image-of-open-sets definition of continuity, but it is somewhat
cumbersome.



Problem 3.

Let X be a Banach space, and let T': X — X be a bounded linear operator on X such that
IT|l < 1. Let zo be an element of X. Show that there exists a unique x € X such that

r=x0+Tx.

(Hint: use the contraction principle).

Let ® : X — X denote the map

O(x) =20+ Tx.

The problem can be rephrased as that of showing that ® has exactly one fixed point. Since
X is a Banach space, it is complete, so it suffices to show that ® is a contraction.

To verify this, we compute:
[@(z) — 2(y)|| = l(zo + Tx) — (zo + Ty)|| = [Tz — Tyl

=17 (z =) < TNz —yll = cllz -yl

where ¢ = ||T||. Since ¢ doesn’t depend on z or y and 0 < ¢ < 1 by hypothesis, ® is thus a
contraction.

Note: It is also true that T is a contraction, and many of you proved this. However, this fact
is not directly helpful to the problem.



Problem 4. Let (X, d) be a metric space, and E be a subset of X. Show that the boundary
OF of F is closed in X.

[The boundary OF of E is defined to be the set of all points which are adherent to both E
and the complement E¢ of F.]

Solution A: Since 9E = E'N E¢, and the closure of any set is closed, F is the intersection of
two closed sets. Since the intersection of any collection of closed sets is closed, OF is therefore
closed.

Solution B: Let x be adherent to dE. Thus for every r > 0, the ball B(x,r) must contain
some element, say y, in OE. Now define s = r — d(z,y), so B(y, s) is contained in B(z,r).
Since y is in the boundary of E, it is adherent to both E and E€, so B(y, s) contains elements
from both E and E°. Hence B(z,r) also contains elements from both E and E°.



Problem 5. Let (X,d) be a metric space, and let E be a subset of X. Show that if F is
compact, then it must be closed in X.

Solution A (using complete/totally bounded characterization of compactness): Since E is
compact, it is complete. Now suppose that x € X is adherent to E. Then there exists a
sequence x, in F which converges to x. Since convergent sequences are Cauchy, x,, must be
a Cauchy sequence. Since F is complete, x,, must converge to a point in F. Since a sequence
cannot converge to more than one point, x must be in . Thus F contains all its adherent
points and so it is closed.

Solution B (using convergent subsequence characterization of compactness): Suppose that
x € X is adherent to E. Then there exists a sequence z,, in E which converges to . Since £
is compact, there is a subsequence x,,, Zn,, ... which converges in E. Since z,, converges to
x, the subsequence must also converge to x. Since a sequence cannot converge to more than
one point,  must be in . Thus E contains all its adherent points.

Solution C (using open cover characterization of compactness): Suppose that z € X is
adherent to E, but that « ¢ E. Consider the sets V,, = {y € X : d(z,y) > 1/n} for
n =1,2,3,.... Each of these sets is open. Since = ¢ E, the sets V,, cover E, because every
element y in E is distinct from z and so we must have d(z,y) > 1/n for at least one integer
n. Since E is compact, it can be covered by finitely many V,,:

EcV, UV, U...UV,,.
Let N = max(ni,na,...,ng). Clearly
Via UV, U UV, ={y € X :d(z,y) > 1/N}.

Thus for every y € E, d(x,y) > 1/N. This contradicts the assumption that « is adherent to
E.






