
Problem 1. Let l∞ be the space of all bounded sequences of real numbers (xn)∞n=1, with
the sup norm

‖x‖∞ =
∞

sup
n=1

|xn|.

Show that (l∞, ‖‖∞) is a Banach space. (You may assume that this space satisfies the
conditions for a normed vector space).

Solution. Since we are given that this space is already a normed vector space, the only thing
left to verify is that (l∞, ‖‖∞) is complete.

Let x1, x2, . . . be a Cauchy sequence in l∞. (Note that each element xn of this sequence is
an element of l∞, so each xn is itself a sequence, say

xn = (xn
1 , xn

2 , . . .).

That’s why I’m using superscripts here instead of subscripts.)

We have to find an element x in l∞ such that xn converges to x.

Let ε > 0. Because xn is a Cauchy sequence, we see that there exists an N > 0 such that

‖xn − xm‖∞ < ε

for all n, m > N . Thus
∞

sup
k=1

|xn
k − xm

k | < ε

for all n, m > N . In particular, we have

|xn
k − xm

k |

for all k and all n, m > N .

This means that for each k, the sequence

x1
k, x2

k, . . .

is a Cauchy sequence in R. Since R is complete, we thus have a limit, call it xk:

lim
n→∞

xn
k = xk.

Let x denote the sequence x = (x1, x2, . . .).

We’d like to show that xn converges to x. Choose an ε > 0. By replacing ε with ε/2 in the
previous discussion, we can find an N > 0 such that

|xn
k − xm

k | < ε/2



for all k and all n, m > N . Taking limits as m → ∞, we obtain

|xn
k − xk| ≤ ε/2

for all k and all n > N . Taking supremum in k, we obtain

∞

sup
k=1

|xn
k − xk| ≤ ε/2

for all n > N . In other words,
‖xn − x‖∞ ≤ ε/2 < ε

for all n > N . This implies that xn converges to x, and we are done.
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Problem 2. Let (an)∞n=1 be a bounded sequence of real numbers. Prove that there exists a
bounded sequence (bn)∞n=1 such that

bn−1 + 4bn + bn+1 = an (∗)

for all n = 1, 2, . . ., where we take b0 to equal 0. [You may assume the result of Problem 1].

Hint: Use the Contraction Mapping theorem. You may need to rewrite the recurrence (*).

Solution: We can rewrite the recurrence as

bn =
an

4
−

bn−1 + bn+1

4
.

Thus we want b to be a fixed point of the operator T defined by

(Tb)n :=
an

4
−

bn−1 + bn+1

4
.

Note that if b is a bounded sequence, then Tb is automatically a bounded sequence (since we
are assuming a is bounded). Thus T is a function from l∞ to l∞. To apply the Contraction
mapping theorem we now have to verify that T is a contraction on l∞. In other words, we
have to show that

‖Tx− Ty‖∞ ≤ c‖x − y‖∞

for some 0 ≤ c < 1 and all x, y ∈ l∞.

Write x = (x1, x2, . . .) and y = (y1, y2, . . .). We write the left-hand side as

‖Tx− Ty‖∞ =
∞

sup
n=1

|Txn − Tyn|.

Using the definition of T and cancelling, this is

‖Tx − Ty‖∞ =
∞

sup
n=1

| −
xn−1 + xn+1

4
+

yn−1 + yn+1

4
|.

We can re-arrange this as

‖Tx− Ty‖∞ =
1

4

∞

sup
n=1

| − (xn−1 − yn−1) − (xn+1 − yn+1)|.

Both terms in parentheses are clearly less than ‖x − y‖∞, so we have

‖Tx − Ty‖∞ ≤
2

4
‖x − y‖∞

which gives the desired contraction.
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Problem 3.

Let T1, T2, . . . be a sequence of continuous linear transformations from a Banach space X to
a normed vector space Y . Assume that none of the Ti are identically zero; in other words,
for every i there exists a x ∈ X such that Tix 6= 0. Show that there exists a single x ∈ X
(which does not depend on i) such that Tix 6= 0 for every i.

Hint: use the Baire Category theorem.

Solution: For each i, let Si denote the set

Si = {x ∈ X : Tix 6= 0.}

Our objective is to find a point x ∈ X which is not contained in any of the Si. On the Baire
category theorem states that in a complete metric space, the countable union of open dense
sets is itself dense (and hence non-empty). Since X is a Banach space, it is a complete metric
space, and so we will be done if we can show that each Si is open and dense.

The open-ness is easy, because Si is the inverse image under Ti of R\{0}, which is an open
set, and the inverse image of any open set under a continuous map is open. Now we show
that it is dense. This means we need to show that for every ball B(x, r) in X contains at
least one point in Si.

Suppose for contradiction that there was a ball B(x, r) in X which did not contain a point
in Si. In other words, that Tiy = 0 for all y ∈ B(x, r). In particular, we have Tix = 0.

Now let z be any point in X (not necessarily in B(x, r)). If we choose N big enough, then
the point x + z/N is in B(x, r), so Ti(x + z/N) = 0. But we also have Tix = 0. Since Ti is
linear, this is only possible if Tiz = 0. Since z is arbitrary, this means that Ti is identically
zero, a contradiction. Hence the set Tix 6= 0 is dense, and we are done.
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Problem 4.

(a) Show that the product of two totally bounded sets is totally bounded.

Solution: Let X , Y be totally bounded sets. We will give X × Y the Euclidean metric

d((x1, y1), (x2, y2)) = (d(x1, x2)
2 + d(y1, y2)

2)1/2

(all the product metrics are equivalent, so there is no distinction to be made).

Pick an ε > 0. We have to cover X × Y by finitely many balls of radius ε. Since X is totally
bounded, it can be covered by finitely many balls of radius ε/10, say

X ⊆

n⋃

i=1

B(xi, ε/10).

Similarly we can cover Y by finitely many balls of radius ε/10:

Y ⊆

m⋃

j=1

B(yj , ε/10).

We now claim that X × Y can be covered by the finite number of balls

X × Y ⊆

n⋃

i=1

m⋃

j=1

B((xi, yj), ε),

which will solve the problem.

Pick any (x, y) ∈ X × Y . Since X is covered by the B(xi, ε/10), we can find an i such
that x ∈ B(xi, ε/10). Similarly we can find a j such that y ∈ B(yj , ε/10). This means that
d(x, xi) < ε/10 and d(y, yj) < ε/10. Thus

d((x, y), (xi, yj)) = (d(x, xi)
2 + d(y, yj)

2)1/2 < (ε2/100 + ε2/100)1/2 < ε

so (x, y) is in the ball B((xi, yj), ε). This finishes the proof that X × Y is totally bounded.
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(b) Show that every bounded set in R
n is totally bounded.

Solution: Let E ⊂ R
n be a bounded set. Since E is bounded, it is contained in a ball.

Since every ball in R
n is contained in a cube, E must therefore be contained in a cube

I1 × I2 × . . . × In, where all the sides Ij are intervals.

All intervals are totally bounded (for any ε > 0, any interval [a, b] can be covered by finitely
many balls of radius ε). Also, from (a) the product of any two totally bounded sets is totally
bounded. Thus the cube I1 × I2 × . . . × In is totally bounded, and hence E is also totally
bounded.
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Problem 5. Suppose f : X → Y is a continuous map from a metric space X to a metric
space Y .

(a) Is the inverse image of a closed set under f always closed? Justify your answer.

Solution: Yes. Let E be a closed set in Y . Then the complement Ec is open in Y , hence the
inverse image f−1(Ec) is open in X . Now observe that f−1(E)c = f−1(Ec) (because both
sets consist of those points x ∈ X such that f(x) 6∈ E), so f−1(E)c is open, which means
that f−1(E) is closed.

(b) Is the inverse image of a compact set under f always compact? Justify your answer.

Solution: No. For instance, let X = Y = R, and let f be the constant function f(x) = 0.
Then {0} is compact, but the inverse image of {0} is all of R, which is not compact.
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