Problem 1. Let [*° be the space of all bounded sequences of real numbers (z,,)5° ;, with
the sup norm
o0
I#lloc = sUp [ .
Show that (I°°,||||sc) is a Banach space. (You may assume that this space satisfies the
conditions for a normed vector space).

Solution. Since we are given that this space is already a normed vector space, the only thing
left to verify is that (I°°,]|leo) is complete.

Let 2!, 22, ... be a Cauchy sequence in [*°. (Note that each element x™ of this sequence is
an element of [°°, so each z" is itself a sequence, say

" = (af, x5, .. .).
That’s why I'm using superscripts here instead of subscripts.)
We have to find an element x in [*° such that ™ converges to x.
Let € > 0. Because =™ is a Cauchy sequence, we see that there exists an N > 0 such that
[ — 2™ |00 < €
for all n,m > N. Thus
sup |z} — 2| < e
k=1
for all n,m > N. In particular, we have
|z — !
for all k£ and all n,m > N.
This means that for each k, the sequence
T, Th, ...

is a Cauchy sequence in R. Since R is complete, we thus have a limit, call it x:

lim z} = z.
n—oo

Let x denote the sequence © = (21, z9,...).

We’d like to show that 2™ converges to x. Choose an ¢ > 0. By replacing & with £/2 in the
previous discussion, we can find an N > 0 such that

|z} — 2] < e/2



for all k and all n,m > N. Taking limits as m — oo, we obtain
lxf —xr] < e/2
for all k and all n > N. Taking supremum in k, we obtain

S [2f — x| < /2
k=1

for all n > N. In other words,
|2 — 2o < /2 < €

for all n > N. This implies that ™ converges to x, and we are done.



Problem 2. Let (a,)52; be a bounded sequence of real numbers. Prove that there exists a
bounded sequence (b,,)22 ; such that

bnfl + 4bn + bn+1 = Gnp (*)
for all n =1,2,..., where we take by to equal 0. [You may assume the result of Problem 1].

Hint: Use the Contraction Mapping theorem. You may need to rewrite the recurrence (*).

Solution: We can rewrite the recurrence as

b 7a_n7bn—1+bn+1
Ty 4 ’

Thus we want b to be a fixed point of the operator T defined by

Qnp bp—1+bnt1
T =————
(1), = e ot

Note that if b is a bounded sequence, then Tb is automatically a bounded sequence (since we
are assuming « is bounded). Thus T is a function from [*° to [°°. To apply the Contraction
mapping theorem we now have to verify that T is a contraction on [*°. In other words, we
have to show that

[Tz — Tylloo < cllz -yl

for some 0 < c¢ < 1 and all x,y € [*°.

Write & = (21, 22, ...) and y = (y1, Y2, ...). We write the left-hand side as
T2 — Tyl = S?I; T2y, — Tyn|.
n=

Using the definition of 7" and cancelling, this is

Tp—1 + Tnt1 Yn—1 + Yn+1 |
4 4 '

1Tz — Tyl = stp | —
n=1
We can re-arrange this as
1
1Tz~ Tylloo = § Suli| = (@n-1=¥Yn-1) = (@nt1 = Yny1)|-
n=
Both terms in parentheses are clearly less than ||z — y||oo, SO we have

2
1Tz = Tylloe < 7117 = ylloo

which gives the desired contraction.



Problem 3.

Let T1,T5, ... be a sequence of continuous linear transformations from a Banach space X to
a normed vector space Y. Assume that none of the T; are identically zero; in other words,
for every i there exists a z € X such that T;z # 0. Show that there exists a single z € X
(which does not depend on ¢) such that T;x # 0 for every i.

Hint: use the Baire Category theorem.

Solution: For each ¢, let S; denote the set
Si={xe X :Tix #0.}

Our objective is to find a point € X which is not contained in any of the S;. On the Baire
category theorem states that in a complete metric space, the countable union of open dense
sets is itself dense (and hence non-empty). Since X is a Banach space, it is a complete metric
space, and so we will be done if we can show that each S; is open and dense.

The open-ness is easy, because S; is the inverse image under T; of R\{0}, which is an open
set, and the inverse image of any open set under a continuous map is open. Now we show
that it is dense. This means we need to show that for every ball B(x,r) in X contains at
least one point in S;.

Suppose for contradiction that there was a ball B(x,r) in X which did not contain a point
in S;. In other words, that T;y = 0 for all y € B(x,r). In particular, we have T;x = 0.

Now let z be any point in X (not necessarily in B(z,r)). If we choose N big enough, then
the point z + z/N is in B(x,r), so T;(z + z/N) = 0. But we also have T;z = 0. Since T; is
linear, this is only possible if T;2z = 0. Since z is arbitrary, this means that T; is identically
zero, a contradiction. Hence the set T;x # 0 is dense, and we are done.



Problem 4.

(a) Show that the product of two totally bounded sets is totally bounded.

Solution: Let X, Y be totally bounded sets. We will give X x Y the Euclidean metric

d((z1,91), (22,92)) = (d(z1,22)* + d(y1,92)%) "/

(all the product metrics are equivalent, so there is no distinction to be made).

Pick an € > 0. We have to cover X x Y by finitely many balls of radius €. Since X is totally
bounded, it can be covered by finitely many balls of radius £/10, say

X C

-

Il
—

B(x;,e/10).

K2

Similarly we can cover Y by finitely many balls of radius €/10:

3

Yg B(y],g/lo)

<
Il
—

We now claim that X x Y can be covered by the finite number of balls

m

XxY - U U B((Ziayj)vg)a

i=1j=1
which will solve the problem.

Pick any (z,y) € X x Y. Since X is covered by the B(x;,&/10), we can find an ¢ such
that « € B(z;,¢/10). Similarly we can find a j such that y € B(y;,e/10). This means that
d(z,z;) < ¢/10 and d(y,y;) < €/10. Thus

d((z,y), (xi,y;)) = (d(z,2:)* + d(y, y;)?)"/? < (£2/100 + £%/100)"/? < &

so (z,y) is in the ball B((z;,y;),€). This finishes the proof that X x Y is totally bounded.



(b) Show that every bounded set in R" is totally bounded.

Solution: Let £ C R™ be a bounded set. Since F is bounded, it is contained in a ball.
Since every ball in R™ is contained in a cube, E must therefore be contained in a cube
Iy x Iy x ... x I, where all the sides I; are intervals.

All intervals are totally bounded (for any € > 0, any interval [a, b] can be covered by finitely
many balls of radius €). Also, from (a) the product of any two totally bounded sets is totally
bounded. Thus the cube I1 x I X ... x I, is totally bounded, and hence E is also totally
bounded.




Problem 5. Suppose f : X — Y is a continuous map from a metric space X to a metric
space Y.

(a) Is the inverse image of a closed set under f always closed? Justify your answer.

Solution: Yes. Let E be a closed set in Y. Then the complement E€ is open in Y, hence the
inverse image f~!(E¢) is open in X. Now observe that f~1(E)¢ = f~1(E°) (because both
sets consist of those points * € X such that f(z) € F), so f~*(FE)¢ is open, which means
that f~1(F) is closed.

(b) Is the inverse image of a compact set under f always compact? Justify your answer.

Solution: No. For instance, let X =Y = R, and let f be the constant function f(z) = 0.
Then {0} is compact, but the inverse image of {0} is all of R, which is not compact.



