Math 115A - Week 9
Textbook sections: 6.1-6.2
Topics covered:

Orthogonality

Orthonormal bases

Gram-Schmidt orthogonalization

Orthogonal complements
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Orthogonality

e From your lower-division vector calculus you know that two vectors
v,w in R? or R? are perpendicular if and only if v-w = 0; for instance,
(3,4) and (—4, 3) are perpendicular.

e Now that we have inner products - a generalization of dot products -
we can now give a similar notion for all inner product spaces.

e Definition. Let V be an inner product space. If v, w are vectors in V,
we say that v and w are orthogonal if (v,w) = 0.

e Example. In R* (with the standard inner product), the vectors (1, 1,0,0)
and (0,0,1,1) are orthogonal, as are (1,1,1,1) and (1,—1,1,—1), but
the vectors (1,1,0,0) and (1,0,1,0) are not orthogonal. In C?, the
vectors (1,4) and (1, —i) are orthogonal, but (1,0) and (¢, 0) are not.

e Example. In any inner product space, the 0 vector is orthogonal to
everything (why?). On the other hand, a non-zero vector cannot be
orthogonal to itself (why? Recall that (v,v) = ||v||?).

e Example. In C([0,1]; C) with the inner product

(f.g) = / f(2)9(@) d,



the functions 1 and = — % are orthogonal (why?), but 1 and z are not.
However, in C'([—1, 1]; C) with the inner product

(f.g) = / @)@ do.

the functions 1 and z — % are no longer orthogonal, however the func-
tions 1 and = now are. Thus the question of whether two vectors are
orthogonal depends on which inner product you use.

Sometimes we say that v and w are perpendicular instead of orthogonal.
This makes the most sense for R", but can be a bit confusing when
dealing with other inner product spaces such as C(]—1,1],C) - how
would one visualize the functions 1 and x being “perpendicular”, for
instance (or ¢ and z, for that matter)? So I prefer to use the word
orthogonal when dealing with general inner product spaces.

Sometimes we write v L w to denote the fact that v is orthogonal to
w.

Being orthogonal is at the opposite extreme of being parallel; recall
from the Cauchy-Schwarz inequality that [(v,w)| must lie between 0
and ||v||||w||. When v and w are parallel then |{(v,w)| attains its max-
imum possible value of ||v||||w]||, while when v and w are orthogonal
then |(v,w)| attains its minimum value of 0.

Orthogonality is symmetric: if v is orthgonal to w then w is orthogonal
to v. (Why? Use the conjugate symmetry property and the fact that
the conjugate of 0 is 0).

Orthogonality is preserved under linear combinations:

Lemma 1. Suppose that v,...,v, are vectors in an inner product
space V', and suppose that w is a vector in V' which is orthogonal to all
of vy, vs,...,v,. Then w is also orthogonal to any linear combination
of vi,...,v,.

Proof Let a;v1 +. ..+ a,v, be a linear combination of vy, ..., v,. Then
by linearity

(a1v1 + ... + GV, w) = ar{v, w) + ... + ay (v, ).
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But since w is orthogonal to each of vy,...,v,, all the terms on the
right-hand side are zero. Thus w is orthogonal to a;v; + ... + a,v, as
desired. O

In particular, if v and w are orthogonal, then cv and w are also orthog-
onal for any scalar ¢ (why is this a special case of Lemma 17)

You are all familiar with the following theorem about orthogonality.

Pythagoras’s theorem If v and w are orthogonal vectors, then ||v +
wlf* = [[ol* + [lwll*

Proof. We compute
lv+wl” = (v +w,v+w) = (v,0) + (v, w) + (w,v) + (w, w).

But since v and w are orthogonal, (v, w) and (w,v) are zero. Since
(v,v) = [|o]|* and (w,w) = ||lw|]*, we obtain |lv+wl|* = [[o]]* + [lw]|* as
desired. g

This theorem can be generalized:

Generalized Pythagoras’s theorem If vy, v, ..., v, are all orthog-
onal to each other (i.e. v; L v; = 0 for all i # j) then

o1 +ve + ... Fvnl]? = o2 + Jwa? + ...+ [Jval

Proof. We prove this by induction. If n = 1 the claim is trivial, and
for n = 2 this is just the ordinary Pythagoras theorem. Now suppose
that n > 2, and the claim has already been proven for n — 1. From
Lemma 1 we know that v, is orthogonal to v;1 + ... 4+ v,_1, so

T e T | | R Y | e o | V| o
On the other hand, by the induction hypothesis we know that
vz + ...+ vpa|* = [lve]l* + o lona ]I
Combining the two equations we obtain
lor +va + .o+ v = oil)? + o2 + - - . + [Jval?
as desired. (|



e Recall that if two vectors are orthogonal, then they remain orthogonal
even when you multiply one or both of them by a scalar. So we have

e Corollary 2. If vy,vs,...,v, are all orthogonal to each other (i.e.
v; L v, for all i # j) and a4, ..., a, are scalars, then

lavs + azva + . . + anvall* = [aa[*[lva]]* + laa*[lo2]l* + .. + |an || va|*.

e Definition A collection (vy,vs, ..., v,) of vectors is said to be orthogo-
nal if every pair of vectors is orthogonal to each other (i.e. (v;,v;) =0
for all 7 # j). If a collection is orthogonal, and furthermore each vector
has length 1 (i.e. ||v;|| = 1 for all 7) then we say that the collection is
orthonormal.

e Example In R*, the collection ((3,0,0,0), (0,4,0,0),(0,0,5,0)) is or-
thogonal but not orthonormal. But the collection ((1, 0, 0, 0), (0, 1,0, 0), (0,0, 1,0))
is orthonormal (and therefore orthogonal). Note that any single vector
vy is always considered an orthogonal collection (why?).

e Corollary 3. If (v1,vs,...,v,) is an orthonormal collection of vectors,
and ay,...,a, are scalars, then

llarvy + agva + . .. + apvn||? = |ag | + |ag)® + ... + |an|*.

Note that the right-hand side |a1|?+ |as|*+. . .+ |a,|? is always positive,
unless ay, ..., a, are all zero. Thus a,v,+. ..+ a,v, is always non-zero,
unless a4, ..., a, are all zero. Thus

e Corollary 4. Every orthonormal collection of vectors is linearly inde-
pendent.
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Orthonormal bases

e As we have seen, orthonormal collections of vectors have many nice
properties. As we shall see, things are even better when this collection
is also a basis:



Definition An orthonormal basis of an inner product space V is a
collection (v1,...,v,) of vectors which is orthonormal and is also an
ordered basis.

Example. In R*, the collection ((1,0,0,0), (0,1,0,0), (0,0,1,0)) is or-

thonormal but is not a basis. However, the collection ((1, 0, 0, 0), (0, 1,0, 0), (0,0, 1,0), (0,0, 0,
is an orthonormal basis. More generally, the standard ordered basis of

R" is always an orthonormal basis, as is the standard ordered basis of

C". (Actually, the standard bases of R" and of C" are the same; only

the field of scalars is different). The collection ((1,0,0,0), (1,1,0,0),(1,1,1,0),(1,1,1,1))

is a basis of R* but is not an orthonormal basis.

From Corollary 4 we have

Corollary 5 Let (vy,...,v,) be an orthonormal collection of vectors
in an n-dimensional inner product space. Then (vy,...,v,) is an or-
thonormal basis.

Proof. This is just because any n linearly independent vectors in an
n-dimensional space automatically form a basis. O

Example Consider the vectors (3/5,4/5) and (—4/5,3/5) in R2. Tt is
easy to check that they have length 1 and are orthogonal. Since R? is
two-dimensional, they thus form an orthonormal basis.

Let (v1,...,v,) be an ordered basis of an n-dimensional inner product
space V. Since (v1,...,v,) is a basis, we know that every vector v in
V' can be written as a linear combination of vq,..., vy,:

V=aiV; + ...+ apUy.

In general, finding these scalars ay,...,a, can be tedious, and often
requires lots of Gaussian elimination. (Try writing (1,0,0,0) as a lin-
ear combination of (1,1,1,1), (1,2,3,4), (2,2,1,1) and (1,2,1,2), for
instance). However, if we know that the basis is an orthonormal basis,
then finding these coefficients is much easier.

Theorem 6. Let (vi,...,v,) be an orthonormal basis of an inner
product space V. Then for any vector v € V', we have

V= a1V + Aoy + ...+ a,v,



where the scalars aq,...,a, are given by the formula

aj = (v,v;) forall j=1,...,n
Proof. Since (v1,...,v,) is a basis, we know that v = a;v; +. ..+ a,v,
for some scalars aq,...,a,. To finish the proof we have to solve for

ai,...,a, and verify that a; = (v,v;) for all j =1,...,n. To do this
we take our equation for v and take inner products of both sides with
’UjZ

(v,v;) = (@1v1 + agua2 + ... + apvy, vj).

We expand out the right-hand side as

a1 (v, ;) + az2(ve, vj) + ... + an(Un, vj).

Since vy, ...,v, are orthogonal, all the inner products vanish except
(vj,v;) = ||vj||*. But ||v;]| =1 since vq,...,v, is also orthonormal. So
we get

(v,v;)=04+...+04+a; x1+0+...+0
as desired. O

From the definition of co-ordinate vector [v]?, we thus have a simple
way to compute co-ordinate vectors:

Corollary 7 Let 8 = (v1,...,v,) be an orthonormal basis of an inner
product space V. Then the co-ordinate vector [v]? of any vector v is
then given by

<U: U1>

o= |

'<v, Un)

Note that Corollary 7 also gives us a reltaively quick way to compute
the co-ordinate matrix [T} of a linear operator 7': V' — W provided
that v is an orthonormal basis, since the columns of [T} are just [T'v;]7,
where v; are the basis vectors of §.



e Example. Let v; := (1,0,0), vp := (0,1,0), v3 := (0,0,1), and v :=
(3,4,5). Then (vy,v,vs) is an orthonormal basis of R®. Thus

U = a1V + A9Vy + a3vs,

where a; = (v,v1) = 3, ap := (v,v3) = 4, and a3 := (v,v3) = 5.
(Of course, in this case one could expand v as a linear combination of
v1, V2, v3 just by inspection.)

e Example. Let v; := (3/5,4/5), vy := (—4/5,3/5), and v := (1,0).
Then (v;, v5) is an orthonormal basis for R?>. Now suppose we want to
write v as a linear combination of v; and vs. We could use Gaussian
elimination, but because our basis is orthogonal we can use Theorem 6
instead to write

V= a1V1 + QoV2

where a1 = (v,v1) = 3/5 and ay = (v,v9) = —4/5. Thus v =

%vl — %Ug. (Try doing the same thing using Gaussian elimination, and

see how much longer it would take!). Equivalently, we have

e = ().

e The example of Fourier series. We now give an example which
is important in many areas of mathematics (though we won’t use it
much in this particular course) - the example of Fourier series. Let
C(]0,1]; C) be the inner product space of continuous complex-valued
functions on the interval [0, 1], with the inner product

mm:Afwﬁam

Now consider the functions ..., v_3, v_y, v_1, Vg, V1, V2, vs, . .. in C([0, 1]; C)
defined by

Vk (37) = e?ﬂ'ikm;

these functions are sometimes known as complex harmonics.



e Observe that these functions all have length 1:

okl = (vi, ve)'/? = (/0 ve(2)ve (@) da)'/?

1 1
— (/ eQﬂikme—%rikz d.’E)l/Q — (/ 1 d.’E)l/Q - 1.
0 0

Also, they are all orthogonal: if j # k then

1 1
(vj, k) :/ v;(z)vg () dx :/ e2rijz  —2mikz g,
0 0

1 iR o

_/ 2mi( k)T g — e2mii=k) ‘1 B e2mii—k) _q

B ~ 9rili 0= "

0 2mi(j — k) (2mi(j — k)
1-1
=777 =0.
2mi(j — k)

Thus the collection ..., v_3,v_2,v_1,9, V1,02, vs,... is an infinite or-

thonormal collection of vectors in C([0, 1]; C).

e We have not really discussed infinite bases, but it does turn out that,
in some sense, that the above collection is an orthonormal basis; thus
every function in C([0,1]; C) is a linear combination of complex har-
monics. (The catch is that this is an infinite linear combination, and
one needs the theory of infinite series (as in Math 33B) to make this
precise. This would take us too far afield from this course, unfortu-
nately). This statement - which is not very intuitive at first glance
- was first conjectured by Fourier, and forms the basis for something
called Fourier analysis (which is an entire course in itself!). For now,
let us work with a simpler situation.

e Define the space T, of trigonometric polynomaials of degree at most n
to be the span of vy, v1,v9, ..., v,. In other words, 7}, consists of all the
functions f € C([0,1]; C) of the form

f = ag + a1627rzz + a2627r12m + .+ an627rmm.

Notice that this is very similar to the space P,(R) of polynomials of
degree at most n, since an element f € P,(R) has the form

f=ap+ a1z + ax® + ...+ a,z"
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and so the difference between polynomials and trigonometric polynomi-
als is that z has been replaced by €?™® = cos(2nz) + isin(27z) (hence
the name, trigonometric polynomial).

e T, is a subspace of the inner product space C([0,1];C), and is thus
itself an inner product space. Since the vectors vy, vq,...,v, are or-
thonormal, they are linearly independent, and thus (vg,v1,...,v,) is
an orthonormal basis for 7;,. Thus by Theorem 6, every function f in
T, can be written as a series

n
2me 2732 2me 2: 2mij
f=a0+ale 7rzz'+a2e 7rzz_|_”'+a/ne TINT _ aje T

J=0

where the (complex) scalars ag, a1, - . ., a, are given by the formula

1
aj = (f,v) = /0 f(z)e ™% dg.

The coefficients a; are known as the Fourier coefficients of f, and the
above series is known as the Fourier series of f. From Corollary 3 we
have the formula

1 n
/0 @) do= 12 = [aol2 + i+ + fanl = 3 ol
j=0

this is known as Plancherel’s formula. These formulas form the foun-
dation of Fourier analysis, and are useful in many other areas, such
as signal processing, partial differential equations, and number theory.
(Actually, to be truly useful, one needs to generalize these formulas to
handle all kinds of functions, not just trigonometric polynomials, but
to do so is beyond the scope of this course).
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The Gram-Schmidt orthogonalization process.

e In this section all vectors are assumed to belong to a fixed inner product
space V.



In the last section we saw how many more useful properties orthonormal
bases had, in comparison with ordinary bases. So it would be nice
if we had some way of converting a non-orthonormal basis into an
orthonormal one. Fortunately, there is such a process, and it is called
Gram-Schmidt orthogonalization.

To make a basis orthonormal there are really two steps; first one has
to make a basis orthogonal, and then once it is orthogonal, one has to
make it orthonormal. The second procedure is easier to describe than
the first, so let us describe that first.

Definition. A unit vector is any vector v of length 1 (i.e. ||v|| =1, or
equivalently (v,v) = 1).

Example. In R?, the vector (3/5,4/5) is a unit vector, but (3, 4) is not.
In C([0,1]; C), the function z is not a unit vector (||z]|*> = fol zz dx =
1/2), but /2 is (why?). The 0 vector is never a unit vector. In R?,
the vectors (1,0,0), (0,1,0) and (0,0, 1) are all unit vectors.

Unit vectors are sometimes known as normalized vectors. Note that
an orthogonal basis will be orthonormal if it consists entirely of unit
vectors.

Most non-zero vectors are not unit vectors, e.g. (3,4) is not a unit
vector. However, one can always turn a non-zero vector into a unit
vector by dividing out by its length:

Lemma 8. If v is a non-zero vector, then v/||v|| is a unit vector.

Proof. Since v is non-zero, ||v|| is non-zero, so v/||v|| is well defined.
But then

1 1
lo/llollll = Il = 7= llvll = 1
dl gl
and so v/||v|| is a unit vector. O
We sometimes call v/||v|| the normalization of v. If (v, ve,...,v,) is a
basis, then we can normalize this basis by replacing each vector v; by its
normalization v;/||v,||, obtaining a new basis (v1 /||v1]], va/|vall, - - - vn/||vnl])

which now consists entirely of unit vectors. (Why is this still a basis?)
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Lemma 9. If (vy,vs,...,v,) is an orthogonal basis of an inner product
space V, then the normalization (vi/||vi||,va/||va||,-- -, vn/||lvs]]) is an
orthonormal basis.

Proof. Since the basis (vy,...,v,) has n elements, V must be n-
dimensional. Since the vectors v; are orthogonal to each other, the
vectors v;/||v;|| must also be orthogonal to each other (multiplying
vectors by a scalar does not affect orthogonality). By Lemma 8, these
vectors are also unit vectors. So the claim follows from Corollary 5. [

Example. The basis ((3,4), (—40,30)) is an orthogonal basis of R?
(why?). If we normalize this basis we obtain ((3/5,4/5), (—4/5,3/5)),
and this is now an orthonormal basis of R%.

So we now know how to turn an orthogonal basis into an orthonormal
basis - we normalize all the vectors by dividing out their length. Now
we come to the tricker part of the procedure - how to turn a non-
orthogonal basis into an orthogonal one. The idea is now to subtract
scalar multiples of one vector from another to make them orthogonal

(you might see some analogy here with row operations of the second
and third kind).

To illustrate the idea, we first consider the problem of how to make
just two vectors v, w orthogonal to each other.

Lemma 10. If v and w are vectors, and w is non-zero, then the vector

v — cw is orthogonal to w, where the scalar ¢ is given by the formula
.— (vw)
c:= :
[[wl]

Proof. We compute
<U — Ccw, w) = <IU, ’LU) - C<’U), ’LU) = <an> - C||’LU||2
_ (vw)

But since ¢ := 2, we have (v—cw,w) = 0 and so v —cw is orthogonal
to w. O

Example. Let v = (3,4) and w = (5,0). Then v and w are not
orthogonal; in fact, (v, w) = 15 # 0. But if we replace v by the vector
v i=v—cw=(3,4) — $(5,0) = (3,4) — (3,0) = (0,4), then v' is now
orthogonal to w.

11



e Now we suppose that we have already made k vectors orthogonal to
each other, and now we work out how to make a (k + 1)™ vector also
orthogonal to the first k.

e Lemma 11. Let wy,ws,...,w, be orthogonal non-zero vectors, and
let v be another vector. Then the vector v’, defined by

!

V =0V —CWy —CQWy — ... — CLWg
is orthogonal to all of wy, ws, ..., wg, where the scalars c1, ¢y, ..., cx are
given by the formula
S (v, w;)
J 112
[[w,]

forallj=1,...,k.

e Note that Lemma 10 is just Lemma 11 applied to the special case k = 1.
We can write v’ in series notation as

k
vi=v— Z <U’wj>w-.
[Jw; |2

i=1

e Proof. We have to show that v’ is orthogonal to each w;. We compute
(V' wy) = (v, wy) — er{wy, w;) — cowa, wy) — ... — cp{wy, wy).
But we are assuming that the wq, ..., wy are orthogonal, so all the inner
products (w;, w;) are zero, except for (w;, w;), which is equal to |Jw,]|?.
Thus
2
(V' wy) = (v, wy) — ¢;llwy[*.
But since ¢; 1= {22 we thus have (v',w;) and so v’ is orthogonal to
J [low; J 0
wy.

e We can now use Lemma 11 to turn any linearly independent set of
vectors into an orthogonal set.

e Gram-Schmidt orthogonalization process. Let vy, vs,...,v, be a
linearly independent set of vectors. Suppose we construct the vectors
wi, ..., w, by the formulae

12



[[wr[[?
<U3; wl) <U3; w2)
W3 = U3 1 Wa
[[wr]]? [[wo?
W = v <Un; wl) <Una wn—1>
= —_ W] — e —1-
T el lwn-1]l> "
Then the vectors wy,...,w, are orthogonal, non-zero, and the vector
space span(ws, . .., wy) is the same vector space as span(vy, ..., v,) (i-e.
the vectors wy, ..., w, have the same span as vi,...,v,). More gen-
erally, we have that wy,...,w, has the same span as vq,...,v; for all

1<k<n.

Proof. We prove this by induction on n. In the base case n = 1 we
just have wy := vy, and so clearly v; and w; has the same span. Also
vy is an orthonormal collection of vectors (by default, since there is
nobody else to be orthonormal to).

Now suppose inductively that n > 1, and that we have already proven
the claim for n — 1. In particular, we already know that the vectors
Wi, ..., W,_1 are orthogonal, non-zero, and that vy, ..., v; has the same
span as wy,...,wg for any 1 < k <n — 1. By Lemma 11, we thus see
that the vector w, is orthogonal to wy, ..., w,—;. Now we have to show
that w,, is non-zero and that wy, . .., w, has the same span as vy, ..., v,.

Let V denote the span of vy, . .., v,, and W denote the span of wy, ..., w,.
We have to show that V' = W. Note that W contains the span of
wi, ..., W, 1, and hence contains the span of vy,...,v, 1. In particu-
lar it contains vy, ..., v,_1, and also contains w,,. But from the formula

(Vn, w1) (ng, Wn_1)

= —+
fn = w12

n—1

we thus see that W contains v,,. Thus W contains the span of vy, ..., v,,
i.e. W contains V. But V is n-dimensional (since it is the span of n
linearly independent vectors), and W is at most n dimensional (since
W is also the span of n vectors), and so V and W must actually be
equal. Furthermore this shows that w, ..., w, are linearly independent
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(otherwise W would have dimension less than n). In particular w,
is non-zero. This completes everything we need to do to finish the
induction. O

Example Let v; := (1,1,1), vo := (1,1,0), and v3 := (1,0,0). The
vectors vy, v, v3 are independent (in fact, they form a basis for R*) but
are not orthogonal. To make them orthogonal, we apply the Gram-
Schmidt orthogonalization process, setting

wy :=v = (1,1,1)

<U2,’LU1> 2
‘= vy — —(1,1,0)— 2(1,1,1) = (=, =, —=
w2 U? ||w1||2 wl ( ) 9 ) ( ) ) ) ( ) 9 3)

<U3a wl) <U3a w2>

W3 = V3 1 — W2
[[wr]]? [[wo?
1 1311 2

=(1,0,0) — =(1,1,1) — —(=,=,—=) = (1/2,—-1/2,0).
( ) ) 3( b ) 6/9(3’3’ 3) ( / I / Y )

Thus we have created an orthogonal set (1,1,1), (5,3, —3), (3, —3,0),

which has the same span as vy, vo, v, i.€. it is also a basis for R®. Note
that we can then use Lemma 8 to normalize this basis and make it
orthonormal, obtaining the orthonormal basis

1 1 1
%(1, 1,1), %(1, 1,-2), E(l,

We shall call the normalized Gram-Schmidt orthogonalization process
the procedure of first applying the ordinary Gram-Schmidt orthogonal-
ization process, and then normalizing all the vectors one obtains as a
result of that process in order for them to have unit length.

~1,0).

One particular consequence of Gram-Schmidt is that we always have at
least one orthonormal basis lying around, at least for finite-dimensional
inner product spaces.

Corollary 12. Every finite-dimensional inner product space V' has an
orthonormal basis.
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Proof. Let’s say V is n-dimensional. Then V has some basis (v1, ..., vy).
By the Gram-Schmidt orthogonalization process, we can thus create a
new collection (wy, ..., wy,) of non-zero orthogonal vectors. By Lemma
9, we can then create a collection (yi,...,y,) of orthonormal vectors.
By Corollary 5, it is an orthonormal basis of V. O

X %k ok ok ok

Orthogonal complements

We know what it means for two vectors to be orthogonal to each other,
v L w; it just means that (v, w) = 0. We now state what it means for
two subspaces to be orthogonal to each other.

Definition. Two subspaces Vi, V5 of an inner product space V' are said
to be orthogonal if we have vy L vy for all v; € V; and vy € V3, and we
denote this by V; L V5.

Example. The subspaces V| := {(z,v,0,0,0) : z,y € R} and V; :=
{(0,0, z,w,0) : z,w € R} of R® are orthogonal, because (z,,0,0,0) L
(0,0, z,w,0) for all z,y, z,w € R. The space V] is similarly orthogonal
to the three-dimensional space V3 := {(0,0,z,w,u) : z,w,u € R}.
However, V; is not orthogonal to the one-dimensional space V, :=
{(t,t,t,t,t) : t € R}, since the inner product of (z,y,0,0,0) and
(t,t,t,t,t) can be non-zero (e.g. take z =y =t =1).

Example. The zero vector space {0} is orthogonal to any other sub-
space of V' (why?)

Orthogonal spaces have to be disjoint:
Lemma 13. If V; L V5, then V3 NV, = {0}.

Clearly 0 lies in V] N V5 since every vector space contains 0. Now
suppose for contradiction that Vi N V5, contained at least one other
vector v, which must of course be non-zero. Then v € V; and v € V5;
since Vi L V5, this implies that v L v, i.e. that (v,v) = 0. But this
implies that ||[v||*> = 0, hence v = 0, contradiction. Thus V; N V5 does
not contain any vector other than zero. O
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e As we can see from the above example, a subspace V; can be orthogonal
to many other subspaces V5. However, there is a maximal orthogonal
subspace to V; which contains all the others:

e Definition The orthogonal complement of a subspace V; of an inner
product space V, denoted V-, is defined to be the space of all vectors
perpendicular to V;i:

Viti={veV:vLwforalweV;}.

e Example. Let Vi := {(z,9,0,0,0) : z,y € R}. Then V' is the space
of all vectors (a,b,c,d,e) € R’ such that (a,b,c,d,e) is perpendicular
to Vi, i.e.

((a,b,c,d,e),(z,y,0,0,0)) =0 for all z,y € R.

In other words,
ar + by = 0 for all z,y € R.

This can only happen when @ = b = 0, although c, d, e can be arbitrary.
Thus we have
Vit ={(0,0,¢,d,€) : c,d,e € R},

i.e. V1 is the space V3 from the previous example.

e Example. If {0} is the zero vector space, then {0} = V (why?). A
little trickier is that V+ = {0}. (Exercise! Hint: if v is perpendicular

to every vector in V', then in particular it must be perpendicular to
itself).

e From Lemma 1 we can check that V' is a subspace of V (exercise!),
and is hence an inner product space.

e Lemma 14. If V] L V5, then V5 is a subspace of VlL. Conversely, if V5
is a subspace of V1, then V; L V5.

e Proof. First suppose that Vi L V5. Then every vector v in V; is
orthogonal to all of V;, and hence lies in V= by definition of V;. Thus
Va is a subspace of Vi-. Conversely, if V; is a subspace of V1, then
every vector v in V5 is in V- and is thus orthogonal to every vector in
Vi. Thus V; and V; are orthogonal. O
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Sometimes it is not so easy to compute the orthogonal complement of
a vector space, but the following result gives one way to do so.

Theorem 15. Let W be a k-dimensional subspace of an n-dimensional
inner product space V. Let (vi,...,v;) be a basis of W, and let

(v1,v9, ..., Uk, Ugt1,-- -, V) be an extension of that basis to be a basis
of V. Let (wi,...,w,) be the normalized Gram-Schmidt orthogonal-
ization of (v1,...,v,). Then (ws,...,wg) is an orthonormal basis of
W, and (wy1,---,w,) is an orthonormal basis of W+.

Proof. From the Gram-Schmidt orthogonalization process, we know
that (w,...,wy) spans the same space as (vy,...,vx) - i.e. it spans
W. Since W is k-dimensional, this means that (wy,...,wy) is a basis
for W, which is orthonormal by the normalized Gram-Schmidt process.
Similarly (ws, ..., w,) spans the n-dimensional space V', which implies
that it is a basis for V.

Thus the the vectors w1, . .., w, are orthonormal and thus (by Corol-
lary 4) linearly independent. It remains to show that they span W+.
First we show that they lie in W+. Let w; be one of these vectors. Then
wj is orthogonal to wy, ..., wy, and is thus (by Lemma 1) orthogonal
to their span, which is W. Thus w; lies in W+*. In particular, the span
of w41, ..,w, must lie inside W=,

Now we show that every vector V- lies in the span of wy,...,w;. Let
v be any vector in W+. By Theorem 6 we have

v= (v, w)w; + ...+ (V, W)Wy,

But since v € W, v is orthogonal to wy,...,wy, and so the first k
terms on the right-hand side vanish. Thus we have

v = (U, Wgy1) Wi g1 + - - . + (v, Wy )wy,
and in particular v is in the span of wyy1,...,w, as desired. [l

Corollary 16 (Dimension theorem for orthogonal complements)
If W is a subspace of a finite-dimensional inner product space V', then
dim(W) + dim(W+) = dim(V).
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e Example. Suppose we want to find the orthogonal complement of the
line W := {(z,y) € R*: 3r+4y = 0} in R This example is so simple
that one could do this directly, but instead we shall choose do this via
Theorem 15 for sake of illustration. We first need to find a basis for W;
since W is one-dimensional, we just to find one non-zero vector in W,
e.g. vy := (—4,3), and this will be our basis. Then we extend this basis
to a basis of the two-dimensional space R? by adding one more linearly
independent vector, for instance we could take v, := (1,0). This basis
is not, orthogonal or orthonormal, but we can apply the Gram-Schmidt
process to make it orthogonal:

(ve, w1) —4 9 12

wy :=v; = (—4,3); wy = vy wy = (1,0)—%(—4, 3) = (%, %)

[ [|?

We can then normalize:

4 3 34
wy = wi /ol = (=%, 2);  wh = wa/lJwell = (5, )

55 55
Thus w] is an orthonormal basis for W, wj, is an orthonormal basis for
W+, and (w;,ws) is an orthonormal basis for R>. (Note that we could
skip the normalization step at the end if one only wanted an orthogonal
basis for these spaces, as opposed to an orthonormal basis).

e Example. Let’s give P,(R) the inner product

<f>9>=/1f($)m dz.

The space P,(R) contains P;(R) as a subspace. Suppose we wish to
compute the orthogonal complement of P;(R). We begin by taking a
basis of P;(R) - let’s use the standard basis (1, ), and then extend it
to a basis of P,(R) - e.g. (1,z,z?). We then apply the Gram-Schmidt
orthogonalization procedure:

wyp ‘= 1
(x,w1) 0
Wy ‘= T — 1 —=1=
’ [Jw | 2



2 <x27w1> (a:Q,w2>

w3 =" — 1-—
(w1 [|? [|ws|?
2/3 0
=22 -1 — g =2>-1/3.
x 5 2/33: T /
We can then normalize:
, 1
w = wy/||wi]| = ﬁ
wh = wy/||ws| = ==z

V2
1. _ \/E 2 1
wy := ws/|[ws]| = 7 (=" = 3)-

Thus W= has wh as an orthonormal basis. Or one can just use ws as a
3

basis, so that

Wt = {a(ajz—%) ra € R}.

Corollary 17 If W is a k-dimensional subspace of an n-dimensional
inner product space V', then every vector v € V can be written in
exactly one way as w + u, where w € W and u € W+.

Proof. By Theorem 15, we can find a orthonormal basis (w1, we, . . ., wy)
of V such that (wy, ..., wy) is an orthonormal basis of W and (wg.1, - - -, wy)
is an orthonormal basis of W+. If v is a vector in V, then we can write

vV=mw + ...+ aw,
for some scalars a4, ..., a,. If we write
W= QW)+ ...t Wk U= Qg1 Wi1 T - -+ AWy

then we have w € W,u € W+, and v = w + u. Now we show that this
is the only way to decompose v in this manner. If v = w’ + ' for some
w' € W, v € W+, then

w+u=w +u
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and so
w—w =u —u.

But w —w' lies in W, and ' — u lies in W+. By Lemma 13, this vector
must be 0, so that w = w' and v = «’. Thus there is no other way to
write v = w + u. U

We call the vector w obtained in the above manner the orthogonal
projection of v onto W this terminology can be made clear by a picture
(at least in R?® or R?), since w,u, and v form a right-angled triangle
whose base w lies in W. This projection can be computed as

W= awy + ...+ apwr = (v, w1)wy + ... + (v, W)Wk
where wy, ..., wy is any orthonormal basis of W.

Example Let W := {(z,y) € R?: 3z + 4y = 0} be as before. Suppose
we wish to find the orthogonal projection of the vector (1,1) to W.
Since we have an orthonormal basis given by w} := (—%,2), we can
compute the orthogonal projection as

w= {11, whul =~ (5, 2) = (35, o)

The orthogonal projection has the “nearest neighbour” property:

Theorem 18. Let W be a subspace of a finite-dimensional inner prod-
uct space V, let v be a vector in V', and let w be the orthogonal pro-
jection of v onto W. Then w is closer to v than any other element of
W; more precisely, we have ||v —w'|| > ||Jv — w]| for all vectors w' in W
other than w.

Proof. Write v = w+u, where w € W is the orthogonal projection of v
onto W, and u € W+. Then we have ||[v—w|| = ||u||. On the other hand,
to compute v —w', we write v —w' = (v—w)+ (w —w') = u+ (w—w').
Since w, w' liein W, w—w' does also. But v lies in W+, thus u L w—w'.
By Pythagoras’s theorem we thus have

lv = w'[* = [Jull® + [lw — w'[I* > [|ul|*

(since w # w') and so ||v — w'|| > |Ju|| = |[|v — w]|| as desired. O
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e This Theorem makes the orthogonal projection useful for approximat-
ing a given vector v in V' by a another vector in a given subspace W of
V.

e Example Consider the vector 2% in P,(R). Suppose we want to find
the linear polynomial ax + b € P;(R) which is closest to z? (using the
inner product on [—1,1] from the previous example to define length).
By Theorem 18, this linear polynomial will be the orthogonal projection
of z? to P;(R). Using the orthonormal basis w| = %, wh = %x from

the prior example, we thus see that this linear polynomial is

2/3 1 V3 1
2 ! ! 2 ! !

7, wy)wy + (27, Wwy)wy = —=—= + 0—=x = - + Oz.

< 1) 1 < 2) 2 \/§ \/i \/§ 3

Thus the function 1/3 + 0z is the closest linear polynomial to 2% using

the inner product on [—1,1]. (If one uses a different inner product,

one can get a different “closest approximation”; the notion of closeness

depends very much on how one measures length).

21



