Math 115A - Week 8
Textbook sections: 5.2, 6.1
Topics covered:

Characteristic polynomials
Tests for diagonalizability
Inner products

Inner products and length
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Characteristic polynomials

Let A be an n x n matrix. Last week we introduced the characteristic
polynomial

F(A) = det(A — \I)

of that matrix; this is a polynomial in A. For instance, if

a b ¢
A=\ d e f
g h 1

then

a—A b c
f(A) =det| d e—X f
g h 1— A
=(a—=A)((e=A)(i—A) = fh)) = b(d(i — A) — gf) + c(dh — (e — N)g),
which simplifies to some degree 3 polynomial in A (we think of a, b, ¢, d, e, f, g

as just constant scalars). Last week we saw that the zeroes of this poly-
nomial give the eigenvalues of A.



e As you can see, the characteristic polynomial looks pretty messy. But
in the special case of a diagonal matrix, e.g

the characteristic polynomial is quite simple, in fact

f)=(a=A)(b=A)(c=A)

(why?). This has zeroes when A = a, b, ¢, and so the eigenvalues of this
matrix are a, b, and c.

e Lemma 1. Let A and B be similar matrices. Then A and B have the
same characteristic polynomial.

e An algebraist would phrase this as: “the characteristic polynomial is
invariant under similarity”.

e Proof. Since A and B are similar, we have B = QAQ~! for some
invertible matrix (). So the characteristic polynomial of B is

det(B — M) = det(QAQ~" — \I)
= det(QAQ" — QAIQ™Y)

(
0
= det(Q) det(A — AI) det(Q™?)
(@
(QQ
(

=det(Q(A — A)Q™)
= det(Q )det( D) det(A — M)
= det(QQ (A — \I))

= det(A — \I)
and hence the characteristic polynomials are the same. O

e Now let’s try to understand the characteristic polynomial for general
matrices. Let P;(R) be all the polynomials aA + b of degree at most 1;
we shall make the free variable ) instead of x. Note that all the entries
in the matrix A — AT lie in P;(R).

e Lemma 2. Let B be an n X n matrix, all of whose entries lie in P (R).
Then det(B) lies in P,(R) (i.e. det(B) is a polynomial in A of degree
at most n).



e Proof. We prove this by induction on n. When n = 1 the claim is
trivial, since a 1 x 1 matrix with an entry in P;(R) looks like B =
(aX + b), and clearly det(B) = a\ + b € P,(R).

Now let’s suppose inductively that n > 1, and that we have already
proved the lemma for n — 1. We expand det(B) using cofactor ex-
pansion along some row or column (it doesn’t really matter which row
or column we use). This expands det(B) as an (alternating-sign) sum
of expressions, each of which is the product of an entry of B, and a
cofactor of B. The entry of B is in P;(R), while the cofactor of B is
in P, 1(R) by the induction hypothesis. So each term in det(B) is in
P,(R), and so det(B) is also in P,(R). This finishes the induction. O]

e From this lemma we see that f(\) liesin P, (R), i.e it is a polynomial of
degree at most n. But we can be more precise. In fact the characteristic
polynomial in general looks a lot like the characteristic polynomial of
a diagonal matrix, except for an error which is a polynomial of degree
at most n — 2:

e Lemma 3. Let n > 2. Let A be the n X n matrix

All A12 s Aln
A= {121 422 .- {1271,
Anl An2 s Ann

Then we have
Q) = (A = A)(Azz = A) ... (Apn — A) +9(A)
where g(\) € P,_»(R).

e Proof. Again we induct on n. If n = 2 then f(\) = (A;1—A)(Ae—A)—
A12A2 (why?) and so the claim is true with g := —Aj5A49; € Py(R).
Now suppose inductively that n > 2, and the claim has already been
proven for n — 1. We write out f()\) as

All -2 A12 c. Aln
A21 AQQ - ... Agn
f) =1 . . L



e Now we do cofactor expansion along the first row. The first term in
this expansion is

A — A ... Ay,
(A1x = A)det | Do
Ao v Apn — A

But this determinant is just the characteristic polynomial of an n—1 x

n — 1 matrix, and so by the induction hypothesis we have
Ay — A ... Ay,
det | : : : = (A=) ... (Aun—A)+ something in P, 3(R).

A v Apn — A
Thus the first term in the cofactor expansion is
(A11 — /\) (A22 — )\) Ce (Ann — A) + Something in Pn,Q(R)

(Why did the P,_3(R) become a P,_»(R) when multiplying by (A —
7).

e Now let’s look at the second term in the cofactor expansion; this is

A21 A A2’n
—Ajpdet | : : :
A .. Apn— A

We do cofactor expansion again on the second row of thisn—1xn—1
determinant. We can expand this determinant as an alternating-sign
sum of terms, which look like A; times some n— 2 x n—2 determinant.
By Lemma 2, this n — 2 X n — 2 determinant lies in P, »(R), while
Ay; is a scalar. Thus all the terms in this determinant lie in P,_»(R),
and so the determinant itself must lie in P,_o(R) (recall that P,_»(R)
is closed under addition and scalar multiplication). Thus this second
term in the cofactor expansion lies in P, »(R).

e A similar argument shows that the third, fourth, etc. terms in the
cofactor expansion of det(A — AI) all lie in P, 5(R). Adding up all
these terms we obtain

det(A—AI) = (A11 —A) (A —A) ... (Ann — A) + something in P, »(R)
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as desired. 0
If we multiply out
(A1 = A) (A — A) ... (Aun — A)
we get
(=N)"+ (=N)""Y Ay + Ay +.. .+ Any) + stuff of degree at most n—2

(why?). Note that (A1 + ...+ Apy,) is just the trace tr(A) of A. Thus
from Lemma 3 we have

FO) = (D) A" (=1)" Hr(A)A* T 4a, oA" 2+a, 32" P+, +aiAag

for some scalars a,,_o,...,aq9. These coefficients a,,_o, ..., aq are quite
interesting, but hard to compute. However, ay can be obtained by a
simple trick: if we evaluate the above expression at 0, we get

f(O) = Gy,

but f(0) = det(A — 0]) = det(A). We have thus proved the following
result.

Theorem 4. The characteristic polynomial f(A) of an n x n matrix
A has the form

FO) = (=1)" A+ (=1)""Hr(A) A" an oA 2+ a,_sA" P+ L Fag Mdet(A).

Thus the characteristic polynomial encodes the trace and the determi-
nant, as well as some additional information which we will not study
further in this course.

Example. The characteristic polynomial of the 2 x 2 matrix

()

(a=A)(d—X) —bc=X\— (a+d)\+ (ad — bc)
(why?). Note that a + d is the trace and ad — bc is the determinant.

1s
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e Example. The characteristic polynomial of the 3 x 3 matrix

o o R
o ot O
o OO

1S
(a=XN)(b=X(c—A) ==X+ (a+b+c)\* — (ab + bc + ca)\ + abe.
Note that a + b + ¢ is the trace and abc is the determinant.

e Since the characteristic polynomial is of degree n and has a leading
coefficient of —1, it is possible that it factors into n linear factors, i.e.

f()\) :_()‘_)‘1)()‘_)‘2)"'()‘_)%)

for some scalars Aj,..., A\, in the field of scalars (which we will call F
for a change... this F' may be either R or C). These scalars do not
necessarily have to be distinct (i.e. we can have releated roots). If this
is the case we say that f splits over F', or more simply that f splits.

e Example. The characteristic polynomial of the 2 X 2 matrix

01
10
is A2 —1 (why?), which splits over the reals as (A—1)(A—(=1)). It also

splits over the complex numbers because +1 and —1 are real numbers,
and hence also complex numbers. On the other hand, the characteristic

polynomial of
0 1
-1 0

is A2 + 1, which doesn’t split over the reals, but does split over the
complexes as (A — i)(A + 7). Finally, the characteristic polynomial of

01
00
is A2, which splits over both the reals and the complexes as (A—0)(A—0).
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Example The characteristic polynomial of a diagonal matrix will al-
ways split. For instance the characteristic polynomial of

o o
o o O
o O O

1S

(@=N)(b=MN(c=A) =—(\—a)(A—b)(A—c).

From the previous example, and Lemma 1, we see that the character-
istic polynomial of any diagonalizable matrix will always split (since
diagonalizable matrices are similar to diagonal matrices). In particu-
lar, if the characteristic polynomial of a matrix doesn’t split, then it
can’t be diagonalizable.
0 1
(20)

from an earlier example cannot be diagonalizable over the reals, because
its characteristic polynomial does not split over the reals. (However,
it can be diagonalized over the complex numbers; we leave this as an
exercise).

Example. The matrix

It turns out that the complex numbers have a significant advantage
over the reals, in that polynomials always split:

Fundamental Theorem of Algebra. Every polynomial splits over
the complex numbers.

This theorem is a basic reason why the complex numbers are so useful;
unfortunately, the proof of this theorem is far beyond the scope of this
course. (You can see a proof in Math 132, however).

X %k ok ok ok

Tests for diagonalizability

e Recall that an n x n matrix A is diagonalizable if there is an invertible

matrix ) and a diagonal matrix D such that A = QDQ™!. It is often
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useful to know when a matrix can be diagonalized. We already know
one such characterization: A is diagonalizable if and only if there is a
basis of R" which consists entirely of eigenvectors of A. Equivalently:

Lemma 5. An n x n matrix A is diagonalizable if and only if one can
find n linearly independent vectors vy, vs,...,v, in R", such that each
vector v; is an eigenvector of A.

This is because n linearly independent vectors in R" automatically
form a basis of R".

It is thus important to know when the eigenvectors of A are linearly
independent. Here is one useful test:

Proposition 6. Let A be an n X n matrix. Let v{,vq9,...,v; be
eigenvectors of A with eigenvalues Ay, ..., A\; respectively. Suppose that
the eigenvalues \q,..., \; are all distinct. Then the vectors vy, ..., v
are linearly independent.

Proof. Suppose for contradiction that vy, ..., v, were not independent,
i.e. there was some scalars aq, ..., a;, not all equal to zero, such that

aiv; + agve + ...+ apv, = 0.

At least one of the a; is non-zero; without loss of generality we may
assume that aq is non-zero.

Now we use a trick to eliminate vx: We apply (A — A\xI) to both sides
of this equation. Using the fact that A — A\;I is linear, we obtain

a1 (A — MNeDvr + ao(A — MeD)va + ... + ag(A — M\ D)o = 0.
But observe that
(A= MNeD)vy = Avy — Aoy = Mop — Ao = (A1 — Moy
and more generally

(A - )\kI)Uj = ()\] — )\Ic)'Uj-



In particular we have
(A — )\kI)Uk = 0.

Putting this all together, we obtain
al()\l — )\k)vl + ag()\g — )\k)’l)g + ...+ ak_l()\k_l — )\k)vk—l =0.

Now we eliminate vy_; by applying A — A\x_1I to both sides of the
equation. Arguing as before, we obtain

a1 ()\1 - )\k:)()\l - )\k—l)vl + G/Q()\Q — )\k)()\z - )\k—l)'UZ —+ ...

+ag_2(Ak—2 — Ag) (Ak—2 — Ag—1)vk—2 = 0.

We then eliminate vj_o, then v,_3, and so forth all the way down to
eliminating vy, until we obtain

0,1()\1 — /\k)()\l — Akfl) Ce ()\1 — )\2)1)1 =0.

But since the )\; are all distinct, and a; is non-zero, this forces v; to
equal zero. But this contradicts the definition of eigenvector (eigenvec-
tors are not allowed to be zero). Thus the vectors vy, ..., v, must have
been linearly independent. O

Proposition 5 holds for linear transformations as well as matrices: see
Theorem 5.10 of the textbook.

Corollary 6 Let A be an n xn matrix. If the characteristic polynomial
of A splits into n distinct factors, then A is diagonalizable.

Proof. By assumption, the characteristic polynomial f(\) splits as
) == =) ... (A=)

for some distinct scalars A, ..., A,. Thus we have n distinct eigenvalues
AL, ..., A. For each eigenvalue A; let v; be an eigenvector with that
eigenvalue, then by Proposition 5 vq,...,v, are linearly independent,
and hence by Lemma 4 A is diagonalizable. U



e Example Consider the matrix

1 -2
(1)
The characteristic polynomial here is
fO=0-=NE-XN+2=X-51+6=(\—2)(A—3),

so the characteristic polynomial splits into n distinct factors (regardless
of whether our scalar field is the reals or the complexes). So we know
that A is diagonalizable. (If we actually wanted the explicit diagonal-
ization, we would find the eigenvalues (which are 2,3) and then some
eigenvectors, and use the previous week’s notes).

e To summarize what we know so far: if the characteristic polynomial
doesn’t split, then we can’t diagonalize the matrix; while if it does split
into distinct factors, then we can diagonalize the matrix. There is still
a remaining case in which the characteristic function splits, but into
repeated factors. Unfortunately this case is much more complicated;
the matrix may or may not be diagonalizable. For instance, the matrix

(o2)

has a characteristic polynomial of (A — 2)? (why?), so it splits but not
into distinct linear factors. It is clearly diagonalizable (indeed, it is
diagonal). On the other hand, the matrix

(02)

has the same characteristic polynomial of (A —2)? (why?), but it turns
out not to be diagonalizable, for the following reason. If it were diag-
onalizable, then we could find a basis of R" which consists entirely of
eigenvectors. But since the only root of the characteristic polynomial
is 2, the only eigenvalue is 2. Now let’s work out what the eigenvec-
tors are. Since the only eigenvalue is 2, we only need to look in the
eigenspace with eigenvalue 2. We have to solve the equation

(52)(3)=2(3):
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i.e. we have to solve the system of equations
204+ 1y =2x; 2y =2y.

The general solution of this system occurs when y = 0 and z is arbi-
trary, so the eigenspace with eigenvalue 2 is just the x-axis. But the
vectors from this eigenspace are not enough to span all of R?, so we
cannot find a basis of eigenvectors. Thus this matrix is not diagonaliz-
able.

The moral of this story is that, while the characteristic polynomial does
carry a large amount of information, it does not completely solve the
problem of whether a matrix is diagonalizable or not. However, even
when the characteristic polynomial is inconclusive, it is still possible
to determine whether a matrix is diagonalizable or not by computing
its eigenspaces and seeing if it is possible to make a basis consisting
entirely of eigenvectors. We will not pursue the full solution of the
diagonalization problem here, but defer it to 115B (where you will learn
about two more tools to study diagonalization - the minimal polynomial
and the Jordan normal form).

One last example. Consider the matrix

S O N
SN =
w o o

this is the same matrix as the previous example but we attach another
row and column, and add a 3. (This is not a diagonal matrix, but is
an example of a block-diagonal matriz: see this week’s homework for
more information). The characteristic polynomial here is

fO) =-(A=2)*(A-3)

(why?), so the eigenvalues are 2 and 3. To find the eigenspace with
eigenvalue 2, we solve the equation

210 x x
0 20 y | =219 |,
00 3 z z
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and a little bit of work shows that the general solution to this equation

occurs when y = z = 0 and z is arbitrary, thus the eigenspace is just
x

the x-axis {| 0 | :z € R}. Similarly the eigenspace with eigenvalue

0

3 is the z-axis. But this is not enough eigenvectors to span R? (the 2-

eigenspace only contributes one linearly independent eigenvector, and

the 3-eigenspace contributes only one linearly independent eigenvector,

whereas we need three linearly independent eigenvectors in order to

span R3.
TEEE

Inner product spaces

e We now leave matrices and eigenvalues and eigenvectors for the time
being, and begin a very different topic - the concept of an inner product
space.

e Up until now, we have been preoccupied with vector spaces and var-
ious things that we can do with these vector spaces. If you recall, a
vector space comes equipped with only two basic operations: addition
and scalar multiplication. These operations have already allowed us to
introduce many more concepts (bases, linear transformations, etc.) but
they cannot do everything that one would like to do in applications.

e For instance, how does one compute the length of a vector? In R? or
R? one can use Pythagoras’s theorem to work out the length, but what
about, say, a vector in P3(R)? What is the length of 23 + 322 + 67 It
turns out that such spaces do not have an inherent notion of length:
you can add and scalar multiply two polynomials, but we have not
given any rule to determine the length of a polynomial. Thus, vector
spaces are not equipped to handle certain geometric notions such as
length (or angle, or orthogonality, etc.)

e To resolve this, mathematicians have introduced several “upgraded”
versions of vector spaces, in which you can not only add and scalar
multiply vectors, but can also compute lengths, angles, inner products,
etc. One particularly common such “upgraded” vector space is some-
thing called an inner product space, which we will now discuss. (There
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are also normed vector spaces, which have a notion of length but not
angle; topological vector spaces, which have a notion of convergence but
not length; and if you wander into infinite dimensions then there are
slightly fancier things such as Hilbert spaces and Banach spaces. Then
there are vector algebras, where you can multiply vectors with other vec-
tors to get more vectors. Then there are hybrids of these notions, such
as Banach algebras, which are a certain type of infinite-dimensional
vector algebra. None of these will be covered in this course; they are
mostly graduate level topics).

The problem with length is that it is not particularly linear: the length
of a vector v+w is not just the length of v plus the length of w. However,
in R? or R® we can rewrite the length of a vector v as the square root
of the dot product v - v. Unlike length, the dot product is linear in the
sense that (v +v)-w=v - w+v -wandv- (w+w')=v-w+v-w',
with a similar rule for scalar multiplication. (Actually, to be precise,
the dot product is considered bilinear rather than linear, just as the
determinant is considered multilinear, because it has two inputs v and
w, instead of just one for linear transformations).

Thus, the idea behind an inner product space is to introduce length
indirectly, by means of something called an inner product, which is a
generalization of the dot product. Depending on whether the field of
scalars is real or complex, we have either a real inner product space
or a complex inner product space. Complex inner product spaces are
similar to real ones, except the complex conjugate operation z +— Z
makes an appearance. Here’s a clue why: the length |z| of a complex
number z = a + bi, is not the square root of z - z, but is instead the
square root of z - Z.

We will now use both real and complex vector spaces, and will try
to take care to distinguish between the two. When we just say “vec-
tor space” without the modifier “real” or “complex”, then the field of
scalars might be either the reals or the complex numbers.

Definition An inner product spaceis a vector space V equipped with an
additional operation, called an inner product, which takes two vectors
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v,w € V as input and returns a scalar (v, w) as output, which obeys
the following three properties:

(Linearity in the first variable) For any vectors v,v',w € V and any
scalar ¢, we have (v + v',w) = (v,w) + (v',w) and (cv, w) = c(v, w).

(Conjugate symmetry) If v and w are vectors in V, then (w,v) is the
complex conjugate of (v, w): {(w,v) = (v, w).

(Positivity) If v is a non-zero vector in V', then (v, v) is a positive real
number: (v,v) > 0.

If the field of scalars is real, then every number is its own conjugate
(e.g. 3 =3) and so the conjugate-symmetry property simplifies to just
the symmetry property (w,v) = (v, w).

We now give some examples of inner product spaces.

R" as an inner product space. We already know that R" is a real
vector space. If we now equip R" with the inner product equal to the
dot product

<.’17,y) =Ty

1.e.
n
(1,72, ..., %n), (Y1, Yn)) = T1y1 + TaYo + ... + Tl = ij?/j
j=1

then we obtain an inner product space. For instance, we now have

((1,2),(3,4)) = 11.

To verify that we have an inner product space, we have to verify the
linearity property, conjugate symmetry property, and the positivity
property. To verify the linearity property, observe that

<$+J,‘,,y>:($+$l)y:$y+.1‘,y:<$,y>+<$,,y>

and
(cx,y) = (cx) -y =c(z-y) = c(z,y)
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while the conjugate symmetry follows since

(o) =y-z=2-y=(z,9) = (T,¥)
(since the conjugate of a real number is itself. To verify the positivity
property, observe that

{(Z1, T2y s Tn), (T1, ..y 2p)) =22 + 25+ ... + 22
which is clearly positive if the x4, ..., z, are not all zero.

The difference between the dot product and the inner product is that
the dot product is specific to R", while the inner product is a more
general concept and is applied to many other vector spaces.

One can interpret the dot product z - y as measuring the amount of
“correlation” or “interaction” between x and y; the longer that x and y
are, and the more that they point in the same direction, the larger the
dot product becomes. If x and y point in opposing directions then the
dot product is negative, while if x and y point at right angles then the
dot product is zero. Thus the dot product combines both the length
of the vectors, and their angle (as can be seen by the famous formula
x -y = |z||y| cosf but easier to work with than either length or angle
because it is (bi-)linear (while length and angle individually are not
linear quantities).

R" as an inner product space II. One doesn’t have to use the dot
product as the inner product; other dot products are possible. For
instance, one could endow R" with the non-standard inner product

(z,y) =10z - y,

so for instance ((1,2),(3,4))" = 110. While this is not the standard
inner product, it still obeys the three properties of linearity, conju-
gate symmetry, and positivity (why?), so this is still an inner product
(though to avoid confusion we have labeled it as (, )" instead of (,). The
situation here is similar to bases of vector spaces; a vector space such as
R" can have a standard basis but also have several non-standard bases
(for instance, we could multiply every vector in the standard basis by
10), and the same is often true of inner products. However in the vast
majority of cases we will use a standard inner product.
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e More generally, we can multiply any inner product by a positive con-
stant, and still have an inner product.

¢ R as an inner product space. A special case of the previous example
of R" with the standard inner product occurs when n = 1. Then our
inner product space is just the real numbers, and the inner product is
given by the ordinary product: (z,y) := zy. For instance (2,3) = 6.
Thus, plain old multiplication is itself an example of an inner product
space.

e C as an inner product space. Now let’s look at the complex num-
bers C, which is a one-dimensional complez vector space (so the field of
scalars is now C). Here, we could reason by analogy with the previous
example and guess that (z,w) := zw would be an inner product, but
this does not obey either the conjugate-symmetry property or the pos-
itivity property: if z were a complex number, then (z,z) = 2? would
not necessarily be a positive real number (or even a real number); for
instance (7,7) = —1.

e To fix this, the correct way to define an inner product on C is to
set (z,w) := 2w; in other words we have to conjugate the second
factor. This inner product is now linear in the first variable (why?)
and conjugate-symmetric (why?). To verify positivity, observe that
(a+bi,a+bi) = (a+ bi)(a — bi) = a® 4+ b* which will be a positive real
number if a + b7 is non-zero.

e C" as an inner product space. Now let’s look at the complex vector
space
C":={(z1,22,---,2n) : 21,22,---,2n € C}.

This is just like R™ but with the scalars being complex instead of real;
for instance (3,1 + 4, 3i) would lie in C? but it wouldn’t be a vector in
R3. We can define an inner product here by

<(Z15227 .- -,Zn): (wlaw% s awn)> = le_1+ Z2w_2+ .ot an_nu

note how this definition is a hybrid of the R" inner product and the C
inner product. This is an inner product space (why?).
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e Functions as an inner product space. Consider C([0,1];R), the
space of continuous real-valued functions from the interval [0, 1] to R.
This is an infinite-dimensional real vector space, containing such func-
tions as sin(z), 22 + 3, 1/(x + 1), and so forth. We can define an inner
product on this space by defining

(f.g) = / f(@)g(z) da;

for instance,

4 3
T7\n

1
1
<$+1,x2):/ ($+1)x2d$:(%+—)|0:1+
0

Note that we need the continuity property in order to make sure that
this integral actually makes sense (as opposed to diverging to infinity or
otherwise doing something peculiar). One can verify fairly easily that
this is an inner product space; we just give parts of this verification.
One of the things we have to show is that

(fi+ f2,9) = (f1,9) + (f2,9),

but this follows since the left-hand side is

/0 (1) + fol@))g(z) di = / f1(2)g(z) d+ / f(@)g() dz = (f1, )+ for ).

To verify positivity, observe that

0= s

The function f(z)? is always non-negative, and if f is not the zero
function on [0, 1], then f(z)? must be strictly positive for some x €
[0,1]. Thus there is a strictly positive area under the graph of f(z)?,
and so fol f(z)?* dz > 0.

e One can view this example as an infinite-dimensional version of the
finite-dimensional inner product space example of R". To see this,
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let N be a very large number. Remembering that integrals can be
approximated by Riemann sums, we have (non-rigorously) that

| @) dem Y 1G5

or in other words

()% PG TG ) - (00 )03

and the right-hand side resembles an example of the inner product on
R" (admittedly there is an additional factor of ~, but as observed
before, putting a constant factor in the definition of an inner product
just gives you another inner product.

Functions as an inner product space II. Consider C([—1,1];R),
the space of continuous real-valued functions on [—1,1]. Here we can
define an inner product as

(f.9) = /_1f(:r)g(x) dz.

Thus for instance

) ! ) ot 2t 2
(x—i—l,x)—/_l(x—l—l)x dx—(4 + 3)|,1— 3

Note that this inner product of x + 1 and z? was different from the
inner product of z + 1 and z? given in the previous example! Thus it is
important, when dealing with functions, to know exactly what the do-
main of the functions is, and when dealing with inner products, to know
exactly which inner product one is using - confusing one inner product
for another can lead to the wrong answer! To avoid confusion, one
sometimes labels the inner product with some appropriate subscript,
for instance the inner product here might be labeled () o(11R) and

the previous one labeled (,) c.R)-

Functions as an inner product space III. Now consider C(]0, 1]; C),
the space of continuous complex-valued functions from the interval [0, 1]
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to C; this includes such functions as sin(z), 2? + iz — 3 + i, i/(x — 1),
and so forth. Note that while the range of this function is complex,
the domain is still real, so z is still a real number. This is a infinite-
dimensional complex vector space (why?). We can define an inner
product on this space as

(fr9) = /0 f(l“)@ dz.

Thus, for instance

ot it i

<xz,x+i>=/0 (i) dx:(z_?)ozi_g_

This can be easily verified to be an inner product space. For the posi-
tivity, observe that

.= [ 1@ ar= [ 1)

Even though f(z) can be any complex number, |f(z)|> must be a non-
negative real number, and an argument similar to that for real functions
shows that fol |f(x)|? dz is a positive real number when f is not the

zero function on [0, 1].

Polynomials as an inner product space. The inner products in
the above three examples work on functions. Since polynomials are a
special instance of functions, the above inner products are also inner
products on polynomials. Thus for instance we can give P3;(R) the
inner product

1
(f9) = [ f@o(o) da,
0
so that for instance

1 4
2 3 zt 1
— d = — = —.
<.T,CE > A z z 4 ‘0 4

Or we could instead give P;(R) a different inner product
1
()= [ 1@)(o) do,
-1
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so that for instance

1 4
(r,2?) :/ 7 dr = x—\; = 0.
_1 4
Unfortunately, we have here a large variety of inner products and it
is not obvious what the “standard” inner product should be. Thus
whenever we deal with polynomials as an inner product space we shall
be careful to specify exactly which inner product we will use. However,
we can draw one lesson from this example, which is that if V' is an inner
product space, then any subspace W of V is also an inner product
space. (Note that if the properties of linearity, conjugate symmetry,
and positivity hold for the larger space V', then they will automatically
hold for the smaller space W (why?)).

Matrices as an inner product space. Let M,,.,(R) be the space
of real matrices with m rows and n columns; a typical element is

All A12 ce Aln
A= f421 f422 .- f42n
Aml Am2 s Amn

This is a mn-dimensional real vector space. We can turn this into an
inner product space by defining the inner product

i=1 j=1

i.e. for every row and column we multiply the corresponding entries of
A and B together, and then sum. For instance,

12 5 6
<<3 4),(7 8))—1><5+2><6+3><7+4><8—70.

It is easy to verify that this is also an inner product; note how similar
this is to the standard R" inner product. This inner product can also
be written using transposes and traces:

(A, B) = tr(ABY).
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To see this, note that AB? is an m x m matrix, with the top left entry
being A1 By1 + A19Bia+. ..+ Ay, By, the second entry on the diagonal
being Ay Boy + A Bas + . .. + Aoy Bay, and so forth down the diagonal
(why?). Adding these together we obtain (A, B). For instance,

a((12)(5 6 ”)_tr 1X54+2%x6 1X7+2x8
34)\78) 7"\ 3x5+4x5 3xT7T+4x8

:1><5+2><6+3><7+4><8:(<é i),(? g)

Matrices as an inner product space II. Let M,,.,(C) be the
space of complex matrices with m rows and n columns; this is an mn-
dimensional complex vector space. This is an inner product space with

inner product

i=1 j=1

It is not hard to verify that this is indeed an inner product space. Unlike
the previous example, the inner product is not given by the formula
(A, B) = tr(AB?"), however there is a very similar formula. Define the
adjoint Bt of a matrix to be the complex conjugate of the transpose
Bt i.e. Bl is the same matrix as B? but with every entry replaced by
its complex conjugate. For instance,

. . +

1+2 3+4 1-2 5-—6i 9—10i
oo TS ) =g 7o8i 11-12 )
94+10i 11+ 12

The adjoint is the complex version of the transpose; it is completely
unrelated to the adjugate matrix in the previous week’s notes. It is
easy to verify that (A, B) = tr(ABT).

(Optional remarks) To summarize: many of the vector spaces we have
encountered before, can be upgraded to inner product spaces. As we
shall see, the additional capabilities of inner product spaces can be
useful in many applications when the more basic capabilities of vec-
tor spaces are not enough. On the other hand, inner products add
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complexity (and possible confusion, if there is more than one choice
of inner product available) to a problem, and in many situations (for
instance, in the last six weeks of material) they are unnecessary. So
it is sometimes better to just deal with bare vector spaces, with no
inner product attached; it depends on the situation. (A more subtle
reason why sometimes adding extra structure can be bad, is because
it reduces the amount of symmetry in a situation; it is relatively easy
for a transformation to be linear (i.e. it preserves the vector space
structures of addition and scalar multiplication) but it is much harder
to be isometric (which means that it not only preserves addition and
scalar multiplication, but also inner products as well.). So if one insists
on dealing with inner products all the time, then one loses a lot of
symmetries, because there is more structure to preserve, and this can
sometimes make a problem appear harder than it actually is. Some of
the deepest advances in physics, for instance, particularly in relativ-
ity and quantum mechanics, were only possible because the physicists
removed a lot of unnecessary structure from their models (e.g. in rel-
ativity they removed separate structures for space and time, keeping
only something called the spacetime metric), and then gained so much
additional symmetry that they could then use those symmetries to dis-
cover new laws of physics (e.g. Einstein’s law of gravitation).)

Some basic properties of inner products:

From the linearity and conjugate symmetry properties it is easy to see
that (v,w + w') = (v, w) + (v, w') and (v, cw) = ¢(v, w) for all vectors
v, w,w" and scalars ¢ (why?) Note that when you pull a scalar ¢ out of
the second factor, it gets conjugated, so be careful about that. (Another
way of saying this is that the inner product is conjugate linear, rather
than linear, in the second variable. Because the inner product is linear
in the first variable and only sort-of-linear in the second, it is sometimes
said that the inner product is sesquilinear (sesqui is Latin for “one and
a half”).

The inner product of 0 with anything is 0: (0,v) = (v,0) = 0. (This is
an easy consequence of the linearity (or conjugate linearity) - Why?).
In particular, (0,0) = 0. Thus, by the positivity property, (v,v) is
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positive if v is non-zero and zero if v is zero. In particular, if we ever
know that (v,v) = 0, we can deduce that v itself is 0.

Inner products and length

Once you have an inner product space, you can then define a notion of
length:

Definition Let V be an inner product space, and let v be a vector
of V. Then the length of v, denoted ||v||, is given by the formula

|v|| := v/ {v,v). (In particular, (v,v) = ||v|?).

Example In R? with the standard inner product, the vector (3, 4) has
length

13, 9)[I = V((3,4), (3,4)) = V32 + 42 = 5.

If instead we use the non-standard inner product (z,y) = 10z - y, then
the length is now

13,91 = V((3,4), (3,4)) = V10(3? + 42) = 5V/10.

Thus the notion of length depends very much on what inner product
you choose (although in most cases this will not be an issue since we
will use the standard inner product).

From the positivity property we see that every non-zero vector has a
positive length, while the zero vector has zero length. Thus ||v|| = 0 if
and only if v = 0.

If ¢ is a scalar, then
levll = Ve, ev) = /ee(v, v) = V[Pl = |¢]|]v].

Example In a complex vector space, the vector (3 + 4i)v is five times
as long as v. The vector —v has exactly the same length as v.

The inner product in some special cases can be expressed in terms of
length. We already know that (v,v) = |[v||>. More generally, if w is a
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positive scalar multiple of v (so that v and w are parallel and in the
same direction), then w = cv for some positive real number ¢, and

2
|

(v, w) = (v, cv) = v, v) = cl|v]|” = |vllllev]] = [[v]l]|wl,

i.e. when v and w are pointing in the same direction then the inner
product is just the product of the norms. In the other extreme, if w is

a negative scalar multiple of v, then w = —cv for some positive ¢, and
(v,w) = (v, —ev) = —c(v,v) = —c||v|]”
= —lvlll = elllvll = =llvlll] = cvl] = =lv[l[[wl],

and so the inner product is negative the product of the norms. In
general the inner product lies in between these two extremes:

Cauchy-Schwarz inequality Let V be an inner product space. For
any v,w € V, we have

[{v, W) < Jlvlf|w]l-

Proof. If w = 0 then both sides are zero, so we can assume that w # 0.
From the positivity property we know that (v,v) > 0. More generally,
for any scalars a, b we know that (av + bw, av + bw) > 0. But

(av + bw,av + bw) = alv,av + bw) + b{w, av + bw)
= aa(v,v) + ab(v,w) + ba{w, v) + bb{w, w)
= lal?[[v]* + ab{v, w) + ba(v, w) + |bf?||w]>

Since (av + bw, av +bw) > 0 for any choice of scalars a, b, we thus have
la||v]|* + ab(v, w) + ba{v, w) + [bf*|Jw]* > 0

for any choice of scalars a,b. We now select a and b in order to obtain
some cancellation. Specifically, we set

a:= ||w|*b:= —(v,w).
Then we see that

[wl*lo]* = llwl*(v, w) (v, w) = (v, w)||lw]*{v, w) + [(v, w)*[|w]]3 = 0;
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this simplifies to
lwll*lvll* > [lw][*|(v, w) .

Dividing by ||w||? (recall that w is non-zero, so that ||w]|| is non-zero)
and taking square roots we obtain the desired inequality. U

Thus for real vector spaces, the inner product (v, w) always lies some-
where between +||v||||w| and —||v||||w]|]. For complex vector spaces,
the inner product (v, w) can lie anywhere in the disk centered at the
origin with radius ||v||||w]|. For instance, in the complex vector space
C,if v =3+ 4i and w = 4 — 3i then (v, w) = vw = 251, while ||v]| =5
and [|w|| = 5.

The Cauchy-Schwarz inequality is extremely useful, especially in anal-
ysis; it tells us that if one of the vectors v, w have small length then
their inner product will also be small (unless of course the other vector
has very large length).

Another fundamental inequality concerns the relationship between length
and vector addition. It is clear that length is not linear: the length of
v + w is not just the sum of the length of v and the length of w. For
instance, in R?, if v := (1,0) and w = (0,1) then |jv +w]|| = ||(1,1)| =
V2# 141 =|| + ||w|. However, we do have

Triangle inequality Let V' be an inner product space. For any v, w €
V', we have
[[v +wl| < [Jv][ + [[w]l-

Proof. To prove this inequality, we can square both sides (note that
this is OK since both sides are non-negative):

lo+wl|* < (vl + flwl])*.
The left-hand side is
(v+w,v+w) = (v,v) + (v,w) + (w,v) + (w, w).

The quantities (v,v) and {w,w) are just ||v||* and ||wl||® respectively.
From the Cauchy-Schwarz inequality, the two quantities (v, w) and

(w, v) have absolute value at most ||v||||w]||. Thus

(v+w,v+w) < |l* +[[vllllwl + lolllwl + llwl* = (vl + [lwl)?
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as desired. O

The reason this is called the triangle inequality is because it has a
natural geometric interpretation: if one calls two sides of a triangle v
and w, so that the third side is v + w, then the triangle inequality says
that the length of the third side is less than or equal to the sum of
the lengths of the other two sides. In other words, a straight line has
the shortest distance between two points (at least when compared to
triangular alternatives).

The triangle inequality has a couple of variants. Here are a few:

lo = wll < joll + [lwll

lo +wll > [jo]] = [lwll
[o +wll = [Jw]] = [lv]]
lv —wl| = J|vf| = [wll
[l —wl| = Jlwl =[]l

Thus for instance, if v has length 10, and w has length 3, then both v+w
and v —w have length somewhere between 7 and 13. (Can you see this
geometrically?). These inequalities can be proven in a similar manner
to the original triangle inequality, or alternatively one can start with
the original triangle inequality and do some substitutions (e.g. replace

w by —w, or replace v by v — w, on both sides of the inequality; try
this!).
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