Math 115A - Week 6
Textbook sections: 3.1-5.1
Topics covered:

Review: Row and column operations on matrices

Review: Rank of a matrix

Review: Inverting a matrix via Gaussian elimination

Review: Determinants
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Review: Row and column operations on matrices

e We now quickly review some material from Math 33A which we will
need later in this course. The first concept we will need is that of an
elementary row operation.

e An elementary row operation takes an mxn matrix as input and returns
a different m x n matrix as output. (In other words, each elementary
row operation is a map from M,,«,(R) to Mp,«n(R). There are three
types of elementary row operations:

e Type 1 (row interchange). This type of row operation interchanges
row ¢ with row j for some i,j € {1,2,...,m}. For instance, the opera-
tion of interchanging rows 2 and 4 in a 4 X 3 matrix would change

to



Observe that the final matrix can be obtained from the initial matrix
by multiplying on the left by the 4 x 4 matrix

o O O
— o O O
O = O O
O O = O

which is the identity matrix with rows 2 and 4 switched. (Why?) Thus
for instance

1 2 3 1 000 1 2 3
10 11 12 | [ 0 0 0 1 4 5 6
7 8 9 10010 7 8 9
4 5 6 0100 10 11 12

and more generally, if A is a 4 X 3 matrix, then the interchange of rows
2 and 4 replaces A with FA. We refer to E' as an 4 x 4 elementary
matriz of type 1.

Also observe that row interchange is its own inverse; if one replaces A
with F'A, and then replaces FA with FEA (i.e. we interchange rows
2 and 4 twice), we get back to where we started, because EE = I,.

Type 2 (row multiplication) This type of elementary row operation
takes a row ¢ and multiplies it by a non-zero scalar c. For instance, the
elementary row operation that multiplies row 2 by 10 would map

—_ =g =
— o Ol N
— o o W

to
1 2 3

40 50 60
7 8 9
10 11 12



This operation is the same as multiplying on the left by the matrix

o O O
OOE‘O
o~ O O
_ o o O

which is what one gets by starting with the identity matrix and multi-
plying row 2 by 10. (Why?) We call E an example of a 4 x4 elementary
matriz of type 2.

Row multiplication is invertible; the operation of multiplying a row ¢
by a non-zero scalar c is inverted by multiplying a row ¢ by the non-zero
scalar 1/c. In the above example, the inverse operation is given by

E7l= /10

o= O O
— o o O

0
1
0
0

o O O

i.e. to invert the operation of multiplying row 2 by 10, we then multiply
row 2 by 1/10.

Type 3 (row addition) For this row operation we need two rows i,
j, and a scalar c. The row operation adds ¢ multiples of row ¢ to row
j. For instance, if one were to add 10 multiples of row 2 to row 3, then

AN i N
— co Ot N
_— O O W

would become

-
IS
o W

47 58 69
10 11 12



Equivalently, this row operation amounts to multiplying the original
matrix on the left by the matrix

o O O -
O~ = O
)
o= O O
—_ o o O

which is what one gets by starting with the identity matrix and adding
10 copies of row 2 to row 3. (Why?) We call E an example of a 4 x 4
elementary matriz of type 3. It has an inverse

0
1

o= OO
= o O O

1
0
0 -10
0

thus to invert the operation of adding 10 copies of row 2 to row 3, we
subtract 10 copies of row 2 to row 3 instead.

Thus to summarize: there are special matrices, known as elementary
row matrices, and an elementary row operation amounts to multiply-
ing a given matrix on the left by one of these elementary row matrices.
Each of the elementary row matrices is invertible, and the inverse of an
elementary matrix is another elementary matrix. (In the above discus-
sion, we only verified this for specific examples of elementary matrices,
but it is easy to see that the same is true for general elementary ma-
trices. See the textbook).

There are also elementary column operations, which are very similar to
elementary row operations, but arise from multiplying a matrix on the
right by an elementary matrix, instead of the left. For instance, if one
multiplies a matrix A with 4 columns on the right by the elementary
matrix

SO o=
— o O O
o= o o
o O = O



then this amounts to switching column 2 and column 4 of A (why?).
This is a type 1 (column interchange) elementary column move. Simi-
larly, if one multiplies A on the right by

10 00

0 10 0 O
E:= 00 10 |°

00 01

then this amounts to multiplying column 2 of A by 10 (why?). This is
a type 2 (column multiplication) elementary column move. Finally, if
one multiplies A on the right by

o O O
O = = O
=)

o = O O
—_ o O O

then this amounts to adding 10 copies of column 3 to column 2 (why?).
This is a type 3 (column addition) elementary column move.

Elementary row (or column) operations have several uses. One impor-
tant use is to simplify systems of linear equations of the form Ax = b,
where A is some matrix and z, b are vectors. If F is an elementary
matrix, then the equation Az = b is equivalent to FAzx = Eb (why are
these two equations equivalent? Hint: F is invertible). Thus one can
simplify the equation Az = b by performing the same row operation
to both A and b simultaneously (one can concatenate A and b into a
single (artificial) matrix in order to do this). Eventually one can use
row operations to reduce A to row-echelon form (in which each row is
either zero, or begins with a 1, and below each such 1 there are only
zeroes), at which point it becomes straightforward to solve for Az = b
(or to determine that there are no solutions). We will not review this
procedure here, because it will not be necessary for this course; see
however the textbook (or your Math 33A notes) for more information.
However, we will remark that every matrix can be row-reduced into
row-echelon form (though there is usually more than one way to do
S0).



e Another purpose of elementary row or column operations is to deter-
mine the rank of a matrix, which is a more precise measurement of its
invertibility. This will be the purpose of the next section.

* % ok % %

Rank of a matrix

e Recall that the rank of a linear transformation T : V — W is the
dimension of its range R(T'). Rank has a number of uses, for instance
it can be used to tell whether a linear transformation is invertible:

e Lemma. Let V and W be n-dimensional spaces, and let dim(V) =
dim(W) =n. Let T : V. — W be a linear transformation. Then T is
invertible if and only if rank(7T) = n (i.e. T has the maximum rank
possible).

e Proof. If rank(7) = n, then R(T") has the same dimension n as W.
But R(T) is a subspace of W, so this forces R(T) to actually equal
W (see Theorem 2 of Week 2 notes). Thus T is onto. Also, from the
dimension theorem we see that nullity(7") = 0, and so 7" is one-to-one.
Thus T is invertible.

e Conversely, if T is invertible, then it is one-to-one, hence nullity(7") = 0,
and hence by the dimension theorem rank(7") = n. O

e One interesting thing about rank is that if you multiply a linear trans-
formation on the left or right by an invertible transformation, then the
rank doesn’t change:

e Lemma 1. Let T : V — W be a linear transformation from one
finite-dimensional space to another, let S : U — V be an invertible
transformation, and let @) : W — Z be another invertible transforma-
tion. Then

rank(7") = rank(QT) = rank(7'S) = rank(QTS).

e Proof. First let us show that rank(7) = rank(7'S). To show this,
we first compute the ranges of T : V — W and TS : U — W. By
definition of range, R(T') = T'(V), the image of V under 7. Similarly,
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R(TS) =TS(U). But since S : U — V is invertible, it is onto, and so
S(U) =V. Thus

R(TS) = TS(U) = T(S(U)) = T(V) = R(T)

and so
rank(7'S) = rank(7T).

A similar argument gives that rank(Q7T'S) = rank(QT) (just replace
T by RT in the above. To finish the argument we need to show that
rank(QT') = rank(T"). We compute ranges again:

R(QT) = QT(V) = Q(T(V)) = Q(R(T)),
so that
rank(QT) = dim(Q(R(T))).
But since () is invertible, we have
dim(Q(R(T))) = dim(R(T)) = rank(T)
(see Q3 of the midterm!). Thus rank(Q7T) = rank(7’) as desired. [O.

Now to compute the rank of an arbitrary linear transformation can get
messy. The best way to do this is to convert the linear transform to a
matrix, and compute the rank of that.

Definition If A is a matrix, then the rank of A, denoted rank(A), is
defined by rank(A) = rank(L,).

Example Consider the matrix

1 000
0100
A= 0010
0000
Then L4 is the transformation
./I,‘l 1 0 0 0 .'L'l .’L‘l
L T _ 01 0O i) _ i)
A T3 0010 T3 T3
Xy 00 00O T4 0



The range of this operator is thus three-dimensional (why?) and so the
rank of A is 3.

Let A be an mxn matrix, so that L4 maps R" to R™. Let (e, e, ..., €y)

be the standard basis for R". Since ey,...,e, span R", we see that
La(e1),La(ez),-..,La(e,)span R(Ly) (see Theorem 3 of Week 3 notes).

Thus the rank of A is the dimension of the space spanned by L4(e1), La(es), ..., La(ey).
But Ly4(e;) is simply the first column of A (why?), L4(ez) is the second

column of A, etc. Thus we have shown

Lemma 2. The rank of a matrix A is equal to the dimension of the
space spanned by its columns.

Example If A is the matrix used in the previous example, then the

1 0
rank of A is the dimension of the span of the columns 8 , (1] ,
0 0
0 0
0 0 . . . . i
1o I this span is easily seen to be three-dimensional.
0 0

As one corollary of this Lemma, if only k& of the columns of a matrix
are non-zero, then the rank of the matrix can be at most & (though it
could be smaller than k; can you think of an example?).

This Lemma does not necessarily make computing the rank easy, be-
cause finding the dimension of the space spanned by the columns could
be difficult. However, one can use elementary row or column operations
to simplify things. From Lemma 1 we see that if E' is an elementary
matrix and A is a matrix, then FA or AFE has the same rank as A
(provided that the matrix multiplication makes sense, of course). Thus
elementary row or column operations do not change the rank. Thus, we
can use these operations to simplify the matrix into row-echelon form.

Lemma 3. Let A be a matrix in row-echelon form (thus every row is
either zero, or begins with a 1, and each of those 1s has nothing but Os
below it). Then the rank of A is equal to the number of non-zero rows.
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e Proof. Let’s say that A has k£ non-zero rows, so that we have to show
that A has rank k. Each column of A can only has the top k entries
non-zero; all entries below that must be zero. Thus the span of the
columns of A is contained in the k-dimensional space

i

1 x1,..., T € R},

and so the rank is at most k.

e Now we have to show that the rank is at least k. To do this it will
suffice to show that every vector in V' is in the span of the columns of
A, since this will mean that the span of the columns of A is exactly

x1

the k-dimensional space V. So, let us pick a vector v := 'g’“ in

0
V. Since A is in row-echelon form, the k* row of A must contain a 1
somewhere, which means that there is a column whose k' entry is 1
(with all entries below that equal to 0). If we subtract x; multiples of
this column from v, then we get a new vector whose k" entry (and all
the ones below it) are zero.

e Now we look at the (k — 1) row. Again, since we are in row-echelon
form, there is a 1 somewhere, with Os below it; this implies that there is
a column whose (k—1)™ entry is 1 (with all entries below that equal to
0). Thus we can subtract a multiple of this vector to get a new vector
whose (k — 1) entry (and all the ones below it) are zero.

e Continuing in this fashion we can subtract multiples of various columns
of A from v until we manage to zero out all the entries. In other words,
we have expressed v as a linear combination of columns in A, and hence



v is in the span of the columns. Thus the span of the columns is exactly
V', and we are done. .

Thus we now have a procedure to compute the rank of a matrix: we
row reduce (or column reduce) until we reach row-echelon form, and
then just count the number of non-zero rows. (Actually, one doesn’t
necessarily have to reduce all the way to row-echelon form; it may be
that the rank becomes obvious some time before then, because the span
of the columns can be determined by inspection).

If one only uses elementary row operations, then usually one cannot
hope to make the matrix much simpler than row-echelon form. But if
one is allowed to also use elementary column operations, then one can
get the matrix into a particularly simple form:

Theorem 4. Let A be an m x n matrix with rank . Then one can
use elementary row and column matrices to place A in the form

( I’I" 07’)(’”;*"' )
OmeX'r Omfv‘xnfr ’
where I, is the r X r identity matrix, and 0,,,,, is the m X n zero matrix.

(Thus, we have reduced the matrix to nothing but a string of r ones
down the diagonal, with everything else being zero.

Proof To begin with, we know that we can use elementary row opera-
tions to place A in row-echelon form. Thus the first r rows begin with
a 1, with Os below the 1, while the remaining m — r rows are entirely
Zer0.

Now consider the first row of this reduced matrix; let’s suppose that it is
not identically zero. After some zeroes, it has a 1, and then some other
entries which may or may not be zero. But by subtracting multiples of
the column with 1 in it from the columns with other non-zero entries
(i.e. type 3 column operations), we can make all the other entries in
this row equal to zero. Note that these elementary column operations
only affect the top row, leaving the other rows unchanged, because the
column with 1 in it has Os everywhere else.
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e A similar argument then allows one to take the second row of the
reduced matrix and make all the entries (apart from the leading 1)
equal to 0. And so on and so forth. At the end of this procedure, we
get that the first r rows each contain one 1 and everything else being
zero. Furthermore, these 1s have Os both above and below, so they lie
in different columns. Thus by switching columns appropriately (using
type 1 column operations) we can get into the form required for the
Theorem. U

e Let A be an m x n matrix with rank r. Every elementary row opera-
tion corresponds to multiplying A on the left by an m x m elementary
matrix, while every elementary column operation corresponds to multi-
plying A on the right by an n xn elementary matrix. Thus by Theorem
4, we have

Ir Or n—r
ElEQ...EaAFlFQ...Fb:( % ),
O’ITL—'I'X’I' Om—rxn—r
where Ei, ..., E, are elementary m X m matrices, and F\F;...F;, are
elementary n X n matrices. All the elementary matrices are invertible.
After some matrix algebra, this becomes

IT' O’I'XTL—T'

0m—r><'r Om—rxn—r

A=E;'.  E;'E! < ) IR D

(why did the order of the matrices get reversed?). We have thus proven

e Proposition 5. Let A be an m x n matrix with rank . Then we have
an m X m matrix B which is a product of elementary matrices and an
n X n matrix C, also a product of elementary matrices such that

A — B ( I’I" 07’)(71*7‘ ) C

Om*’l"X’/' Om*’!‘XTL*T‘

e Note (from Q6 of Assignment 4) that the product of invertible matrices
is always invertible. Thus the matrices B and C above are invertible.

e Proposition 5 is an example of a factorization theorem, which takes a
general matrix and factors it into simpler pieces. There are many other
examples of factorization theorems which you will encounter later in
the 115 sequence, and they have many applications.

11



e Some more properties of rank. We know from Lemma 1 that rank of a
linear transformation is unchanged by multiplying on the left or right
by invertible transformations. Given the close relationship between
linear transformations and matrices, it is unsurprising that the same
thing is true for matrices:

e Lemma 6. Let A be an m X n matrix, B be an m X m invertible
matrix, and C' be an n X n invertible matrix. Then

rank(A) = rank(BA) = rank(AC) = rank(BAC).

e Proof. Since B is invertible, so is Lp (see Theorem 10 from Week 4
notes). Similarly L¢ is invertible. From Lemma 1 we have

rank(L,) = rank(LgLy) = rank(LsL¢) = rank(LgLsLc).
Since LgL 4 = Lpy, etc. we thus have
rank(Ly) = rank(Lps) = rank(L4c) = rank(Lpac)-
The claim then follows from the definition of rank for matrices. U

e Note that Lemma 6 is consistent with Proposition 5, since the matrix
Ir Orxn—r
has rank r.

Om—T‘XT Om—'I'XTL—T'

e One important consequence of the above theory concerns the rank of
a transpose A! of a matrix A. Recall that the transpose of an m x n
matrix is the n X m matrix obtained by reflecting around the diagonal,

so for instance .

2
4 (1357
6 | " \2468)

7 8

ot W =

Thus transposes swap rows and columns. From the definition of matrix
multiplication it is easy to verify the identity (AB)" = B'A* (why?). In
particular, if A is invertible, then I = I' = (AA™1)! = A*(A™1)!, which
implies that A? is also invertible.

12



Lemma 7 Let A be an m x n matrix with rank r. Then A* has the
same rank as A.

From Proposition 5 we have
_ Ir Orxnfr
A N B ( Om—rxr Om—rxn—r > C
Taking transposes of both sides we obtain
1 Opscrm—
t __ t r rXxm—r t
A N C ( On—rxr On—'r‘xm—'r‘ ) B ’

The inner matrix on the right-hand side has rank r. Since B and C are
invertible, so are B* and C*?, and so by Lemma 6 A’ has rank r, and we
are done. O

From Lemma 7 and Lemma 2 we thus have

Corollary 8. The rank of a matrix is equal to the dimension of the
space spanned by its rows.

As one corollary of this Lemma, if only & of the rows of a matrix are
non-zero, then the rank of the matrix can be at most k.

Finally, we give a way to compute the rank of any linear transformation
from one finite-dimensional space to another.

Lemma 9. Let T : V — W be a linear transformation, and let § and y
be finite bases for V' and W respectively. Then rank(7") = rank([T7}).

Proof. Suppose V is n-dimensional and W is m-dimensional. Then
the co-ordinate map @5 : V — R" defined by ¢g(v) := [v]? is an
isomorphism, as is the co-ordinate map ¢, : W — R™ defined by
¢y(w) = [w]”. Meanwhile, the map Lyry is a linear transformation
from R" to R™. The identity

[To]" = [T]}[v)’
can thus be rewritten as

¢(T) = Ly p(v)

13



and thus
Oy T = Liryy ¢s

and hence (since ¢z is invertible)
T = ¢ Ly bs-
Taking rank of both sides and using Lemma 6, we obtain
rank(7") = rank(L[T]g) = rank([77})
as desired. [l
e Example Let T : P3(R) — P3(R) be the linear transformation
Tf:=f-zaf,

thus for instance
Ta® = 2° — z(22) = —2°.

To find the rank of this operator, we let 3 := (1,z,2% %) be the
standard basis for P;(R). A simple calculation shows that

Ti=1; Tzx=0; Tz2*=—-2% Tz*=-22°,

SO
100 0
s 000 0
=100 =1 0
000 -2

This matrix clearly has rank 3 (row operations can convert it to row-
echelon form with three non-zero rows), so 7" has rank 3.

e The rank of a matrix measures, in some sense, how close to zero (or
how “degenerate”) a matrix is; the only matrix with rank 0 is the 0
matrix (why). The largest rank an m X n matrix can have is min(m, n)
(why? See Lemma 2 and Corollary 8). For instance, a 3 x 5 matrix can
have rank at most 3.

* % ok % %

Inverting matrices via row operations

14



Proposition 5 has the following consequence.

Lemma 10. Let A be an n X n matrix. Then A is invertible if and
only if it is the product of elementary n x n matrices.

Proof First suppose that A is the product of elementary matrices. We
already know that every elementary matrix is invertible; also from Q6
from the Week 4 homework, we know that the product of two invertible
matrices is also invertible. Applying this fact repeatedly we see that A
is also invertible.

Now suppose that A is invertible, thus L4 : R" — R" is invertible, and
in particular is onto. Thus R(L4) = R", and so rank(L,4) = n, and so
A itself must have rank n. By Proposition 5 we thus have

A:ElEg...EaInFl...Fb

where Ey, ..., E,, Fi, ..., F, are elementary n X n matrices. Since the
identity matrix I,, cancels out, we are done. O

This gives us a way to use row operations to invert a matrix A. Suppose
we manage to use a sequence of row operations E;, Fs, ..., E, in turn
a matrix A into the identity, thus

Ea...EgE]_A: I
Then by multiplying both sides on the right by A~ we get
E,...EBE ] = A"

Thus, if we concatenate A and I together, and apply row operations on
the concatenated matrix to turn the A component into I, then the [
component will automatically turn to A~. This is a way of computing
the inverse of A.

Example. Suppose we want to invert the matrix
1 2
e (1),

15



We combine A and the identity I, into a single matrix:

=550 1)

Then we row reduce to turn the left matrix into the identity. For
instance, by subtracting three copies of row 1 from row 2 we obtain

1 2 1 0
0 -2 =31

and then by adding row 2 to row 1 we obtain

10 -2 1
0 -2 -3 1)

Dividing the second row by —2 we obtain

(o 1] 355 L)

This the inverse of A is

=52 L )

since the elementary transformations which convert A to I, also con-
vert I, to A7L.

X %k sk ok ok

Determinants

e We now review a very useful characteristic of matrices - the determi-
nant of a matrix. The determinant of a square (n X n) matrix is a
number which depends in a complicated way on the entries of that
matrix. Despite the complicated definition, it has some very remark-
able properties, especially with regard to matrix multiplication, and
row and column operations. Unfortunately we will not be able to give
the proofs of many of these remarkable properties here; the best way
to understand determinants is by means of something called exterior
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algebra, which is beyond the scope of this course. Without the tools
of exterior algebra (in particular, something called a wedge product),
proving any of the fundamental properties of determinants becomes
very messy. So we will settle just for describing the determinant and
stating its basic properties.

The determinant of a 1 x 1 matrix is just its entry:

det(a) = a.

The 2 x 2 determinant is given by the formula

a b
det(c d) = ad — bc.

The n xn determinant is messier, and is defined in the following strange
way. For any row ¢ and column j, define the minor Aij of an n x n
matrix A to be the n — 1 x n — 1 matrix which is A with the i"* row
and j* column removed. For instance, if

a b ¢
A= d e f
g h 1
then
~ ~ d ~ d
All:(;{)’ AIQZ(Q{)a A13:<gz>7
etc.

This should not be confused with A;;, which is the entry of A in the
it" row and j** column. FOr instance, in the above example A;; = a
and A12 =b.

We can now define the n x n determine recursively in terms of the
n —1 determinant by what is called the cofactor expansion. To find the
determinant of an n x n matrix A, we pick a row ¢ (any row will do)

and set
n

j=1

17



For instance, we have

a c
det(| d e f :adet<e f)—bdet(d f>+cdet(d e),
g h i h 1 g 1 g h
or
a b ¢ b c a ¢ a b
det(| d e f :—ddet< . )+edet< . >—fdet< ),
g h i h i g 1 g h
or
a b oc b c a ¢ a b
det(| d e f :gdet< )—hdet( >+idet< >
g h i e f d f d e

It seems that this definition depends on which row you use to perform
the cofactor expansion, but the amazing thing is that it doesn’t! For
instance, in the above example, any three of the computations will lead
to the same answer, namely

aet — ahf — bdi + bg f + cdh — cge.

We would like to explain why it doesn’t matter which row (or column;
see below) to perform cofactor expansion, but it would require one to
develop some new material (on the signature of permutations) which
would take us far afield, so we will regretfully skip the derivation.

The quantities det(A%”) are sometimes known as cofactors. As one
can imagine, this cofactor formula becomes extremely messy for large
matrices (to compute the determinant of an n x n matrix, the above
formula will eventually require us to add or subtract n! terms together!);
there are easier ways to compute using row and column operations
which we will describe below.

One can also perform cofactor expansion along a column j instead of

a row 17:
n

det(A) := Y (—1)" A;; det(4y;).

=1

18



This ultimately has to do with a symmetry property det(A?) = det(A)
for the determinant, although this symmetry is far from obvious given
the definition.

A special case of cofactor expansion: if A has the form

c 0...0
A= . ,

where the 0...0 are a string of n — 1 zeroes, the : represent a column
vector of length n— 1, and B is an n — 1 x n — 1 matrix, then det(A4) =
cdet(B). In particular, from this and induction we see that the identity
matrix always has determinant 1: det(l,) = 1. Also, we see that
the determinant of a lower-diagonal matrix is just the product of the
diagonal entries; for instance

a 0 0

det(| d e 0 | = aei.

g h 1
Because of the symmetry property we also know that upper-diagonal
matrices work the same way:

So in particular, diagonal matrices have a determinant which is just
multiplication along the diagonal:

det(

= qgesl.

o O
o o O
SO O

An n x n matrix can be thought of as a collection of n row vectors in
R", or as a collection of n column vectors in R". Thus one can talk
about the determinant det(vq,...,v,) of n column vectors in R", or
the determinant of n row vectors in R", simply by arranging those n
row or column vectors into a matrix. Note that the order in which we
arrange these vectors will be somewhat important.
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e Example: the determinant of the two vectors ( Z ) and ( Z ) is
ad — be.

e The determinant of n vectors has two basic properties. One is that it
is linear in each column separately. What we mean by this is that

det(vl, vy Vj—1, U5 + Wi, Vj41,y - - - ,’Un) =
det(vl, ey Ui—1, V5, Vj41y - - - ’Un) + det(vl, ey Vi1, Wy, Vg1, - -y ’Un)
and
det(vy, ..., V-1, €V}, Vjt1,-..,V,) = cdet(vy, ...,V 1,0j, Vjt1,. .., Up)-

This linearity can be seen most easily by cofactor expansion in the
column j.

e The other basic property it has is anti-symmetry: if one switches
two column vectors (not necessarily adjacent), then the determinant
changes sign. For instance, when n = 5,

det(vy, vs, v3, Vg, v2) = — det(v1, Ve, v3, V4, Us).

This is not completely obvious from the cofactor expansion definition,
although the presence of the factor (—1)**/ does suggest that some sort
of sign change might occur when one switches rows or columns. We
will not prove this anti-symmetry property here.

e (It turns out that the determinant is in fact the only expression which
obeys these two properties, and which also has the property that the
identity matrix has determinant one. But we will not prove that here).

e The same facts hold if we replace columns by rows; i.e. the determinant
is linear in each of the rows separately, and if one switches two rows
then the determinant changes sign.

e We now write down some properties relating to how determinants be-
have under elementary row operations.
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Property 1 If A is an n X n matrix, and B is the matrix A with two
distinct rows ¢ and j interchanged, then det(B) = —det(A4). (L.e. row
operations of the first type flip the sign of the determinant). This is
just a restatement of the antisymmetry property for rows.

c d a b
det(a b)——det<c d)'

Corollary of Property 1: If two rows of a matrix A are the same, then
the determinant must be zero.

Example:

Property 2 If A is an n X n matrix, and B is the matrix B but with
one row i multiplied by a scalar ¢, then det(B) = cdet(A). (L.e. row
operations of the second type multiply the determinant by whatever
scalar was used in the row operation). This is a special case of the
linearity property for the i"* row.

ka kb a b
det(c d)—kdet(cd>.

Corollary of Property 2: if a matrix A has one of its rows equal to zero,
then det(A) is zero (just apply this Property with ¢ = 0).

Example:

Property 3 If A is an n X n matrix, and B is the matrix B but with ¢
copies of one row 7 added to another row j, then det(B) = det(A). (Le.
row operations of the third type do not affect the determinant). This is
a consequence of the linearity property for the j* row, combined with
the Corollary to Property 1 (why?).

a+kc b+kd '\ _ a b
det(c d )-det(c d)'

Similar properties hold for elementary column operations (just replace
“row” by “column” throughout in the above three properties).

Example:

We can summarize the above three properties in the following lemma
(which will soon be superceded by a more general statement):
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e Lemma 11. If F is an elementary matrix, then det(F A) = det(F) det(A)
and det(AE) = det(A) det(E).

e This is because the determinant of a type 1 elementary matrix is easily
seen to be -1 (from Property 1 applied to the identity matrix), the
determinant of a type 2 elementary matrix (multiplying a row by c¢) is
easily seen to be ¢ (from Property 2 applied to the identity matrix),
and the determinant of a type 3 elementary matrix is easily seen to
be 1 (from Property 3 applied to the identity matrix). In particular,
elementary matrices always have non-zero determinant (recall that in
the type 2 case, ¢ must be non-zero).

e We are now ready to state one of the most important properties of a
determinant: it measures how invertible a matrix is.

e Theorem 12. An n x n matrix is invertible if and only if its determi-
nant is non-zero.

e Proof Suppose A is an invertible n xn matrix. Then by Lemma 10, it is
the product of elementary matrices, times the identity I,,. The identity
I,, has a non-zero determinant: det([,) = 1. Each elementary matrix
has non-zero determinant (see above), so by Lemma 11 if a matrix has
non-zero determinant, then after multiplying on the left or right by
an elementary matrix it still has non-zero determinant. Applying this
repeatedly we see that A must have non-zero determinant.

Now conversely suppose that A had non-zero determinant. By Lemma,
11, we thus see that even after applying elementary row and column
operations to A, one must still obtain a matrix with non-zero deter-
minant. In particular, in row-echelon form A must still have non-zero
determinant, which means in particular that it cannot contain any rows
which are entirely zero. Thus A has full rank n, which means that
Ly:R"™ — R" is onto. But then L, would also be one-to-one by the
dimension theorem - see Lemma 2 of Week 3 notes, hence L4 would be
invertible and hence A is invertible. O

e Not only does the determinant measure invertibility, it also measures
linear independence.
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e Corollary 13. Let v1,...,v, be n column vectors in R". Then
v1,..., 0, are linearly dependent if and only if det(v;,...,v,) = 0.

e Proof Suppose that det(vy,...,v,) = 0, so that by Theorem 12 the
n X n matrix (vy, ..., v,) is not invertible. Then the linear transforma-
tion L(y,, . »,) cannot be one-to-one, and so there is a non-zero vector

ax
Qo . .
in the null space, i.e.

Qp

or in other words
avy + ...+ a,v, =0,

i.e. wy,...,v, are not linearly independent. The converse statement
follows by reversing all the above steps and is left to the reader. U

e Note that if one writes down a typical n X n matrix, then the determi-
nant will in general just be some random number and will usually not
be zero. So “most” matrices are invertible, and “most” collections of n
vectors in R" are linearly independent (and hence form a basis for R",
since R" is n-dimensional).

e Properties 1,2,3 also give a way to compute the determinant of a ma-
trix - use row and column operations to convert it into some sort of
triangular or diagonal form, for which the determinant is easy to com-
pute, and then work backwards to recover the original determinant of
the matrix.

e Example. Suppose we wish to compute the determinant of

1
A=1 2
3

NSRS )

3
4
1
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We perform row operations. Subtracting two copies of row 1 from row
2 and using Property 3, we obtain

3
-2

1
det(A) =det | O
3 1

N O N

Similarly subtracting three copies of row 1 from row 2, we obtain

12 3
det(A) =det | 0 0 -2
0 -4 -8

Dividing the third row by —1/4 using Property 2, we obtain

;) 123
T det(A) =det | 0 0 —2
01 2

which after swapping two rows using Property 1, becomes
1 1 2 3
1 det(A)=det | 0 1 2

0 0 -2

But the right-hand side is triangular and has a determinant of —2.
Hence ; det(A) = —2, so that det(A) = —8. (One can check this using
the original formula for determinant. Which approach is less work?
Which approach is less prone to arithmetical error?)

We now give another important property of a determinant, namely its
multiplicative properties.

Theorem 14. If A and B are n x n matrices, then det(AB) =
det(A) det(B).

Proof First suppose that A is not invertible. Then L, is not onto
(cf. Lemma 2 of Week 3 notes), which implies that L4 Lp is not onto
(why? Note that the range of L4Lp must be contained in the range of
L,), so that AB is not invertible. Then by Theorem 12, both sides of
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det(AB) = det(A) det(B) are zero, and we are done. Similarly, suppose
that B is not invertible. Then Lp is not one-to-one, and so L4 Lp is not
one-to-one (why? Note that the null space of L must be contained in
the null space of LaLg). So AB is not invertible. Thus both sides are
again zero.

The only remaining case is when A and B are both invertible. By
Lemma 10 we may thus write

A:ElEz...Ea; B:FlFQ...Fb

where Ey,..., E,, F1, ..., F, are elementary matrices. By many appli-
cations of Lemma 11 we thus have

det(A) = det(FE;) det(Ey) ... det(E,)
and
det(B) = det(F}) det(Fy) . .. det(Fp).

But also
AB :El...EAFl...Fb

and so by taking det of both sides and using Lemma 11 many times
again we obtain

det(AB) = det(Ey) ...det(E4) det(F) ... det(Fp)

and by combining all these equations we obtain det(AB) = det(A) det(B)
as desired. O

Warning: The corresponding statement for addition is not true in
general, i.e. det(A + B) # det(A) + det(B) in general. (Can you think
up a counterexample? Even for diagonal matrices one can see this will
not work. On the other hand, we still have linearity in each row and
column).

Note that Theorem 14 supercedes Lemma 11, although we needed
Lemma 11 as an intermediate step to prove Theorems 12 and 14.
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e (Optional) Remember the symmetry property det(A') = det(A) we
stated earlier? It can now be proved using the above machinery. We
sketch a proof as follows. First of all, if A is non-invertible, then A’
is also non-invertible (why?), and so both sides are zero. Now if A is
invertible, then by Lemma 10 it is the product of elementary matrices:

A:ElEQ...Ea

and so
det(A) = det(Ey) . .. det(E,).

On the other hand, taking transposes (and recalling that transpose
reverses multiplication order) we obtain

A'=E... BB

and so
det(A") = det(E") ... det(EY).

But a direct computation (checking the three types of elementary ma-
trix separately) shows that det(E') = det(F) for every elementary
matrix, so

det(A") = det(E,) . ..det(E}).
Thus det(A*) = det(A) as desired.

X %k ok ok ok

Geometric interpretation of determinants (optional)

e This material is optional, and is also not covered in full detail. It
is intended only for those of you who are interested in the geometric
provenance of determinants.

e Up until now we’ve treated the determinant as a mysterious algebraic
expression which has a lot of remarkable properties. But we haven’t
delved much into what the determinant actually means, and why we
have any right to have such a remarkable characteristic of matrices. It
turns out that the determinant measures something very fundamental
to the geometry of R", namely n-dimensional volume. The one caveat is
that determinants can be either positive or negative, while volume can
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only be positive, so determinants are in fact measuring signed volume -
volume with a sign. (This is similar to how a definite integral fab f(z) dx
can be negative if f dips below the x axis, even though the “area under
the curve” interpretation of f(z) seems to suggest that integrals must
always be positive).

Let’s begin with R'. The determinant det(v;) of a single vector v; = (a)
in R is of course a, which is plus or minus the length |a| of that vector;
plus if the vector is pointing right, and minus if the vector is pointing
left. In the degenerate case v; = 0, the determinant is of course zero.

Now let’s look at R, and think about the determinant det(v;,vy) of
two vectors vy, vy in R?. This turns out to be (plus or minus) the area of
the parallelogram with sides v; and vo; plus if vy is anticlockwise of vy,
and minus if v, is clockwise of v;. For instance, det((1,0), (0,1)) is the
area of the square with sides (1,0),(0,1), i.e. 1. On the other hand,
det((0,1),(1,0)) is -1 because (0,1) is clockwise of (1,0). Similarly,
det((3,0),(0,1)) is 3, because the rectangle with sides (3,0), (0,1) has
area 3, and det((3,1),(0,1)) is also 3, because the parallelogram with
sides (3,1), (0,1) has the same area as the previous rectangle.

This parallelogram property can be proven using cross products (recall
that the cross product can be used to measure the area of a parallel-
ogram). It is also interesting to interpret Properties 1, 2, 3 using this
area interpretation. Property 1 says that if you swap the two vectors
vy and vy, then the sign of the determinant changes. Property 2 says
that if you dilate one of the vectors by ¢, then the area of the parallelo-
gram also dilates by ¢ (note that if ¢ is negative, then the determinant
changes sign, even though the area is of course always positive, because
you flip the clockwiseness of v; and vy). Property 3 says that if you
slide vy (say) by a constant multiple of vy, then the area of the par-
allelogram doesn’t change. (This is consistent with the familiar “base
x height” formula for parallelograms - sliding vy by v; does not affect
either the base or the height).

Note also that if v; and vy are linearly dependent, then their parallel-
ogram has area 0; this is consistent with Corollary 13.
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e Now let’s look at R?, and think about the determinant det(vy, vy, vs)
of three vectors in R3®. Thus turns out to be (plus or minus) the
volume of the parallelopiped with sides vy, vy, v3 (you may remember
this from Math 32A). To determine plus or minus, one uses the right-
hand rule: if the thumb is at v; and the second finger is at vs, and
the middle finger is at w3, then we have a plus sign if this can be
achieved using the right hand, and a minus sign if it can be achieved
using the left-hand. For instance, det((1,0,0), (0,1,0),(0,0,1)) = 1,
but det((0,1,0),(1,0,0),(0,0,1)) = —1. It is an instructive exercise
to interpret Properties 1,2,3 using this geometric picture, as well as
Corollary 13.

e The two-dimensional rule of “determinant is positive if vy clockwise of
v1” can be interpreted as a right-hand rule using a two-dimensional
hand, while the one-dimensional rule of “determinant is positive if v
is on the right” can be interpreted as a right-hand rule using a one-

dimensional hand.

e There is a similar link between determinant and n-dimensional volume
in higher dimensions n > 3, but it is of course much more difficult to vi-
sualize, and beyond the scope of this course (one needs some grounding
in measure theory, anyway, in order to understand what “n-dimensional
volume” means. Also, one needs n-dimensional hands.). But in partic-
ular, we see that the volume of a parallelopiped with edges vy,...,v,
is the absolute value of the determinant det(vy,...,v,). (Note that it

doesn’t particularly matter whether we use row or column vectors here
since det(A?) = det(A)).

e Let vy,...,v, be n column vectors in R", so that (vy,...,v,)isannXxn
matrix, and consider the linear transformation

T := L(vl,...,vn)-

Observe that
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7(0,0,...,1) = v,

(why is this the case?) So if we let @ be the unit cube with edges
(1,0,...,0),...,(0,0,...,1), then T will map @ to the n-dimensional
parallelopiped with vectors vq,...,v,. (If you are having difficulty
imagining n-dimensional parallelopipeds, you may just want to think
about the n = 3 case). Thus 7(Q)) has volume |det(vy,...,v,)|, while
@ of course had volume 1. Thus T expands volume by a factor of
|det(v1,...,v,)|. Thus the magnitude | det(A)| of a determinant mea-
sures how much the linear transformation L4 expands (n-dimensional)
volume.

Example Consider the matrix

-(31)

which as we know has the corresponding linear transformation
LA($1, 332) = (5$1, 3.T2)

This dilates the x; co-ordinate by 5 and the z5 co-ordinate by 3, so area
(which is 2-dimensional volume) is expanded by 15. This is consistent
with det(A) = 15. Note that if we replace 3 with -3, then the determi-
nant becomes -15 but area still expands by a factor of 15 (why?). Also,
if we replace 3 instead with 0, then the determinant becomes 0. What
happens to the area in this case?

Example Now consider the matrix

=(31)

which as we know has the corresponding linear transformation
Ls(x1,22) = (1 + 2, T2).

This matrix shears the z; co-ordinate horizontally by an amount de-
pending on the xy co-ordinate, but area is unchanged (why? It has to
do with the base x height formula for area). This is consistent with
the determinant being 1.
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e So the magnitude of the determinant measures the volume-expanding
properties of a linear transformation. The sign of a determinant will
measure the orientation-preserving properties of a transformation: will
a ‘right-handed” object remain right-handed when one applies the
transformation? If so, the determinant is positive; if however right-
handed objects become left-handed, then the determinant is negative.

e Example The reflection matrix

(3)

corresponds to reflection through the x;-axis:
La(z1,72) = (21, —72).

It is clear that a “right-handed” object (which in two-dimensions, means
an arrow pointing anti-clockwise) will reflect to a “left-handed” object
(an arrow pointing clockwise). This is why reflections have negative
determinant.

e This interpretation of determinant, as measuring both the volume ex-
panding and the orientation preserving properties of a transformation,
also allow us to interpret Theorem 14 geometrically. For instance, if
T : R" — R" expands volume by a factor of 4 and flips the orien-
tation (so det[T]g = —4, where (3 is the standard ordered basis), and
S :R" — R" expands volume by a factor of 3 and also flips the orien-
tation (so det[S]g = —3), then one can now see why ST should expand

volume by 12 and preserve orientation (so det[ST]g = +12).

e We now close with a little lemma that says that to take the determinant
of a matrix, it doesn’t matter what basis you use.

e Lemma 15. If two matrices are similar, then they have the same
determinant.

e ProofIf A issimilar to B, then B = ' AQ for some invertible matrix
. Thus by Theorem 13

det(B) = det(Q ") det(A) det(Q) = det(A) det(Q ") det(Q)
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= det(A) det(Q Q) = det(A) det(I,) = det(A)
as desired. O

e Corollary 16. Let T : R® — R" be a linear transformation, and let
B, 8" be two ordered bases for R". Then the matrices [T]g and [T]g,
have the same determinant.

e Proof. From last week’s notes we know that [T]g and [T]g: are similar,
and the result follows from Lemma 15. [l
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