Math 115A - Week 2
Textbook sections: 1.6-2.1
Topics covered:

Properties of bases

Dimension of vector spaces

Lagrange interpolation

Linear transformations
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Review of bases

e In last week’s notes, we had just defined the concept of a basis. Just
to quickly review the relevant definitions:

e Let V be a vector space, and S be a subset of V. The span of S is the
set of all linear combinations of elements in S; this space is denoted
span(S) and is a subspace of V. If span(S) is in fact equal to V, we
say that S spans V.

e We say that S is linearly dependent if there is some non-trivial way to
write 0 as a linear combination of elements of S. Otherwise we say that
S is linearly independent.

e We say that S is a basis for V if it spans V' and is also linearly inde-
pendent.

e Generally speaking, the larger the set is, the more likely it is to span,
but also the less likely it is to remain linearly independent. In some
sense, bases form the boundary between the “large” sets which span
but are not independent, and the “small” sets which are independent
but do not span.

* % k % %

Examples of bases



e Why are bases useful? One reason is that they give a compact way to
describe vector spaces. For instance, one can describe R? as the vector
space spanned by the basis {(1,0,0), (0,1,0),(0,0,1)} :

R? = span({(1,0,0), (0,1,0),(0,0,1)}).

In other words, the three vectors (1,0,0), (0,1,0), (0,0,1) are linearly
independent, and R? is precisely the set of all vectors which can be
written as linear combinations of (1,0, 0), (0,1,0), and (0,0, 1).

e Similarly, one can describe P(R) as the vector space spanned by the ba-
sis {1, z,2%,23,...}. Or P.ye,(R), the vector space of even polynomials,
is the vector space spanned by the basis {1, 22, z* 2°,...} (why?).

e Now for a more complicated example. Consider the space
Vi={(z,y,2) ER*:x+y+2=0}

in other words, V consists of all the elements in R® whose co-ordinates
sum to zero. Thus for instance (3,5, —8) lies in V, but (3,5, —7) does
not. The space V describes a plane in R?; if you remember your Math
32A, you'll recall that this is the plane through the origin which is
perpendicular to the vector (1,1,1). It is a subspace of R?, because it
is closed under vector addition and scalar multiplication (why?).

e Now let’s try to find a basis for this space. A straightforward, but slow,
procedure for doing so is to try to build a basis one vector at a time:
we put one vector in V into the (potential) basis, and see if it spans.
If it doesn’t, we throw another (linearly independent) vector into the
basis, and then see if it spans. We keep repeating this process until
eventually we get a linearly independent set spanning the entire space
- i.e. a basis. (Every time one adds more vectors to a set S, the span
span(S) must get larger (or at least stay the same size) - why?).

e To begin this algorithm, let’s pick an element of the space V. We can’t
pick 0 - any set with 0 is automatically linearly dependent (why?), but
there are other, fairly simple vectors in V; let’s pick v; := (1,0, —1).
This vector is in V', but it doesn’t span V: the linear combinations of v,
are all of the form (a,0, —a), where a € R is a scalar, but this doesn’t
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include all the vectors in V. For instance, vy := (1, —1,0) is clearly not
in the span of v;. So now we take both v; and vy and see if they span.
A typical linear combination of v; and vy is

a1v1 + agvy = a1(1,0, 1) + az(1, —1,0) = (ay + az, —ag, —ay)

and so the question we are asking is: can every element (z,y, z) of V be
written in the form (a; + a2, —a2, —a;)? In other words, can we solve
the system

Il
ISII S

ai +ao

for every (z,y,2) € V? Well, one can solve for a; and ay as
a) = —2,02 ‘= —Y.

The first equation then becomes —z — y = z, but this equation is valid
because we are assuming that (z,y,z) € V, so that z +y + z = 0.
(This is not all that of a surprising co-incidence: the vectors v; and
v9 were chosen to be in V', which explains why the linear combination
a1v1 +agve must also be in V). Thus every vector in V can be written as
a linear combination of v; and v,. Also, these two vectors are linearly
independent (why?), and so {v,v2} = {(1,0,—1),(1,—1,0)} is a basis
for V.

It is clear from the above that this is not the only basis available for V;
for instance, {(1,0,—1),(0,1,—1)} is also a basis. In fact, as it turns
out, any two linearly independent vectors in V' can be used to form
a basis for V. Because of this, we say that V' is two-dimensional. It
turns out (and this is actually a rather deep fact) that many of the
vector spaces V we will deal with have some finite dimension d, which
means that any d linearly independent vectors in V' automatically form
a basis; more on this later.

A philosophical point: we now see that there are (at least) two ways
to construct vector spaces. One is to start with a “big” vector space,
say R?, and then impose constraints such as = +y + z = 0 to cut the
vector space down in size to obtain the target vector space, in this case
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V. An opposing way to make vector spaces is to start with nothing,
and throw in vectors one at a time (in this case, v; and vy) to build
up to the target vector space (which is also V). A basis embodies this
second, “bottom-up” philosophy.

X %k ok ok ok

Rigorous treatment of bases

Having looked at some examples of how to construct bases, let us now
introduce some theory to make the above algorithm rigorous.

Theorem 1. Let V be a vector space, and let S be a linearly indepen-
dent subset of V. Let v be a vector which does not lie in S.

(a) If v lies in span(S), then SU{v} is linearly dependent, and span(SU
{v}) = span(S).

(b) If v does not lie in span(S), then S U {v} is linearly independent,
and span(S U {v}) 2 span(S).

This theorem justifies our previous reasoning: if a linearly independent
set S does not span V, then one can make the span bigger by adding
a vector outside of span(S); this will also keep S linearly independent.

Proof We first prove (a). If v lies in span(S), then by definition of
span, v must be a linear combination of S, i.e. there exists vectors
v1,...,0, in S and scalars a4, ..., a, such that

V=a1V1 + ...+ ayv,

and thus
0=(-1)v+av; + ...+ apvy.

Thus 0 is a non-trivial linear combination of v, vy,..., v, (it is non-
trivial because the co-efficient —1 in front of v is non-zero. Note that
since v ¢ S, this coefficient cannot be cancelled by any of the v;).
Thus S U {v} is linearly dependent. Furthermore, since v is a linear
combination of vy,...,v,, any linear combination of v and vy,...,v,
can be re-expressed as a linear combination just of vy, ..., v, (why?).
Thus span(SU{v}) does not contain any additional elements which are
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not already in span(S). On the other hand, every element in span(.S)
is clearly also in span(S U {v}). Thus span(S U {v}) and span(S) have
precisely the same set of elements, i.e. span(S U {v}) = span(S).

e Now we prove (b). Suppose v ¢ span(S). Clearly span(S U {v}) con-
tains span(S), since every linear combination of S is automatically a
linear combination of SU {v}. But span(S U {v}) clearly also contains
v, which is not in span(S). Thus span(S U {v}) 2 span(S).

e Now we prove that SU{v} is linearly independent. Suppose for contra-
diction that S U {v} was linearly dependent. This means that there is
some non-trivial way to write 0 as a linear combination of v and some
vectors vy, ...,v, in S:

O=av+av1 + ...+ a,v,.

If a were zero, then we would be writing 0 as a non-trivial linear combi-
nation of elements v1,...,v, in S, but this contradicts the hypothesis
that S is linearly independent. Thus «a is non-zero. But then we may
divide by a and conclude that

a a
v= (—;1)1)1 +...+ (—;")vn,

so that v is a linear combination of vy, ..., v,, so it is in the span of S,
a contradiction. Thus S U {v} is linearly independent. O
TEEE
Dimension

e As we saw in previous examples, a vector space may have several
bases. For instance, if V := {(z,y,2) € R® : x +y + 2z = 0}, then
{(1,0,-1),(1,—1,0)} is a basis, but so is {(1,0,—1),(0,1,—1)}.

o If V was the line {(¢,¢,¢) : t € R}, then {(1,1,1)} is a basis, but
so is {(2,2,2)}. (On the other hand, {(1,1,1),(2,2,2)} is not a basis
because it is linearly dependent).

e If V was the zero vector space {0}, then the empty set {} is a basis
(why?), but {0} is not (why?).



e In R? the three vectors {(1,0,0),(0,1,0),(0,0,1)} form a basis, and
there are many other examples of three vectors which form a basis in
R? (for instance, {(1,1,0), (1,—1,0), (0,0,1)}. As we shall see, any set
of two or fewer vectors cannot be a basis for R® because they cannot
span all of R?, while any set of four or more vectors cannot be a basis
for R because they become linearly dependent.

e One thing that one sees from these examples is that all the bases of a
vector space seem to contain the same number of vectors. For instance,
R? always seems to need exactly three vectors to make a basis, and so
forth. The reason for this is in fact rather deep, and we will now give the
proof. The first step is to prove the following rather technical result,
which says that one can “edit” a spanning set by inserting a fixed
linearly independent set, while removing an equal number of vectors
from the previous spanning set.

e Replacement Theorem. Let V be a vector space, and let S be a
finite subset of V' which spans V' (i.e. span(S) = V). Suppose that
S has exactly n elements. Now let L be another finite subset of V
which is linearly independent and has exactly m elements. Then m
is less than or equal to n. Furthermore, we can find a subset S’ of S
containing exactly n — m elements such that S’ U L also spans V.

e This theorem is not by itself particularly interesting, but we can use it
to imply a more interesting Corollary, below.

e Proof We induct on m. The base case is m = 0. Here it is obvious
that n > m. Also, if we just set S’ equal to S, then S’ has exactly
n — m elements, and S’ U L is equal to S (since L is empty) and so
obviously spans V' by hypothesis.

e Now suppose inductively that m > 0, and that we have already proven
the theorem for m — 1. Since L has m elements, we may write it as

L=Av,...,un}.
Since {v1, ..., Uy} is linearly independent, the set L := {vy, ..., Um_1}

is also linearly independent (why?). We can now apply the induction
hypothesis with m replaced by m — 1 and L replaced by L. This tells
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us that n > m — 1, and also there is some subset S’ of S with exactly
n —m + 1 elements, such that S’ U L spans V.

Write S’ = {wy, ..., Wp_ms1}. To prove that n > m, we have to exclude
the possibility that n = m — 1. We do this as follows. Consider the
vector v,,, which is in L but not in L. Since the set

= ~
S'UL = {Ul, .. .,vm_l,wl,...,wn_mﬂ}

spans V', we can write v,, as a linear combination of S’ U L. In other
words, we have

Um = A1V1 + ... + Q1VUm—1 + b1w1 + ...+ bn_m+1wn_m+1 (01)
for some scalars aq, ..., @m_1,01,...,bp_mi1-

Suppose for contradiction that n = m—1. Then S’ is empty, and there
are no vectors wy, ..., Wy_me1. We thus have

Uy = QUL + - .. + Q1 Vpp—1 (0.2)

so that
0= av1 + ...+ Qp_1Vm_1 + (—1)’(}m

but this contradicts the hypothesis that {vy,...,v,} is linearly inde-
pendent. Thus n cannot equal m — 1, and so must be greater than or
equal to m.

We now have n > m, so that there is at least one vector in wy, ..., Wy_ma1.
Since we know the set

gl U I/ = {’Ul, ey Up—1, W1, - - -, wn—m—l—l}
spans V/, it is clear that
S'UL={v1,..., 0 W1, ..., Wy—ms1}

also spans V' (adding an element cannot decrease the span). To finish
the proof we need to eliminate one of the vectors w;, to cut S’ down to
a set S’ of size n — m, while still making S’ U L span V.



We first observe that the by,...,b, ,,4+1 cannot all be zero, otherwise
we would be back to equation (0.2) again, which leads to contradiction.
So at least one of the b’s must be non-zero; since the order of the vectors
w, is irrelevant, let’s say that b; is the one which is non-zero. But then
we can divide by by, and use (0.1) to solve for w;:

. 1 a1 Q-1 by br—m+1
Wy = —Vp— V] — o — —— VU1 — — Wy — ...— Wp—mal-
b1 by by by b1
Thus w; is a linear combination of {vy,..., vm, wo, ..., Wy me1}. In
other words, if we write S' := {wy,..., W, 41}, then w; is a linear

combination of S’ U L. Thus by Theorem 1,
span(S’U L) = span(S' U L U {w}).

But S'U LU {w;} is just $'U L, which spans V. Thus S’ U L spans V.
Since S’ has exactly n — m elements, we are done. U

Corollary 1 Suppose that a vector space V contains a finite basis B
which consists of exactly d elements. Then:

(a) Any set S C V consisting of fewer than d elements cannot span
V. (In other words, every spanning set of V' must contain at least d
elements).

(b) Any set S C V consisting of more than d elements must be linearly
dependent. (In other words, every linearly independent set in V' can
contain at most d elements).

(c) Any basis of V must consist of exactly d elements.

(d) Any spanning set of V' with exactly d elements, forms a basis.

(g) Any spanning set of V' contains a basis.



Proof We first prove (a). Let S have d' elements for some d' < d.
Suppose for contradiction that S spanned V. Since B is linearly in-
dependent, we may apply the Replacement Theorem (with B playing
the role of L) to conclude that d' > d, a contradiction. Thus S cannot
span V.

Now we prove (b). First suppose that S is finite, so that S has d’
elements for some d' > d. Suppose for contradiction that S is linearly
independent. Since B spans V, we can apply the Replacement theorem
(with B playing the role of S, while S instead plays the role of L) to
conclude that d > d', a contradiction. So we’ve proven (b) when S
is finite. When S is infinite, we can find a finite subset S’ of S with,
say, d + 1 elements; since we’ve already proven (b) for finite subsets,
we know that S’ is linearly dependent. But this implies that S is also
linearly dependent.

Now we prove (c). Let B’ be any basis of V. Since B’ spans, it must
contain at least d elements, by (a). Since B’ is linearly independent, it
must contain at most d elements, by (b). Thus it must contain exactly
d elements.

Now we prove (d). Let S be a spanning set of V' with exactly d ele-
ments. To show that S is a basis, we need to show that S is linearly
independent. Suppose for contradiction that S was linearly dependent.
Then by a theorem in page 34 of last week’s notes, there exists a vector
v in S such that span(S — {v}) = span(S). Thus S — {v} also spans
V, but it has fewer than d elements, contradicting (a). Thus S must
be linearly independent.

Now we prove (e). Let L be a linearly independent set in V' with exactly
d elements. To show that L is a basis, we need to show that L spans.
Suppose for contradiction that L did not span, then there must be some
vector v which is not in the span of L. But by Theorem 1 in this week’s
notes, L U {v} is linearly independent. But this set has more than d
elements, contradicting (b). Thus L must span V.

Now we prove (f). Let L be a linearly independent set in V; by (a),
we know it has d’ elements for some d' < d. Applying the Replacement



theorem (with B playing the role of the spanning set S), we see that
there is some subset S’ of B with d —d' elements such that S’U L spans
V. Since S’ has d — d' elements and L has d’ elements, S’ U L can have
at most d elements; actually it must have exactly d, else it would not
span by (a). But then by (d) it must be a basis. Thus L is contained
in a basis.

Now we prove (g). Let S be a spanning set in V. To build a basis
inside S, we see by (e) that we just need to find d linearly independent
vectors in S. Suppose for contradiction that we can only find at most
d' linearly independent vectors in S for some d' < d. Let vy,...,vg be
d' such linearly independent vectors in S. Then every other vector v in
S must be a linear combination of v, ..., vy, otherwise we could add
v to {v1,...,vs} and obtain a larger collection of linearly independent
vectors in S (see Theorem 1). But if every vector in S is a linear
combination of v{,...,vg, and S spans V', then vy,..., vy must span
V. By (a) this means that d’ > d, contradiction. Thus we must be able
to find d linearly independent vectors in S, and so S contains a basis.
O

Definition We say that V has dimension d if it contains a basis of d
elements (and so that all the consequences of the Corollary 1 follow).
We say that V' is finite-dimensional if it has dimension d for some finite
number d, otherwise we say that V is infinite-dimensional.

From Corollary 1 we see that all bases have the same number of ele-
ments, so a vector space cannot have two different dimensions. (e.g.
a vector space cannot be simultaneously two-dimensional and three-
dimensional). We sometimes use dim(V’) to denote the dimension of
V. One can think of dim(V') as the number of degrees of freedom inher-
ent in V' (or equivalently, the number of possible linearly independent
vectors in V).

Example The vector space R? has a basis {(1,0,0), (0, 1,0), (0,0,1)},
and thus has dimension 3. Thus any three linearly independent vectors
in R? will span R? and form a basis.

Example The vector space P,(R) of polynomials of degree < n has
basis {1,x,2%,...,2"} and thus has dimension n + 1.
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e Example The zero vector space {0} has a basis {} and thus has di-
mension zero. (It is the only vector space with dimension zero - why?)

e Example The vector space P(R) of all polynomials is infinite dimen-
sional. To see this, suppose for contradiction that it had some finite
dimension d. But then one could not have more than d linearly inde-
pendent elements. But the set {1,z,2?,..., 2%} contains d+ 1 elements
which are linearly independent (why?), contradiction. Thus P(R) is
infinite dimensional.

e As we have seen, every finite dimensional space has a basis. It is also
true that infinite-dimensional spaces also have bases, but this is signif-
icantly harder to prove and beyond the scope of this course.

X %k sk ok ok

Subspaces and dimension

e We now prove an intuitively obvious statement about subspaces and
dimension:

e Theorem 2. Let V be a finite-dimensional vector space, and let W
be a subspace of V. Then W is also finite-dimensional, and dim(W) <
dim(V'). Furthermore, the only way that dim(W') can equal dim(V') is
iftWw=V.

e Proof. We first construct a finite basis for W via the following algo-
rithm. If W = {0}, then we can use the empty set as a basis. Now
suppose that W # {0}. Then we can find a non-zero vector v; in W.
If v; spans W, then we have found a basis for W. If v; does not span
W, then we can find a vector vy which does not lie in span({v;}); by
Theorem 1, {vy, v} is linearly independent. If this set spans W, then
we can found a basis for W. Otherwise, we can find a vector vs which
does not lie in span({v;,ve}). By Theorem 1, {v;, v, v3} is linearly in-
dependent. We continue in this manner until we finally span W. Note
that we must stop before we exceed dim (V') vectors, since from part (b)
of the dimension theorem we cannot make a linearly independent set
with more than dim(V') vectors. Thus this algorithm must eventually
generate a basis of W which consists of at most dim(V") vectors, which
implies that W is finite-dimensional with dim(W) < dim(V).
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e Now suppose that dim(W) = dim(V'). Then W has a basis B which
consists of dim(V') estimates; B is of course linearly independent. But
then by part (e) of Corollary 1, B is also a basis for V. Thus span(B) =
V and span(B) = W, which implies that W =V as desired. O

* % ok % %

Lagrange interpolation

e We now give an application of this abstract theory to a basic problem:
how to fit a polynomial to a specified number of points.

e Everyone knows that given two points in the plane, one can find a line
joining them. A more precise way of saying this is that given two data
points (z1,y1) and (22, y2) in R?, with z; # 3, then we can find a line
y = mz + b which passes through both these points. (We need z; # x5
otherwise the line will have infinite slope).

e Now suppose we have three points (x1, 1), (%2, y2), (3, y3) in the plane,
with x1, x9, 3 all distinct. Then one usually cannot fit a line which goes
exactly through these three data points. (One can still do a best fit to
these data points by a straight line, e.g. by using the least squares fit;
this is an important topic but not one we will address now). However,
it turns out that one can still fit a parabola y = az? + bz + ¢ to these
three points. With four points, one cannot always fit a parabola, but
one can always fit a cubic. More generally:

e Theorem 3 (Lagrange interpolation formula) Let n > 1, and
let (x1,%1),-- -, (Zn,y,) be n points in R? such that z,,,...,z, are
all distinct. Then there exists a unique polynomial f € Ppn(R) of
degree < m — 1 such that the curve y = f(x) passes through all n
points (21,¥1),- - ., (%n,Yn). In other words, we have y; = f(z;) for all
j=1,...,n. Furthermore, f is given by the formula

& H1gk§n:k¢j($ — T)

a e ngkgn:k;&j(%’ — Tk

e The polynomial f is sometimes called the interpolating polynomial for
the points (z1,41),-..(Zn, yp); in some sense it is the simplest object
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that can pass through all n points. These interpolating polynomials
have several uses, for instance in taking a sequence of still images, and
finding a smooth sequence of intermediate images to fit between these
images.

To prove this theorem, we first proceed by considering some simple
examples.

First suppose that y; = y2 = ... =1y, = 0. Then the choice of interpo-
lating polynomial is obvious: just take the zero polynomial f(z) = 0.

Now let’s take the next simplest case, when y; = land yo = y3=... =
yn = 0. The interpolating polynomial f that we need here must obey

the conditions f(z;) =1, and f(z2) =... = f(x,) =0.
Since f has zeroes at zo, ..., z,, it must have factors of (z — x3), (z —
x3), ..., (x — z,). So it must look like

f=Qx)(x —x9)...(x — zy).

Since (z — x3)...(x — z,,) has degree n — 1, and we want f to have
degree at most n — 1, Q(x) must be constant, say Q(z) = c:

f=clz—x9)...(x — x,).

To find out what ¢ is, we use the extra fact that f(z;) =1, so
l=c(zy —x2)...(21 — xp)-

Thus the interpolating polynomial is given by f;, where

(x—x9)...(x — )
(1 —x2) ... (1 — xp)

fl(ac) =

or equivalently

— szz(x — Ty

- Teea(z1 — @)

Ome can see by inspection that indeed fi(z1) is equal to 1, while

fl(xQ) =...= f1(fl'n) = 0.

fi()
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e Now consider the case when y; = 1 for some 1 < j < n, and y, =0
for all other & # j (the earlier case being the special case when j = 1).
Then a similar argument gives that f must equal f;, where f; is the
polynomial

o H1§k5n:k¢j($ — Tg)

L <hninrz; (€5 — )

For instance, if n = 4 and j = 2, then

fi(z) :

fola) o= T )@ =) — )

(x2 — 1) (22 — 23) (W2 — 334).

e To summarize, for each 1 < j < n, we can find a polynomial f; €
P,_1(R) such that f;(z;) = 1 and f;(zx) = 0 for k& # j. Thus, for
instance, when n = 4, then we have

fi(z1) =1, fi(z2) = fi(zs) = fi(zy) =0
f2(x2) = 1, fo(x1) = folws) = fa(zs) =0
f3($3) = 1’f3($1) = f3($2) = f3($4) =0
fa(zy) =1, fu(z1) = fa(ze) = fa(z3) = 0.

e To proceed further we need a key lemma.
e Lemma 4. The set {fi, fo,..., fn} is a basis for P, ;(R).

e Proof. We already know that P,_; is n-dimensional, since it has a
basis {1,z,z?, ...,2"" '} of n elements. Since {f1,..., f.} also has n
elements, to show that it is a basis it will suffice by part (e) of Corollary
1 to show that {fi,..., fo} is linearly independent.

e Suppose for contradiction that {fi,..., f,} was linearly dependent.
This means that there exists scalars aq, ..., a,, not all zero, such that
a1 f1 + asfo+ ...+ ay,f, is the zero polynomial i.e.

a1 fi(z) + asfa(z) + ... + anfn(z) = 0 for all z.

In particular, we have
ayfi(z1) + azfo(w1) + ... + ap fr(21) = 0.
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But since fi(z1) =1 and fo(x1) = ... = fu(z1) = 0, we thus have

g X1+ayx0+...4a,x0=0,

i.e. a1 = 0. A similar argument gives that ay =0, a3 = 0, ... - contra-
dicting the assumption that the a; were not all zero. Thus {fi,..., fo}
is linearly independent, and is thus a basis by Corollary 1. O

From Lemma 4 we know that {fi,..., f,} spans P, ;. Thus every
polynomial f € P,_; can be written in the form

f=afi+...+anfn (0.3)
for some scalars a4, ..., a,. In particular, the interpolating polynomial
between the data points (z1,¥1),---, (Tn, ys) must have this form. So

to work out what the interpolating polynomial is, we just have to work
out what the scalars ay,...,a, are.

In order for f to be an interpolating polynomial, we need f(z1) = v,
f(za) = yo, etc. Let’s look at the first condition f(z;) = y;. Using
(0.3), we have

f@) =afi(@) +.. .+ anfalzr) = y1-
But by arguing as in the lemma, we have
a1f1($1)+...+anfn($1) =a; X1+ay ><0++an X 0=a;.

Thus we must have a; = ;. More generally, we see that ay = s,

a3z = Y3, ... Thus the only possible choice of interpolating polynomial
is .
F=uhi+. . Aunfa= > uifi (0.4)
j=1

which is the Lagrange interpolation formula. Conversely, it is easy
to check that if we define f by the formula (0.4), then f(z1) = v,
f(za) = ya, etc. so f is indeed the unique interpolating polynomial
between the data points (z1,v1),- .., (23, Y3)- O
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e As an example, suppose one wants to interpolate a quadratic poly-
nomial between the points (1,0), (2,2), and (3,1), so that z; := 1,
XTo =2, x3:= 3, y1 := 0, yo := 2, y3 := 1. The formulae for fi, fo, f3
are

b= (x — ma)(x — x3) _ (x — 2)(z — 3)
(x1 —x2)(x1 —23) (1 —2)(1—13)
fy = (x — z1)(x — x3) _ (x —1)(z — 3)
(2 —21) (22 —23)  (2-1)(2-3)
fy= (x —z1)(x — 22) _ (x—1)(z—2)
(z3 —z1)(ws —72) (3-1)(3-2)

and so the interpolating polynomial is

_ _,e=1)@=3) (@-1-2)
f—0f1+2f2+1f3—2(2_1)(2—3) TEmNE-2)

You can check by direct substitution that f(1) = 0, f(2) = 2, and
f(3) =1 as desired. After a lot of algebra one can simplify f to a more

standard form
f=-32"/2+13z/2 - 5.

e If one were to interpolate a single point (x1, ), one would just get the
constant polynomial f = y;, which is of course the only polynomial of
degree 0 which passes through (x1, ).

e The Lagrange interpolation formula says that there is exactly one poly-
nomial of degree at most n — 1 which passes through n given points.
However, if one is willing to use more complicated polynomials (i.e.
polynomials of degree higher than n — 1) then there are infinitely many
more ways to interpolate those data points. For instance, take the
points (0,0) and (1,1). There is only one linear polynomial which
interpolates these points - the polynomial f(x) := z. But there are
many quadratic polynomials which also interpolate these two points:
f(z) = 2? will work, as will f(z) = %.CEQ + %x, or in fact any polynomial
of the form (1 — #)x? + fz. And with cubic polynomials there are even
more possibilities. The point is that each degree you add to the poly-
nomial adds one more degree of freedom (remember that the dimension
of P,(R) is n+ 1), and is it comes increasingly easier to satisfy a fixed
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number of constraints (in this example there are only two constraints,
one for each data point). This is part of a more general principle: when
the number of degrees of freedom exceeds the number of constraints,
then usually one has many solutions to a problem. When the number
of constraints exceeds the number of degrees of freedom, one usually
has no solutions to a problem. When the number of constraints exactly
equals the number of degrees of freedom, one usually has exactly one
solution to a problem. We will make this principle more precise later
in this course.

X %k ok ok ok

Linear transformations

Up until now we have studied each vector space in isolation, and looked
at what one can do with the vectors in that vector space. However,
this is only a very limited portion of linear algebra. To appreciate
the full power of linear algebra, we have to not only understand each
vector space individually, but also all the various linear transformations
between one vector space and another.

A transformation from one set X to another set Y is just a function
f + X — Y whose domain is X and whose range is in Y. The set
of all possible transformations is extremely large. In linear algebra,
however, we are not concerned with all types of transformations, but
only a very special type known as linear transformations. These are
transformations from one vector space to another which preserves the
additive and scalar multiplicative structure:

Definition. Let X, Y be vector spaces. A linear transformation T
from X to Y is any transformation 7" : X — Y which obeys the fol-
lowing two properties:

(T preserves vector addition) For any =,z € X, T(x+2') = Tx + Tx'.

(T preserves scalar multiplication) For any x € X and any scalar ¢ € R,
T(cx) = cT'x.

Note that there are now two types of vectors: vectors in X and vectors
in Y. In some cases, X and Y will be the same space, but other times
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they will not. So one should take a little care; for instance one cannot
necessarily add a vector in X to a vector in Y. In the above definition,
and z’ were vectors in X, so z + ' used the X vector addition rule, but
Tz and Tz' were vectors in Y, so Tx + Tz’ used the Y vector addition
rule. (An expression like z + Tz would not necessarily make sense,
unless X and Y were equal, or at least contained inside a common
vector space).

The two properties of a linear transformation can be described as fol-
lows: if you combine two inputs, then the outputs also combine (the
whole is equal to the sum of its parts); and if you amplify an input by a
constant, the output also amplifies by the same constant (another way
of saying this is that the transformation is homogeneous).

To test whether a transformation is linear, you have to check separately
whether it is closed under vector addition, and closed under scalar
multiplication. It is possible to combine the two checks into one: if
you can check that for every scalar ¢ € R and vectors z,2’' € X,
that T'(cx + z') = Tz + Tx', then you are automatically a linear
transformation (See homework)

Scalar multiplication as a linear transformation. A very simple
example of a linear transformation is the map 7" : R — R defined
by Tz := 3x - it maps a scalar to three times that scalar. It is clear
that this map preserves addition and multiplication. An example of a
non-linear transformation is the map 7' : R — R defined by Tz := 22.

Dilations as a linear transformation As a variation of this theme,
given any vector space V, the map T : V — V given by Tz := 3x is
a linear transformation (why?). This transformation takes vectors and
dilates them by 3.

The identity as a linear transformation A special case of dilations
is the dilation by 1: Iz = z. This is a linear transformation from V' to
V', known as the identity transformation, and is usually called I or Iy .

Zero as a linear transformation Another special case is dilation by
0: Tz = 0. This is a linear transformation from V' to V, called the zero
transformation.
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Another example of a linear transformation is the map 7 : R*> — R?
defined by

1
Tx:=1] 3 z,
5

O = N

where we temporarily think of the vectors in R? and R? as column
vectors. In other words,

T 1 2 T .’E1+2I2
T<x1>: 3 4 <x1)= 3z + 4z
2 5 6 2 51 + 62

Let’s check that T preserves vector addition. If z, 2’ are two vectors in

R?, say
() #=(2)
then ,
no__ .’131 + ',L.l
T +2) _T< T + T )
(21 + 27) + 2(22 + 73)
= | 3(z1+2)) + 4(22 + 73)
5(z1 + ) + 6(x2 + x5)
while

!
Tx—l—Tx’:T(xl)—i-T(x})
.7/‘2 ./,1;'2

T, + 2x9 x| + 22,
511 + 624 5x) + 6z,

One can then see by inspection that T'(x + z') and Tx + Tz’ are equal.
A similar computation shows that T'(cx) = ¢T'x; we leave this as an
exercise.

More generally, any m X n matrix (m rows and n columns) gives rise to
a linear transformation from R" to R™. Later on, we shall see that the
converse is true: every linear transformation from R" to R™ is given
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by a m x n matrix. For instance, the transformation 7' : R* — R?
given by Tz := bx corresponds to the matrix

5 0 0
050
0 05

(why?), while the identity transformation on R? corresponds to the
tdentity matriz

o O =
O = O
_— o O

(why?). (What matrix does the zero transformation correspond to?)

Thus matrices provide a good example of linear transformations; but
they are not the only type of linear transformation (just as row and
column vectors are not the only type of vectors we study). We now
give several more examples.

Reflections as linear transformations Let R? be the plane, and let
T : R*> — R? denote the operation of reflection through the z-axis:

T(x1,29) = (x1, —T2)-

(Now we once again view vectors in R" as row vectors). It is straight-
forward to verify that this is a linear transformation; indeed, it corre-

sponds to the matrix
10
0 —1

(why? - note we are confusing row and column vectors here. We will
clear this confusion up later.). More generally, given any line in R?
through the origin (or any plane in R® through the origin), the oper-
ation of reflection through that line (resp. plane) is a linear transfor-
mation from R? to R? (resp. R® to R?), as can be seen by elementary
geometry.

Rotations as linear transformations Let 7 : R> — R? denote the
operation of rotation anticlockwise by 90 degrees. A little geometry
shows that

T(.’L‘l, .’132) = (—.’EQ, .’1,'1).
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This is a linear transformation, corresponding to the matrix

(10"):

More generally, given any angle €, the rotation anticlockwise or clock-
wise around the origin gives rise to a linear transformation from R?
to R2. In R3, it doesn’t quite make sense to rotate around the ori-
gin (which way would it spin?), but given any line through the origin
(called the azis of rotation), one can rotate around that line by an angle
6 (though there are two ways one can do it, clockwise or anticlockwise).
We will not cover rotation and reflection matrices in detail here - that’s
a topic for 115B.

Permutation as a linear transformation Let’s take a standard
vector space, say R*, and consider the operation of switching the first
and third components:

T(xla X2, T3, '/1/‘4) = ('7:37 Zo,T1, 'T4)-

This is a linear transformation (why?) It corresponds to the matrix

o= OO
O O = O
SO o=
_ o O O

(why?). This type of operation - the rearranging of the co-ordinates -
is known as a permutation, and the corresponding matrix is known as
a permutation matriz. One property of permutation matrices is that
every row and column contains exactly one 1, with the rest of the entries
being 0.

Differentiation as a linear transformation Here’s a more interest-
ing transformation: Consider the transformation 7 : P,(R) — P, 1(R)
defined by differentiation:

_ Y

Tf .= .
f dz
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Thus, for instance, if n = 3, then T would send the vector z* + 2z +
4 € P3(R) to the vector 3z% + 2 € P(R). To show that T preserves
vector addition, pick two polynomials f, g in R. We have to show that
T(f+9)=Tf+Tg,ie.

d df dg

dx(f+g) dx * dr’
But this is just the sum rule for differentiation. A similar argument
shows that 71" preserves scalar multiplication.

The right-shift as a linear transformation Recall that R™ is the
space of all sequences, e.g. R contains

(xla Lo, T3, T4, - - )
as a typical vector. Define the right-shift operator U : R — R> by
U(.Tl, Lo, XT3, T4, . . ) = (Oa T1,T2,T3,T4, .- )

i.e. we shift all the entries right by one, and add a zero at the be-
ginning. This is a linear transformation (why?). However, it cannot
be represented by a matrix since R is infinite dimensional (unless
you are willing to consider infinite-dimensional matrices, but that is
another story).

The left-shift as a linear transformation There is a companion
operator to the right-shift, namely the left-shift operator U* : R™ —
R defined by

U*(.Tl, T2, T3, T4, - - ) = (:1:2’ X3, T4, .. '),

i.e. we shift all the entries left by one, with the x; entry disappear-
ing entirely. It is almost, but not quite, the inverse of the right-shift
operator; more on this later.

Inclusion as a linear transformation Strictly speaking, the spaces
R? and R? are not related: R? is not a subspace of R?, because two-
dimensional vectors are not three-dimensional vectors. Nevertheless,
we can “force” R? into R® by adding an extra zero on the end of each
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two-dimensional vector. The formal way of doing this is introducing
the linear transformation ¢ : R? — R? defined by

v(z1,29) = (21, 2,0).

Thus R? is not directly contained in R?, but we can make a linear trans-
formation which embeds R? into R® anyway via the transformation ¢,
which is often called an “inclusion” or “embedding” transformation.
The transformation ¢ corresponds to the matrix

10
01
0 0

Projection as a linear transformation Conversely, we can squish a
three-dimensional vector into a two-dimensional one by leaving out the
third component. More precisely, we may consider the linear transfor-
mation 7 : R* — R? defined by

m(x1, To,23) 1= (21, X2).

This is a linear transformation (why?). It is almost, but not quite, the
inverse of +; more on this later.

Conversions as a linear transformation Linear transformations
arise naturally when converting one type of unit to another. A simple
example is, say, converting yards to feet: x yards becomes 3z feet, thus
demonstrating the linear transformation Tx = 3x. A more sophisti-
cated example comes from converting a number of atoms - let’s take
hydrogen, carbon, and oxygen - to elementary particles (electrons, pro-
tons, and neutrons). Let’s say that the vector (Ny, N¢, No) represents
the number of hydrogen, carbon, and oxygen atoms in a compound,
and (N, N,, N,,) represents the number of electrons, protons, and neu-
trons. Since hydrogen consists of one proton and one electron, carbon
consists of six protons, six neutrons, and six electrons, and oxygen con-
sists of eight protons, eight neutrons, and eight electrons, the conversion

formula is
N, = Ny +6Ncs+8Np

N, = Ny +6N¢+8No
N, =6Nc+8N,
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or in other words

N, 1 6 8 Ny
N, |=116 8 N¢
N, 0 6 8 No
1 6 8
Thematrix | 1 6 8 | isthusthe conversion matriz from the hydrogen-
0 6 8

carbon-oxygen vector space to the electron-proton-neutron vector space.
(A philosophical question: why are conversions always linear?)

Population growth as a linear transformation Linear transfor-
mations are well adapted to handle the growth of heterogeneous pop-
ulations - populations consisting of more than one type of species or
creature. A basic example is that of Fibonacci’s rabbits. These are
pairs of rabbits which reach maturity after one year, and then produce
one pair of juvenile rabbits for every year after that. Thus, if at one
year there are A pairs of juvenile rabbits and B pairs of adult rabbits,
in the next year there will be B pairs of juvenile rabbits (because each
pair of adult rabbits gives birth to a juvenile pair), and A + B pairs
of adult rabbits. Thus one can describe the passage of one year by a
linear transformation:

T(A, B) := (B, A + B).

Thus, for instance, if in the first year there is one pair of juvenile rabbits,
(1,0), in the next year the population vector will be 7'(1,0) = (0,1).
Then in the year after that it will be 7°(0,1) = (1,1). Then T'(1,1) =
(1,2), then T7'(1,2) = (2,3), then T'(2,3) = (3,5), and so forth. (We
will return to this example and analyze it more carefully much later in
this course).

Electrical circuits as a linear transformation Many examples of
analog electric circuits, such as amplifiers, capacitors and filters, can
be thought of as linear transformations: they take in some input (ei-
ther a voltage or a current) and return an output (also a voltage or a
current). Often the input is not a scalar, but is a function of time (e.g.
for AC circuits), and similarly for the output. Thus a circuit can be
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viewed as a transformation from F(R,R) (which represents the input
as a function or time) to F(R,R) (which represents the output as a
function of time). Usually this transformation is linear, provided that
your input is below a certain threshhold. (Too much current or voltage
and your circuit might blow out or short-circuit - both very non-linear
effects!). To actually write down what this transformation is mathe-
matically, though, one usually has to solve a differential equation; this
is important stuff, but is beyond the scope of this course.

As you can see, linear transformations exist in all sorts of fields. (You
may amuse yourself by finding examples of linear transformations in
finance, physics, computer science, etc.)
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