Math 115A - Week 10
Textbook sections: 3.1-5.1
Topics covered:

Linear functionals

Adjoints of linear operators
Self-adjoint operators
Normal operators

Stuff about the final
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Linear functionals

Let F' be either the real or complex numbers, and let V', W be vector
spaces over the field of scalars F'. We know what a linear transformation
T from V to W is; it is a transformation that takes as input a vector v
in V and returns a vector Tv in W, which preserves addition 7' (v+v') =
Tv + Tv' and scalar multiplication T'(cv) = ¢T'v.

We now look at some special types of linear transformation, where the
input space V' or the output space W is very small. We first look at
what happens when the input space is just F, the field of scalars.

Example The linear transformation 7 : R — R? defined by Tc¢ :=
(3¢, 4c, 5¢) is a linear transformation from the field of scalars R to a
vector space R3.

Note that the above example can be written as T'c := cw, where w is
the vector (3,4,5) in R®. The following lemma says, in fact, that all
linear transformations from the field of scalars to another vector space
are of this form:

Lemma 1. Let T : F' — W be a linear transformation from F' to W.
Then there is a vector w € W such that T'c = cw for all c € F.



Proof Since ¢ = ¢1, we have T'c = T'(cl) = ¢(T'1). So if we set w := T'1,
then we have T'c = cw for all c € F. O

Now we look at what happens when the output space is the field of
scalars.

Definition A linear functional on a vector space V' is a linear trans-
formation T': V' — F from V to the field of scalars F'.

Thus linear functionals are in some sense the “opposite” of vectors:
they “eat” a vector as input and spit out a scalar as output. (They are
sometimes called covectors or dual vectors for this reason; sometimes
physicists call them azial vectors. Another name used is I-forms. In
quantum mechanics, one sometimes uses Dirac’s “braket” notation, in
which vectors are called “kets” and covectors are called “bras”).

Example 1. The linear transformation 7 : R®> — R defined by
T(z,y,2) := 3z + 4y + 5z is a linear functional on R*®. Another ex-
ample is altitude: the linear transformation A : R®> — R defined by
A(z,y, z) := z; this takes a vector in three-dimensional space as input
and returns its altitude (the z co-ordinate).

Example 2 (integration as a linear functional). The linear trans-
formation I : C([0,1];R) — R defined by If := fol f(z) dz is a linear
functional, for instance I(z?) = 1/3.

Example 3 (evaluation as a linear functional). The linear trans-
formation E : C([0,1;R) — R defined by Ef = f(0) is a linear
functional, thu for instance F(z?) = 0, and F(e®) = 1.

Example 4. Let V be any inner product space, and let w be any
vector in V. Then the linear transformation 7" : V' — F' defined by
Tv := (v,w) is a linear functional on V' (this is because inner prod-
uct is linear in the first variable v). For instance, the linear func-
tional T'(z,y,2) := 3z + 4y + 5z in Example 1 is of this type, since
T(xz,y,2) = ((z,9, 2),(3,4,5)); similarly the altitude function can be
written in this form, as A(x,y, z) = ((z,y, 2), (1,0,0)). Also, the inte-
gration functional I in Example 2 is also of this form, since I f = (f, 1).



(As it turns out, the evaluation function E from Example 3 is not of
this form, at least on C([0, 1]; R); but see below.)

It turns out that on an finite-dimensional inner product space V', every
linear functional is of the form given in the previous example:

Riesz representation theorem. Let V' be a finite-dimensional inner
product space, and let T : V' — F be a linear functional on V. Then
there is a vector w € W such that Tv = (v,w) for all v € V.

Proof. Let’s say that V is n-dimensional. By the Gram-Schmidt or-
thogonalization process we can find an orthonormal basis vy, ve, ..., v,
of V. Let v be any vector in V. From the previous week’s notes we
have the formula

v = (v,v1)v1 + ...+ (v, V) Vp.
Applying T to both sides, we obtain
Tv = (v,v1)Tvy + ...+ (v,0,)Tvp,.

Since Tvy,...,Tv, are all scalars, and (v, w)c = (v,cw for any scalar
¢, and we thus have

Tv = (v, Tviv; + ... Tv,vy).
Thus if we let w € V' be the vector
w:=Tvv +...To,v,
then we have Tv = (v, w) for all v € V, as desired. O

(Actually, this is only the Riesz representation theorem for finite dimen-
sional spaces. There are more general Riesz representation theorems
for such infinite-dimensional spaces as C([0, 1]; R), but they are beyond
the scope of this course).

Example Consider the linear functional 7 : C* — C defined by
T(z,y,z) := 3z + iy + 5z. From the Riesz representation theorem we
know that there must be some vector w € C* such that Tv := (v, w)
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for all v € C>. In this case we can see what w is by inspection, but let
us pretend that we are unable to see this, and instead use the formula
in the proof of the Riesz representation theorem. Namely, we know
that

w ::T—vlvl +...T—Unvn

whenever v1,...,v, is an orthonormal basis for C3. Thus, using the
standard basis (1,0,0), (0,1,0), (0,0, 1), we obtain

w :=T(1,0,0)(1,0,0) + T(0,1,0)(0,1,0) 4+ T(0,0,1)(0,0, 1)
=3(1,0,0) +(0,1,0) + 5(0,0,1) = (3, —4,5).

Thus Tv = (v, (3, —i,5)), which one can easily check is consistent with
our definition of 7.

More generally, we see that any linear functional 7' : F™ — F (where
F =R or C) can be written in the form Tv := (v, w), where w is the
vector

w = (Tey, Tey,...,Te,),

and ey, ..., e, is the standard basis for F™. (i.e. the first component of
w is Teq, etc. For instance, in the previous example Te; = T'(1,0,0) =
3, so the first component of w is 3 = 3.

Example Let P,(R) be the polynomials of degree at most 2, with the
inner product

(f,9):= /_1 f(z)g(z) dz.

Let E : P,(R) — R be the evaluation function E(f) := f(0), for
instance E(z? + 2z + 3) = 3. From the Riesz representation theorem
we know that E(f) = (f,w) for some w € P»(R); we now find what
this w is. We first find an orthonormal basis for P»(R). From last
week’s notes, we know that

S S ﬁx'v o V45($2 _ 1)
1- \/57 2 \/§ ) U3 - \/g 3
is an orthonormal basis for P,(R). Thus we can compute w using the
formula

w = Tvv; + Tveve + T3
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from the proof of the Riesz representation theorem. Since Twv; = %,
Tve =0, and Tvs = %(—%), we thus have
11 n \/45( 1)\/45(I2 1)

Vive ' R

w

3B 3
which simplifies to
1 5, 17 5,
=_-_2 1) = — — a2
w=g =B -l =g —g?

It may seem that the vector w that is obtained by the Riesz representa-
tion theorem would depend on which orthonormal basis vy, ..., v, one
chooses for V. But it turns out that this is not the case:

Lemma 2. Let 7 : V — R be a linear functional on an inner product
space V. Then there can be at most one vector w € V with the property
that Tv = (v, w) for allv € V.

Proof. Suppose for contradiction that there were at least two different
vectors w, w' in V such that Tv = (v, w) and Tv = (v, w') for allv € V.
Then we have

(vy,w—w"y = (v,w)y— (v,wy=Tv—Tv=0

for all v € V. In particular, if we apply this identity to the vector
v := w — w' we obtain

lw —w'|)? = (w—w',w—w)=0

which implies that w — w’ = 0, so that w and w' are not different after
all. This contradiction shows that there could only have been one such
vector w to begin with, as desired. O

Another way to view Lemma 2 is the following: if (v, w) = (v, w') for
all v € V, then w and w’ must be equal. (If you like, this is sort of
like being able to “cancel” v from both sides of an identity involving
an inner product, provided that you know the identity holds for all v).
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Adjoints

e The Riesz representation theorem allows us to turn linear functionals
T :V — R into vectors w € V, if V is a finite-dimensional inner
product space. This leads us to a useful notion, that of the adjoint of
a linear operator.

e Let T : V — W be a linear transformation from one inner product
space to another. Then for every vector w € W, we can define a linear
functional 7;, : V' — R by the formula

Ty = (Tv,w).

e Example. If T: R® — R? is the linear transformation
T(z,y,2) = (r+ 2y + 32,42 + by + 62)

and w was the vector (10,1) € R?, then T, : R*> — R would be the
linear functional

Tw(z,y,2) = ((x + 2y + 32,4z + by + 62), (10, 1)) = 14z + 25y + 362.

e One can easily check that T, is indeed a linear functional on V:
Tp(v+v") = (T (v+0"), w) = (Tv+Tv", w) = (Tv, w)+{Tv', w) = T,v+T,v'
Tw(cv) = (T(ew), w) = (Tv,w) = c(Tv,w) = cT,v.

e By the Riesz representation theorem, there must be a vector, called
T*w € V, such that T,v = (v,T*w) for all v € V, or in other words
that

(Tv,w)y = (v, T*w)

for all w € W and v € V; this is probably the most basic property of
T*. Note that by Lemma 2, there can only be one possible value for
T*w for each w.



Example Continuing the previous example, we see that
Tw(z,y,2) = {(x,v, 2), (14, 25, 36))
and hence by Lemma 2, the only possible choice for T*w is

T*(10,1) = T*w = (14,25, 36).

Note that while 7" is a transformation that turns a vector v in V to a
vector Tv in W, T™* does the opposite, starting with a vector w in W as
input and returning a vector 7*w in V' as output. This seems similar to
how an inverse 7! of T would work, but it is important to emphasize
that 7™ is not the inverse of 7', and it makes sense even when 7T is not
invertible.

We refer to T* : W — V as the adjoint of T'. Thus when we move an
operator T from one side of an inner product to another, we have to
replace it with its adjoint. This is similar to how when one moves a
scalar from one side of an inner product to another, you have to replace
it by its complex conjugate: {cv,w) = (v,ew). Thus the adjoint is like
the complex conjugate, but for linear transformations rather than for
scalars.

Lemma 3. If T: V — W is a linear transformation, then its adjoint
T*: W — V is also a linear transformation.

Proof. We have to prove that T*(w+w') = T*w+T*w" and T*(cw) =
cT*w for all w,w' € W and scalars c.

First we prove that T*(w + w') = T*w + T*w'. By definition of T*, we
have
(v, T*(w+w")) = (Tv,w+ w'

for all v € V. But
(T, w+w"y = (Tv,w)+{Tv,w") = (v, T*w)+{v, T*w'y = (v, T *wW+T*w').
Thus we have

(v, T*(w+w")) = (v, T*w+ T*w'")

for all v € V. By Lemma 2, we must therefore have T*w + T*w' =
T*(w + w') as desired.



e Now we show that T*(cw) = ¢T*w. We have
(v, T*(cw)) = (Tv, cw) = &(Tv,w) = (v, T*w) = (v, T w)

for all v € V. By Lemma 2, we thus have T*(cw) = ¢T*w as desired.
U

e Example Let us continue our previous example of the linear transfor-
mation T : R> — R? defined by

T(x,y,z) = (z+ 2y + 3z,4x + 5y + 62).

Let us work out what 7% : R*> — R? is. Let (a,b) be any vector in R
Then we have

(T'(x,y,2),(a,0)) = ((2,y,2), T*(a, b))
for all (z,y, z) € R®. The left-hand side is
((x + 2y + 3z,4x + by + 62), (a, b)) = a(z + 2y + 32) + b(4z + by + 62)
= (a+4b)x+(2a+5b)y+(3a+6b)z = ((x,y, 2), (a+4b, 2a+5b, 3a+6b)).
Thus we have
((z,y, 2), (a + 4b,2a + 5b,3a + 6b)) = {(z,y, 2),T*(a, b))
for all z,y, z; by Lemma 2, this implies that

T*(a,b) = (a + 4b,2a + 5b, 3a + 6b).

e This example was rather tedious to compute. However, things become
easier with the aid of orthonormal bases. Recall (from Corollary 7 of
last week’s notes) that if v is a vector in V and g := (vy,...,v,) is an
orthonormal basis of V, then the column vector [v]? is given by

(v, v1)
0]’ =

(v, vp)

Thus the i row entry of [v]? is just (v, v;).
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Now suppose that T : V — W is a linear transformation, and § :=
(vi,...,v,) is an orthonormal basis of V and 7 := (wy,...,w,,) is an
orthonormal basis of W. Then [T} is a matrix with m rows and n
columns, whose j column is given by [Tv;]°. In other words, we have

(;vl, wy) (?}2, wy) ... (gvn, wy)
7 = (Tvr,wy)  (Tvg, ws) (T, wo)
(Tvr, wn) (Tve, W) .. (Tvn,wpn)

In other words, the entry in the i row and j** column is (Tw;, w;).

We can apply similar reasoning to the linear transformation 7% : W —
V. Then [T*]% is a matrix with n rows and m columns, and the entry
in the i row and j column is (T*w;,v;). But

(T*wj,vz) = (vi,T*wj> = <T’Ui, ’LUj).

Thus, the matrix [7*]? is given by

(Tvr,wi) (Tv,we) ... (T, wp)
T (Tvg,wi) (Twe,ws) ... (Tve,wp)
(Tvp,wy) (T, ws) oo Top, W)

Comparing this with our formula for [T]} we see that [T*]7 is the adjoint
of [T1]}:

Theorem 3. If T : V — W is a linear transformation, § is an or-
thonormal basis of V', and 7 is an orthonormal basis of W, then

T = (T

Example Let us once again take the example of the linear transfor-
mation T : R*> — R? defined by

T(z,y,z) = (z+ 2y + 32,4z + by + 62).



Let 8 := ((1,0,0),(0,1,0),(0,0,1)) be the standard basis of R?, and
let v := ((1,0), (0,1)) be the standard basis of R®. Then we have

m=(435)

(why?). On the other hand, if we write the linear transformation
T*(a,b) = (a + 4b, 2a + 5b, 3a + 6b)

in matrix form, we see that

7 =

W N =
S O

which is the adjoint of [T']}. (In this example, the field of scalars is real,
and so the complex conjugation aspect of the adjoint does not make an
appearance.

The following corollary connects the notion of adjoint of a linear trans-
formation with that of adjoint of a matriz.

Corollary 4. Let A be an m x n matrix with either real or complex
entries. Then the adjoint of L4 is L +.

Proof. Let F be the field of scalars that the entries of A lie in. Then
L is a linear transformation from F™ to F", and L4+ is a linear trans-
formation from F™ to F™. If we let 5 be the standard basis of F™ and
v be the standard basis of F", then by Theorem 3

L4y = ([Lalp)' = A" = [Lai]]
and hence L% = L4+ as desired. 0
In particular, we see that
(Av, w) = (v, Alw)

for any m X n matrix A, any column vector v of length n, and any
column vector w of length m.
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e Example Let A be the matrix

1i 0
A‘(o 1+i 3)’

so that L4 : C* — C? is the linear transformation defined by

1 “1 21 + 129
Laf = | =4 = :<(1+i),22+323)'
23 Z3

Then the adjoint of this transformation is given by L 4+, where A' is
the adjoint of A:

1 0
At=1| —i 1—4 |,
0 3
SO
wy
Lm(Z;):A(Z;): —iw; + (1 — i)w,

e Some basic properties of adjoints. Firstly, the process of taking adjoints
is conjugate linear: if T': V — W and U : V. — W are linear transfor-
mations, and c is a scalar, then (T'+ U)* = T* + U* and (cT')* =¢I™.
Let’s just prove the second claim, as the first is similar (or can be found
in the textbook). We look at the expression (v, (¢T')*w) for any v € V
and w € W, and compute:

(v, (T w) = (cTv,w) = c(Tv,w) = c{v, T*w) = (v, ¢T*w).

Since this identity is true for all v € V, we thus have (by Lemma 2)
that (¢T)*w = ¢T™*w for all w € W, and so (¢T')* = ¢T™* as desired.

e This argument shows a key trick in understanding adjoints: in order to
understand a transformation 7T or its adjoint, it is often a good idea to
start by looking at the expression (T'v, w) = (v, T*w) and rewrite it in
some other way.
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e Some other properties, which we leave as exercises: (T*)* = T (i.e.
if T* is the adjoint of T, then T is the adjoint of 7*); the adjoint of
the identity operator is again the identity; and if 77 : V. — W and
S : U — V are linear transformations, then (7°S)* = S*T*. (This last
identity can be verified by playing around with (u, S*T*w) for v € U
and w € W). If T is invertible, we also have (771)* = (T*)™! (i.e. the
inverse of the adjoint is the adjoint of the inverse). This can be seen
by starting with the identity 77! = T~'T = I and taking adjoints of
all sides.

e Another useful property is that a matrix has the same rank as its
adjoint. To see this, recall that the adjoint of a matrix is the conjugate
of its transpose. From Lemma 7 of week 6 notes, we know that a
matrix has the same rank as its transpose. It is also easy to see that
a matrix has the same rank as its conjugate (this is basically because
the conjugate of an elementary matrix is again an elementary matrix,
and the conjugate of a matrix in row-echelon form is again a matrix in
row echelon form.) Combining these two observations we see that the
adjoint of a matrix must also have the same rank. From Theorem 3
(and Lemma 9 of week 6 notes) we see therefore that a linear operator
from one finite-dimensional inner product space to another has the
same rank as its adjoint.

e In a similar vein, if A is a square matrix with determinant d, then A*
will have determinant d. (We will only sketch a proof of this fact here:
first prove it for elementary matrices, and for diagonal matrices. Then
to handle the general case, use Proposition 5 from week 6 notes, as well
as the identity (BA)" = ATBY).

X %k sk ok ok

Normal operators

e Recall that in the Week 7 notes we discussed the problem of whether a
linear transformation was diagonalizable, i.e. whether it had a basis of
eigenvectors. We did not fully resolve this question, and in fact we will
not be able to give a truly satisfactory answer to this question until
Math 115B. However, there is a special class of linear transformations
(aka operators) for which we can give a good answer - normal operators.
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e Definition Let T : V — V be a linear transformation on V, so that
the adjoint 7% : V' — V is another linear transformation on V. We say
that T is normal it TT* =T*T.

e Example 1 Let 7 : R> — R? be the linear transformation T'(z,y) =
(y,—z). Then T* : R*> — R? can be computed to be the linear trans-
formation T*(z,y) = (—y,z) (why?), and so

TT*(z,y) =T(~y,z) = (z,y)

and
T*T(xa y) = T*(ya —33) = ('7;7 y)

Thus TT*(z,y) and T*T(x,y) agree for all (z,y) € R*, which implies
that TT* = T*T. Thus this transformation is normal.

e Example 2 Let 7 : R> — R? be the linear transformation T'(z,y) :=
(0,z). Then T*(z,y) = (y,0) (why?). So

TT*(z,y) = T(y,0) = (0,y)

and
T*T(z,y) =T*(0,z) = (z,0).

So in general TT*(z,y) and T*T'(z, y) are not equal, and so TT* # T*T.
Thus this transformation is not normal.

e In analogy to the above definition, we define a square matrix A to be
normal if AAt = AA. For instance, the matrix

0 1
-1 0
can easily be checked to be normal, while the matrix
00
10
is not. (Why do these two examples correspond to Examples 1 and 2

above?)
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Another example, easily checked: every diagonal matrix is normal.

From Theorem 3 we have

Proposition 5. Let 7': V — V be a linear transformation on a finite-
dimensional inner product space, and let 5 be an orthonormal basis.
Then T': V' — V is normal if and only if the matrix [T]g is.

Proof. If T is normal, then T7T* = T*T. Now taking matrices with
respect to 3, we obtain

[TIGIT]5 = [T*I3(T15-

But by Theorem 3, [T*]] is the adjoint of [T]5. Thus [T]} is normal.
This proves the “only if” portion of the Proposition; the “if” part
follows by reversing the above steps. O

Normal transformations have several nice properties. First of all, when
T is normal then 7" and T* will have the same eigenvectors (but slightly
different eigenvalues):

Lemma 6. Let T : V — V be normal, and suppose that Tv = Av for
some vector v € V and some scalar \. Then T*v = A\v.

Warning: the above lemma is only true for normal operators! For other
linear transformations, it is quite possible that 7" and 7™ have totally
different eigenvectors and eigenvalues.

Proof To show T*v = \v, it suffices to show that |[|[T*v — \v| = 0,
which in turn will follow if we can show that

(T*v — Mo, T*v — \v) = 0.
We expand out the left-hand side as
(T*v, T*) — (v, T*v) — (T*v, ) + (w, ).
Pulling the As out and swapping the T's over, this becomes

(v, TT*v) — MTw,v) — Mv, Tv) + A\(v, v).
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Since T is normal and Tv = Av, we have T*v = T*Tv = AT*v. Thus
we can rewrite this expression as

Mu, T*0) — A (v, v) — A\{(v, v) + A\ (v, v).

But (v, T*v) = (Tw,v) = Av, v). If we insert this in the above expres-
sion we then see that everything cancels to zero, as desired. O

Lemma 7. Let T : V — V be normal, and let v{, v be two eigen-
vectors of T' with distinct eigenvalues A, As. Then v; and v, must be
orthogonal.

(Compare this with Proposition 6 of the Week 8 notes, which merely
asserts that these vectors v; and v, are linearly independent. Again, we
caution that this orthogonality of eigenvectors is only true for normal
operators.)

Proof. We }Eve Tvy = Mvy ﬂld Tvy = Aovy. By Lemma 6 we thus
have T*v; = A\v; and T* vy = A\yvs. Thus

(o1, vg) = (Twi,vg) = (v1, T*vs) = (v1, Aav2) = Xa(v1, Vo).

Since A\; # Ag, this means that (v;,v) = 0, and so v; and vy are
orthogonal as desired. U

This lemma tells us that most linear transformations will not be normal,
because in general the eigenvectors corresponding to different eigenval-
ues will not be orthogonal. (Take for instance the matrix involved in
the Fibonacci rabbit example).

In the other direction, if we have an orthonormal basis of eigenvectors,
then the transformation must be normal:

Lemma 8. Let T : V — V be a linear transformation o an inner
product space V, and let 5 be an orthonormal basis which consists
entirely of eigenvectors of 7. Then T is normal.

Compare this lemma to Lemma 2 of Week 7 notes, which sais that if
you have a basis of eigenvectors (not necessarily orthonormal), then 7'
is diagonalizable.
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Proof. From Lemma 2 of Week 7 notes, we know that the matrix [T

]
]

W™

is diagonal. But all diagonal matrices are normal (why?), and so [T’
is normal. By Proposition 5 we thus see that 7" is normal.

O

We now come to an important theorem, that the converse of Lemma 8
is also true:

Spectral theorem for normal operators Let T : V — V be a
normal linear transformation on a complex finite dimensional inner
product space V. Then there is an orthonormal basis 5 consisting
entirely of eigenvectors of 7". In particular, 7" is diagonalizable.

Thus normal linear transformations are precisely those diagonalizable
linear transformations which can be diagonalized using orthonormal
bases (as opposed to just being plain diagonalizable, using bases which
might not be orthonormal).

There is also a spectral theorem for normal operators on infinite dimen-
sional inner product spaces, but it is beyond the scope of this course.

Proof Let the dimension of V' be n. We shall prove this theorem by
induction on n.

First consider the base case n = 1. Then one can pick any orthonormal
basis § of V' (which in this case will just be a single unit vector), and the
vector v in this basis will automatically be an eigenvector of T' (because
in a one-dimensional space every vector will be a scalar multiple of v).
So the spectral theorem is trivially true when n = 1.

Now suppose inductively that n > 1, and that the theorem has already
been proven for dimension n — 1. Let f(\) be the characteristic poly-
nomial of T (or of any matrix representation [T]g of T’; recall that any
two such matrix representations are similar and thus have the same
characteristic polynomial). From the fundamental theorem of algebra,
we know that this characteristic polynomial splits over the complex
numbers. Hence there must be at least one root of this polynomial,
and hence T has at least one (complex) eigenvalue, and hence at least
one eigenvector.

16



e So now let us pick an eigenvector v; of T" with eigenvalue \;, thus
Tv; = Ay and T*v; = A\v; by Lemma 6. We can normalize v; to have
length 1, so ||v1|| = 1 (remember that if you multiply an eigenvector by
a non-zero scalar you still get an eigenvector, so it’s safe to normalize
eigenvectors). Let W := {cv; : ¢ € C} denote the span of this eigenvec-
tor, thus W is a one-dimensional space. Let W+ :={v € V : v L v}
denote the orthogonal complement of W; this is thus an n — 1 dimen-
sional space.

e Now we see what 7" and T* do to W+. Let w be any vector in W+,
thus w L vy, i.e. (w,v;) =0. Then

(Tw,v1) = (w, T*vy) = (w, \jv1) = A {w,v;) =0
and similarly
(T*w,v1) = (w, Tvy) = (w, \yv1) = A {w,v) = 0.

Thus if w € W+, then Tw and T*w are also in W+. Thus T and T*
are not only linear transformations from V to V, they are also linear
transformations from W+ to W+. Also, we have

(Tw,w") = (w, T*w'")

for all w,w' € W+, because every vector in W+ is a vector in V, and
we already have this property for vectors in V. Thus T and T™ are still
adjoints of each other even after we restrict the vector space from the
n-dimensional space V to the n — 1-dimensional space W+.

e We now apply the induction hypothesis, and find that W+ enjoys an
orthonormal basis of eigenvectors of 7. There are n — 1 such eigen-
vectors, since W+ is n — 1 dimensional. Now v; is normalized and is
orthogonal to all the vectors in this basis, since v; lies in W and all the
other vectors lie in W+. Thus if we add v; to this basis we get a new
collection of n orthonormal vectors, which automatically form a basis
by Corollary 5 of Week 9 notes. Each of these vectors is an eigenvector
of T', and so we are done. [l

e Example The linear transformation 7' : R* — R? defined by T'(z,y) :=
(y, —x) that we discussed earlier is normal, but not diagonalizable (its
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characteristic polynomial is A? + 1, which doesn’t split over the reals).
This does not contradict the spectral theorem because that only con-
cerns complex inner product spaces. If however we consider the com-
plex linear transformation 7" : C* — C? defined by T'(z, w) := (w, —z),
then we can find an orthonormal basis of eigenvectors, namely

NS I
::ﬁ(l’l)’ Vg 1= \/5(1, )

(Exercise: cover up the above line and see if you can find these eigenvec-
tors on your own). Indeed, you can check that v; and vy are orthonor-
mal, and that Tv; = tv; and Tvy = —ivy. Thus we can diagonalize T’
using an orthonormal basis, to become the diagonal matrix diag(i, —i).

U1

X %k ok ok ok

Self-adjoint operators

e To summarize the previous section: in the world of complex inner prod-
uct spaces, normal linear transformations (aka normal operators) are
the best kind of linear transformations: they are not only diagonaliz-
able, but they are diagonalizable using the best kind of basis, namely
an orthonormal basis. However, there is a subclass of normal transfor-
mations which are even better: the self-adjoint transformations.

e Definition A linear transformation 7" : V' — V on a finite-dimensional
inner product space V is said to be self-adjoint if T* =T, i.e. T is its
own adjoint. A square matrix A is said to be self-adjoint if AT = A,
i.e. A is its own adjoint.

e Example. The linear transformation 7 : R* — R? defined by T'(z, %) :=
(y, —z) is normal, but not self-adjoint, because its adjoint T*(x,y) =
(—y,x) is not the same as 7. However, the linear transformation
T : R* — R? defined by T(z,y) = (y,r) is self-adjoint, because its
adjoint is given by T*(z,y) = (y,z) (why?), and this is the same as 7.

= (%0
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is normal, but not self-adjoint, because its adjoint

0 —1
-
v=(1a")

is not the same as A. However, the matrix

-(10)

is normal, but not self-adjoint, because its adjoint

0 1
t =
(1)
is the same as A. (Why does this example correspond to the preceding
one? It is easy to check, using Proposition 5, that a linear transforma-

tion is self-adjoint if and only if its matrix in some orthonormal basis
is self-adjoint).

Example. Every real diagonal matrix is self-adjoint, but any other
type of diagonal matrix is not (e.g. diag(2+¢,4 + 3i) has an adjoint of
diag(2—1i,4—37) and is hence not self-adjoint, though it is still normal).

It is clear that all self-adjoint linear transformations are normal, since
if T* = T then T*T and TT* are both equal to 72 and are hence equal
to each other. Similarly, every self-adjoint matrix is normal. However,
not every normal matrix is self-adjoint, and not every normal linear
transformation is self-adjoint; see the above examples.

A self-adjoint transformation over a complex inner product space is
sometimes known as a Hermitian transformation. A self-adjoint trans-
formation over a real inner product space is known as a symmetric
transformation. Similarly, a complex self-adjoint matrix is known as a
Hermitian matrix, while a real self-adjoint matrix is known as a sym-
metric matrix. (A matrix is symmetric if A' = A. When the matrix
is real, the transpose A! is the same as the adjoint, thus self-adjoint
and symmetric ahve the same meaning for real matrices, but not for
complex matrices).
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Example The matrix

=(%4)

is its own adjoint (why?), and is hence Hermitian, but it is not symmet-
ric, since it is not its own transpose. Note that every real symmetric
matrix is automatically Hermitian, because every real matrix is also a
complex matrix (with all the imaginary parts equal to 0).

From the spectral theorem for normal matrices, we know that any Her-
mitian operator on a complex inner product space has an orthonormal
basis of eigenvectors. But we can say a little bit more:

Theorem 9 All the eigenvalues of a Hermitian operator are real.

Proof. Let A be an eigenvalue of a Hermitian operator 7', thus Tv = \v
for some non-zero eigenvector v. But then by Lemma 6, T*v = Av. But
since T is Hermitian, T = T*, and hence Av = Av. Since v is non-zero,
this means that A = ), i.e. \ is real. Thus all the eigenvalues of T' are
real. O

A similar line of reasoning shows that all the eigenvalues of a Hermitian
matrix are real.

Corollary 10. The characteristic polynomial of a Hermitian matrix
splits over the reals.

Proof. We know already from the Fundamental Theorem of Algebra
that the characteristic polynomial splits over the complex numbers.
But since the matrix is Hermitian, every root of the characteristic poly-
nomial must be real. Thus the polynomial must split over the reals.
O

We can now prove

Spectral theorem for self-adjoint operators Let T' be a self-adjoint
linear transformation on an inner product space V' (which can be ei-
ther real or complex). Then there is an orthonormal basis of V' which
consists entirely of eigenvectors of V', with real eigenvalues.
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e Proof. We repeat the proof of the Spectral theorem for normal opera-
tors, i.e. we do an induction on the dimension n of the space V. When
n = 1 the claim is again trivial (and we use the fact that every Lemma
9 to make sure the eigenvalue is real). Now suppose inductively that
n > 1 and the claim has already been proven for n — 1.

From Corollary 10 we know that 7" has at least one real eigenvalue.
Thus we can find a real A\; and a non-zero vector v; such that Tv, =
A1v;. We can then normalize v; to have unit length. We now repeat
the rest of the proof of the spectral theorem for normal operators, to

obtain the same conclusion except that the eigenvalues are now real.
OdJ

e Notice one subtle difference between the spectral theorem for self-
adjoint operators and the spectral theorem for normal operators: the
spectral theorem for normal operators requires the inner product space
to be complex, but the one for self-adjoint operators does not. In partic-
ular, every symmetric operator on a real vector space is diagonalizable.

(%)

is Hermitian, and thus so is the linear transformation L, : C?* — C?,

which is given by
z W
mln)= (%)

By the spectral theorem, C? must have an orthonormal basis of eigen-
vectors with real eigenvalues. One such basis is

v (i) e (B)

one can verify that v; and v, are an orthonormal basis for the complex
two-dimensional inner product space C?, and that L v; = —v; and
L vy = 4ve. Thus L4 can be diagonalized using an orthonormal basis
to give the matrix diag(+1,—1). Note that while the eigenvalues of
L, are real, the eigenvectors are still complex. The spectral theorem
says nothing as to how real or complex the eigenvectors are (indeed,

e Example The matrix
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in many inner product spaces, such a question does not really make
sense).

e Self-adjoint operators are thus the very best of all operators: not only
are they diagonalizable, with an orthonormal basis of eigenvectors, the
eigenvalues are also real. (Conversely, it is easy to modify Lemma 8 to
show that any operator with these properties is necessarily self-adjoint).
Fortunately, self-adjoint operators come up all over the place in real
life. For instance, in quantum mechanics, almost all the linear trans-
formations one sees there are Hermitian (this is basically because while
quantum mechanics uses complex inner product spaces, the quantities
we can actually observe in physical reality must be real-valued).

% % ok % k
Stuff about the final

e The final is three hours long, and will be held in the usual classroom
(MS 5127), on Tuesday, Dec 10, from 8am-1lam.

e The final will be eight to ten questions. They will be of varying diffi-
culty and length, and so they will have different point values assigned
to them. It is probably best for you to read all the questions at the
beginning before deciding which one to do first; it may not necessarily
be a good idea to do the questions in order.

e The final will be comprehensive, covering everything from first week to
last week. Because we did not have time to cover the Week 10 notes,
this means that everything from Week 1 to Week 9 will be covered.
Because the midterm already tested the material from Weeks 1-5, there
will be more of an emphasis on the Weeks 6-10 material, however it may
still be worthwhile to review the Weeks 1-5 material, because much of
the Weeks 6-10 material depends indirectly on the Weeks 1-5 material.

e The questions will be more or less evenly split between three types of
questions. The first are computational questions - in which you have
to compute things like orthonormal bases, characteristic polynomials,
eigenvectors and eigenvalues, null spaces and ranges, and so forth. It is
probably a good idea to review all the computational questions in the
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homework, midterm, and in the practice exams, and also the examples
given in the class notes and in the textbook. (If you find yourself re-
membering how to do these problems from before, then perhaps you
could look at other such questions in the textbook instead). It is proba-
bly best if you attempt these questions without looking at any solutions
or without too much help from your friends. (You can certainly use
your textbook and notes, though, and any index cards you have pre-
pared).

The second type of question are “Find”-type questions - questions in
which you have to find some object (a matrix, or a basis, or a lin-
ear transformation) - which satisfies various properties. These type of
questions are trickier than computational questions because they often
do not fit any pattern or match any previous problem you have seen.
They usually require that you have a good understanding of what all
the concepts mean (for instance, you’ll have extreme difficulty finding
an orthonormal basis with various properties if you do not know what
it means for a basis to be orthonormal, and how to check if it is). Many
of the theorems in the notes may help give you some clues as to how to
find these types of objects; you can put these theorems on your index
cards. If you don’t know what to do, you can start with trial and error
- just try to find an object which satisfies some, if not all, of the prop-
erties requested, and then try to modify your guess so that more and
more of the properties are satisfied, until you have all of the properties
that the question asked for. (Thus you should be able to give examples
of linear transformations, examples of orthonormal bases, etc.)

The third type of question are the short proof questions - these are often
set in some abstract vector space or inner product space, with some
objects (linear transformations, vectors, etc.) assumed to have certain
properties, and your job is to deduce other properties of these objects.
You will not be asked to re-prove any of the theorems in the textbook
or notes - you can take these theorems as given, without any need to
prove them again. These questions are usually considered the trickiest
of all, although often once you see how to do them, they are usually
quite short, and do not involve much computation. You should go over
the proof-type questions in the homework and in the practice exams,
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preferably without any outside assistance; the proof-type questions in
the final will be of a similar nature.

e There are two practice finals on the class web page. Neither of them
are completely indicative of what type of questions you will get on the
final, because they both contain questions which require material not
covered in this course, or are at a higher level of difficulty than what
this course expects. However, they both contain questions which are
similar to what will be in the actual final. Please read the annotations
on the web page next to the hyperlinks to these finals before using
them.

e You may bring fwo 5x8 index cards into the exam - the index card
that you used for the first midterm, and an additional 5x8 index card.
I will distribute these cards in class, or you can bring your own. It
is up to you what to put on these cards; for instance, if you have
difficulty remembering the exact definition of some concept, or on how
to compute a certain quantity, or on what the exact theorems and
relationships are between, say, orthonormal bases and inner products,
I would write on the card whatever it would take to address these
difficulties - this is more likely to be useful than merely copying down
everything from the notes and textbook. One thing to try is to go
over the homework and practice exams, and make a note of every time
you wish you had remembered some concept or theorem or trick when
doing a problem. Then put all those notes into your card.

e Remember, you have three hours to finish, and only ten questions.
There is not nearly as much time pressure as there is in a 50-minute
midterm, and it is in fact common for people to finish early. So take
your time, and try to be careful; there is no need to rush things. There
will not be much time-consuming computation in the questions in the
final, even in the ”computational” questions. A minute spent thinking
about what a problem is asking, and how best to go about it, can save
ten or twenty minutes of wasted effort.

e Good luck!
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