
Math 115A - Week 1
Textbook sections: 1.1-1.6

Topics covered:

• What is Linear algebra?

• Overview of course

• What is a vector? What is a vector space?

• Examples of vector spaces

• Vector subspaces

• Span, linear dependence, linear independence

• Systems of linear equations

• Bases

* * * * *
Overview of course

• This course is an introduction to Linear algebra. Linear algebra is the
study of linear transformations and their algebraic properties.

• A transformation is any operation that transforms an input to an out-
put. A transformation is linear if (a) every amplification of the input
causes a corresponding amplification of the output (e.g. doubling of the
input causes a doubling of the output), and (b) adding inputs together
leads to adding of their respective outputs. [We’ll be more precise
about this much later in the course.]

• A simple example of a linear transformation is the map y := 3x, where
the input x is a real number, and the output y is also a real number.
Thus, for instance, in this example an input of 5 units causes an output
of 15 units. Note that a doubling of the input causes a doubling of the
output, and if one adds two inputs together (e.g. add a 3-unit input
with a 5-unit input to form a 8-unit input) then the respective outputs
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(9-unit and 15-unit outputs, in this example) also add together (to form
a 24-unit output). Note also that the graph of this linear transformation
is a straight line (which is where the term linear comes from).

• (Footnote: I use the symbol := to mean “is defined as”, as opposed to
the symbol =, which means “is equal to”. (It’s similar to the distinction
between the symbols = and == in computer languages such as C + +,
or the distinction between causation and correlation). In many texts
one does not make this distinction, and uses the symbol = to denote
both. In practice, the distinction is too fine to be really important, so
you can ignore the colons and read := as = if you want.)

• An example of a non-linear transformation is the map y := x2; note
now that doubling the input leads to quadrupling the output. Also if
one adds two inputs together, their outputs do not add (e.g. a 3-unit
input has a 9-unit output, and a 5-unit input has a 25-unit output, but
a combined 3 + 5-unit input does not have a 9 + 25 = 34-unit output,
but rather a 64-unit output!). Note the graph of this transformation is
very much non-linear.

• In real life, most transformations are non-linear; however, they can of-
ten be approximated accurately by a linear transformation. (Indeed,
this is the whole point of differential calculus - one takes a non-linear
function and approximates it by a tangent line, which is a linear func-
tion). This is advantageous because linear transformations are much
easier to study than non-linear transformations.

• In the examples given above, both the input and output were scalar
quantities - they were described by a single number. However in many
situations, the input or the output (or both) is not described by a
single number, but rather by several numbers; in which case the input
(or output) is not a scalar, but instead a vector. [This is a slight
oversimplification - more exotic examples of input and output are also
possible when the transformation is non-linear.]

• A simple example of a vector-valued linear transformation is given by
Newton’s second law

F = ma, or equivalently a = F/m.
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One can view this law as a statement that a force F applied to an
object of mass m causes an acceleration a, equal to a := F/m; thus
F can be viewed as an input and a as an output. Both F and a are
vectors; if for instance F is equal to 15 Newtons in the East direction
plus 6 Newtons in the North direction (i.e. F := (15, 6)N), and the
object has mass m := 3kg, then the resulting acceleration is the vector
a = (5, 2)m/s2 (i.e. 5m/s2 in the East direction plus 2m/s2 in the
North direction).

• Observe that even though the input and outputs are now vectors in
this example, this transformation is still linear (as long as the mass
stays constant); doubling the input force still causes a doubling of the
output acceleration, and adding two forces together results in adding
the two respective accelerations together.

• One can write Newton’s second law in co-ordinates. If we are in three
dimensions, so that F := (Fx, Fy, Fz) and a := (ax, ay, az), then the law
can be written as

Fx =
1

m
ax + 0ay + 0az

Fy = 0ax +
1

m
ay + 0az

Fz = 0ax + 0ay +
1

m
az.

This linear transformation is associated to the matrix 1
m

0 0
0 1

m
0

0 0 1
m

 .

• Here is another example of a linear transformation with vector inputs
and vector outputs:

y1 = 3x1 + 5x2 + 7x3

y2 = 2x1 + 4x2 + 6x3;

this linear transformation corresponds to the matrix(
3 5 7
2 4 6

)
.
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As it turns out, every linear transformation corresponds to a matrix,
although if one wants to split hairs the two concepts are not quite the
same thing. [Linear transformations are to matrices as concepts are to
words; different languages can encode the same concept using different
words. We’ll discuss linear transformations and matrices much later in
the course.]

• Linear algebra is the study of the algebraic properties of linear trans-
formations (and matrices). Algebra is concerned with how to manip-
ulate symbolic combinations of objects, and how to equate one such
combination with another; e.g. how to simplify an expression such as
(x − 3)(x + 5). In linear algebra we shall manipulate not just scalars,
but also vectors, vector spaces, matrices, and linear transformations.
These manipulations will include familiar operations such as addition,
multiplication, and reciprocal (multiplicative inverse), but also new op-
erations such as span, dimension, transpose, determinant, trace, eigen-
value, eigenvector, and characteristic polynomial. [Algebra is distinct
from other branches of mathematics such as combinatorics (which is
more concerned with counting objects than equating them) or analysis
(which is more concerned with estimating and approximating objects,
and obtaining qualitative rather than quantitative properties).]

* * * * *
Overview of course

• Linear transformations and matrices are the focus of this course. How-
ever, before we study them, we first must study the more basic concepts
of vectors and vector spaces; this is what the first two weeks will cover.
(You will have had some exposure to vectors in 32AB and 33A, but
we will need to review this material in more depth - in particular we
concentrate much more on concepts, theory and proofs than on com-
putation). One of our main goals here is to understand how a small set
of vectors (called a basis) can be used to describe all other vectors in
a vector space (thus giving rise to a co-ordinate system for that vector
space).

• In weeks 3-5, we will study linear transformations and their co-ordinate
representation in terms of matrices. We will study how to multiply two
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transformations (or matrices), as well as the more difficult question of
how to invert a transformation (or matrix). The material from weeks
1-5 will then be tested in the midterm for the course.

• After the midterm, we will focus on matrices. A general matrix or linear
transformation is difficult to visualize directly, however one can under-
stand them much better if they can be diagonalized. This will force us
to understand various statistics associated with a matrix, such as deter-
minant, trace, characteristic polynomial, eigenvalues, and eigenvectors;
this will occupy weeks 6-8.

• In the last three weeks we will study inner product spaces, which are
a fancier version of vector spaces. (Vector spaces allow you to add
and scalar multiply vectors; inner product spaces also allow you to
compute lengths, angles, and inner products). We then review the
earlier material on bases using inner products, and begin the study
of how linear transformations behave on inner product spaces. (This
study will be continued in 115B).

• Much of the early material may seem familiar to you from previous
courses, but I definitely recommend that you still review it carefully, as
this will make the more difficult later material much easier to handle.

* * * * *
What is a vector? What is a vector space?

• We now review what a vector is, and what a vector space is. First let
us recall what a scalar is.

• Informally, a scalar is any quantity which can be described by a sin-
gle number. An example is mass: an object has a mass of m kg for
some real number m. Other examples of scalar quantities from physics
include charge, density, speed, length, time, energy, temperature, vol-
ume, and pressure. In finance, scalars would include money, interest
rates, prices, and volume. (You can think up examples of scalars in
chemistry, EE, mathematical biology, or many other fields).

• The set of all scalars is referred to as the field of scalars; it is usually
just R, the field of real numbers, but occasionally one likes to work
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with other fields such as C, the field of complex numbers, or Q, the
field of rational numbers. However in this course the field of scalars will
almost always be R. (In the textbook the scalar field is often denoted
F, just to keep aside the possibility that it might not be the reals R;
but I will not bother trying to make this distinction.)

• Any two scalars can be added, subtracted, or multiplied together to
form another scalar. Scalars obey various rules of algebra, for instance
x + y is always equal to y + x, and x ∗ (y + z) is equal to x ∗ y + x ∗ z.

• Now we turn to vectors and vector spaces. Informally, a vector is any
member of a vector space; a vector space is any class of objects which
can be added together, or multiplied with scalars. (A more popular,
but less mathematically accurate, definition of a vector is any quantity
with both direction and magnitude. This is true for some common
kinds of vectors - most notably physical vectors - but is misleading or
false for other kinds). As with scalars, vectors must obey certain rules
of algebra.

• Before we give the formal definition, let us first recall some familiar
examples.

• The vector space R2 is the space of all vectors of the form (x, y), where
x and y are real numbers. (In other words, R2 := {(x, y) : x, y ∈ R}).
For instance, (−4, 3.5) is a vector in R2. One can add two vectors in R2

by adding their components separately, thus for instance (1, 2)+(3, 4) =
(4, 6). One can multiply a vector in R2 by a scalar by multiplying each
component separately, thus for instance 3 ∗ (1, 2) = (3, 6). Among all
the vectors in R2 is the zero vector (0, 0). Vectors in R2 are used for
many physical quantities in two dimensions; they can be represented
graphically by arrows in a plane, with addition represented by the
parallelogram law and scalar multiplication by dilation.

• The vector space R3 is the space of all vectors of the form (x, y, z),
where x, y, z are real numbers: R3 := {(x, y, z) : x, y, z ∈ R}. Addition
and scalar multiplication proceeds similar to R2: (1, 2, 3) + (4, 5, 6) =
(5, 7, 9), and 4 ∗ (1, 2, 3) = (4, 8, 12). However, addition of a vector in
R2 to a vector in R3 is undefined; (1, 2) + (3, 4, 5) doesn’t make sense.
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Among all the vectors in R3 is the zero vector (0, 0, 0). Vectors in R3 are
used for many physical quantities in three dimensions, such as velocity,
momentum, current, electric and magnetic fields, force, acceleration,
and displacement; they can be represented by arrows in space.

• One can similarly define the vector spaces R4, R5, etc. Vectors in
these spaces are not often used to represent physical quantities, and
are more difficult to represent graphically, but are useful for describing
populations in biology, portfolios in finance, or many other types of
quantities which need several numbers to describe them completely.

* * * * *
Definition of a vector space

• Definition. A vector space is any collection V of objects (called vec-
tors) for which two operations can be performed:

• Vector addition, which takes two vectors v and w in V and returns
another vector v + w in V . (Thus V must be closed under addition).

• Scalar multiplication, which takes a scalar c in R and a vector v in V ,
and returns another vector cv in V . (Thus V must be closed under
scalar multiplication).

• Furthermore, for V to be a vector space, the following properties must
be satisfied:

• (I. Addition is commutative) For all v, w ∈ V , v + w = w + v.

• (II. Addition is associative) For all u, v, w ∈ V , u+(v+w) = (u+v)+w.

• (III. Additive identity) There is a vector 0 ∈ V , called the zero vector,
such that 0 + v = v for all v ∈ V .

• (IV. Additive inverse) For each vector v ∈ V , there is a vector −v ∈ V ,
called the additive inverse of v, such that −v + v = 0.

• (V. Multiplicative identity) The scalar 1 has the property that 1v = v
for all v ∈ V .
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• (VI. Multiplication is associative) For any scalars a, b ∈ R and any
vector v ∈ V , we have a(bv) = (ab)v.

• (VII. Multiplication is linear) For any scalar a ∈ R and any vectors
v, w ∈ V , we have a(v + w) = av + aw.

• (VIII. Multiplication distributes over addition) For any scalars a, b ∈ R
and any vector v ∈ V , we have (a + b)v = av + bv.

* * * * *
(Not very important) Remarks

• The number of properties listed is long, but they can be summarized
briefly as: the laws of algebra work! They are all eminently reasonable;
one would not want to work with vectors for which v + w 6= w + v, for
instance. Verifying all the vector space axioms seems rather tedious,
but later we will see that in most cases we don’t need to verify all of
them.

• Because addition is associative (axiom II), we will often write expres-
sions such as u+v+w without worrying about which order the vectors
are added in. Similarly from axiom VI we can write things like abv.
We also write v − w as shorthand for v + (−w).

• A philosophical point: we never say exactly what vectors are, only
what vectors do. This is an example of abstraction, which appears
everywhere in mathematics (but especially in algebra): the exact sub-
stance of an object is not important, only its properties and functions.
(For instance, when using the number “three” in mathematics, it is
unimportant whether we refer to three rocks, three sheep, or whatever;
what is important is how to add, multiply, and otherwise manipulate
these numbers, and what properties these operations have). This is
tremendously powerful: it means that we can use a single theory (lin-
ear algebra) to deal with many very different subjects (physical vectors,
population vectors in biology, portfolio vectors in finance, probability
distributions in probability, functions in analysis, etc.). [A similar phi-
losophy underlies “object-oriented programming” in computer science.]
Of course, even though vector spaces can be abstract, it is often very
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helpful to keep concrete examples of vector spaces such as R2 and R3

handy, as they are of course much easier to visualize. For instance,
even when dealing with an abstract vector space we shall often still
just draw arrows in R2 or R3, mainly because our blackboards don’t
have all that many dimensions.

• Because we chose our field of scalars to be the field of real numbers R,
these vector fields are known as real vector fields, or vector fields over
R. Occasionally people use other fields, such as complex numbers C, to
define the scalars, thus creating complex vector fields (or vector fields
over C), etc. Another interesting choice is to use functions instead of
numbers as scalars (for instance, one could have an indeterminate x,
and let things like 4x3 + 2x2 + 5 be scalars, and (4x3 + 2x2 + 5, x4 − 4)
be vectors). We will stick almost exclusively with the real scalar field
in this course, but because of the abstract nature of this theory, almost
everything we say in this course works equally well for other scalar
fields.

• A pedantic point: The zero vector is often denoted 0, but technically
it is not the same as the zero scalar 0. But in practice there is no harm
in confusing the two objects: zero of one thing is pretty much the same
as zero of any other thing.

* * * * *
Examples of vector spaces

• n-tuples as vectors. For any integer n ≥ 1, the vector space Rn is
defined to be the space of all n-tuples of reals (x1, x2, . . . , xn). These
are ordered n-tuples, so for instance (3, 4) is not the same as (4, 3); two
vectors are equal (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are only equal if
x1 = y1, x2 = y2, . . ., and xn = yn. Addition of vectors is defined by

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) := (x1 + y1, x2 + y2, . . . , xn + yn)

and scalar multiplication by

c(x1, x2, . . . , xn) := (cx1, cx2, . . . , cxn).

The zero vector is
0 := (0, 0, . . . , 0)
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and additive inverse is given by

−(x1, x2, . . . , xn) := (−x1,−x2, . . . ,−xn).

• A typical use of such a vector is to count several types of objects. For
instance, a simple ecosystem consisting of X units of plankton, Y units
of fish, and Z whales might be represented by the vector (X, Y, Z).
Combining two ecosystems together would then correspond to adding
the two vectors; natural population growth might correspond to mul-
tiplying the vector by some scalar corresponding to the growth rate.
(More complicated operations, dealing with how one species impacts
another, would probably be dealt with via matrix operations, which
we will come to later). As one can see, there is no reason for n to be
restricted to two or three dimensions.

• The vector space axioms can be verified for Rn, but it is tedious to do
so. We shall just verify one axiom here, axiom VIII: (a+ b)v = av + bv.
We can write the vector v in the form v := (x1, x2, . . . , xn). The left-
hand side is then

(a + b)v = (a + b)(x1, x2, . . . , xn) = ((a + b)x1, (a + b)x2, . . . , (a + b)xn)

while the right-hand side is

av + bv = a(x1, x2, . . . , xn) + b(x1, x2, . . . , xn)

= (ax1, ax2, . . . , axn) + (bx1, bx2, . . . , bxn)

= (ax1 + bx1, ax2 + bx2, . . . , axn + bxn)

and the two sides match since (a + b)xj = axj + bxj for each j =
1, 2, . . . , n.

• There are of course other things we can do with Rn, such as taking dot
products, lengths, angles, etc., but those operations are not common
to all vector spaces and so we do not discuss them here.

• Scalars as vectors. The scalar field R can itself be thought of as a
vector space - after all, it has addition and scalar multiplication. It
is essentially the same space as R1. However, this is a rather boring
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vector space and it is often confusing (though technically correct) to
refer to scalars as a type of vector. Just as R2 represents vectors in
a plane and R3 represents vectors in space, R1 represents vectors in a
line.

• The zero vector space. Actually, there is an even more boring vector
space than R - the zero vector space R0 (also called {0}), consisting
solely of a single vector 0, the zero vector, which is also sometimes
denoted () in this context. Addition and multiplication are trivial:
0 + 0 = 0 and c0 = 0. The space R0 represents vectors in a point.
Although this space is utterly uninteresting, it is necessary to include
it in the pantheon of vector spaces, just as the number zero is required
to complete the set of integers.

• Complex numbers as vectors. The space C of complex numbers
can be viewed as a vector space over the reals; one can certainly add two
complex numbers together, or multiply a complex number by a (real)
scalar, with all the laws of arithmetic holding. Thus, for instance, 3+2i
would be a vector, and an example of scalar multiplication would be
5(3+2i) = 15+10i. This space is very similar to R2, although complex
numbers enjoy certain operations, such as complex multiplication and
complex conjugate, which are not available to vectors in R2.

• Polynomials as vectors I. For any n ≥ 0, let Pn(R) denote the
vector space of all polynomials of one indeterminate variable x whose
degree is at most n. Thus for instance P3(R) contains the “vectors”

x3 + 2x2 + 4; x2 − 4; −1.5x3 + 2.5x + π; 0

but not
x4 + x + 1;

√
x; sin(x) + ex; x3 + x−3.

Addition, scalar multiplication, and additive inverse are defined in the
standard manner, thus for instance

(x3 + 2x2 + 4) + (−x3 + x2 + 4) = 3x2 + 8 (0.1)

and
3(x3 + 2x2 + 4) = 3x3 + 6x2 + 12.

The zero vector is just 0.
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• Notice in this example it does not really matter what x is. The space
Pn(R) is very similar to the vector space Rn+1; indeed one can match
one to the other by the pairing

anx
n + an−1x

n−1 + . . . + a1x + a0 ⇐⇒ (an, an−1, . . . , a1, a0),

thus for instance in P3(R), the polynomial x3 + 2x2 + 4 would be as-
sociated with the 4-tuple (1, 2, 0, 4). The more precise statement here
is that Pn(R) and Rn+1 are isomorphic vector spaces; more on this
later. However, the two spaces are still different; for instance we can
do certain operations in Pn(R), such as differentiate with respect to x,
which do not make much sense for Rn+1.

• Notice that we allow the polynomials to have degree less than n; if we
only allowed polynomials of degree exactly n, then we would not have
a vector space because the sum of two vectors would not necessarily be
a vector (see (0.1)). (In other words, such a space would not be closed
under addition).

• Polynomials as vectors II. Let P (R) denote the vector space of all
polynomials of one indeterminate variable x - regardless of degree. (In
other words, P (R) :=

⋃∞
n=0 Pn(R), the union of all the Pn(R)). Thus

this space in particular contains the monomials

1, x, x2, x3, x4, . . .

though of course it contains many other vectors as well.

• This space is much larger than any of the Pn(R), and is not isomor-
phic to any of the standard vector spaces Rn. Indeed, it is an infinite
dimensional space - there are infinitely many “independent” vectors in
this space. (More on this later).

• Functions as vectors I. Why stick to polynomials? Let C(R) denote
the vector space of all continuous functions of one real variable x - thus
this space includes as vectors such objects as

x4 + x + 1; sin(x) + ex; x3 + π − sin(x); |x|.
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One still has addition and scalar multiplication:

(sin(x) + ex) + (x3 + π − sin(x)) = x3 + ex + π

5(sin(x) + ex) = 5 sin(x) + 5ex,

and all the laws of vector spaces still hold. This space is substantially
larger than P (R), and is another example of an infinite dimensional
vector space.

• Functions as vectors II. In the previous example the real variable
x could range over all the real line R. However, we could instead
restrict the real variable to some smaller set, such as the interval [0, 1],
and just consider the vector space C([0, 1]) of continuous functions on
[0, 1]. This would include such vectors such as

x4 + x + 1; sin(x) + ex; x3 + π − sin(x); |x|.

This looks very similar to C(R), but this space is a bit smaller because
more functions are equal. For instance, the functions x and |x| are
the same vector in C([0, 1]), even though they are different vectors in
C(R).

• Functions as vectors III. Why stick to continuous functions? Let
F(R,R) denote the space of all functions of one real variable R, re-
gardless of whether they are continuous or not. In addition to all the
vectors in C(R) the space F(R,R) contains many strange objects, such
as the function

f(x) :=

{
1 if x ∈ Q
0 if x 6∈ Q

This space is much, much, larger than C(R); it is also infinite di-
mensional, but it is in some sense “more infinite” than C(R). (More
precisely, the dimension of C(R) is countably infinite, but the dimen-
sion of F(R,R) is uncountably infinite. Further discussion is beyond
the scope of this course, but see Math 112).

• Functions as vectors IV. Just as the vector space C(R) of continuous
functions can be restricted to smaller sets, the space F(R,R) can also
be restricted. For any subset S of the real line, let F(S,R) denote
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the vector space of all functions from S to R, thus a vector in this
space is a function f which assigns a real number f(x) to each x in S.
Two vectors f , g would be considered equal if f(x) = g(x) for each x
in S. For instance, if S is the two element set S := {0, 1}, then the
two functions f(x) := x2 and g(x) := x would be considered the same
vector in F({0, 1},R), because they equal the same value at 0 and 1.
Indeed, to specify any vector f in {0, 1}, one just needs to specify f(0)
and f(1). As such, this space is very similar to R2.

• Sequences as vectors. An infinite sequence is a sequence of real
numbers

(a1, a2, a3, a4, . . .);

for instance, a typical sequence is

(2, 4, 6, 8, 10, 12, . . .).

Let R∞ denote the vector space of all infinite sequences. These se-
quences are added together by the rule

(a1, a2, . . .) + (b1, b2, . . .) := (a1 + b1, a2 + b2, . . .)

and scalar multiplied by the rule

c(a1, a2, . . .) := (ca1, ca2, . . .).

This vector space is very much like the finite-dimensional vector spaces
R2, R3, . . ., except that these sequences do not terminate.

• Matrices as vectors. Given any integers m, n ≥ 1, we let Mm×n(R)
be the space of all m × n matrices (i.e. m rows and n columns) with
real entries, thus for instance M2×3 contains such “vectors” as(

1 2 3
4 5 6

)
,

(
0 −1 −2
−3 −4 −5

)
.

Two matrices are equal if and only if all of their individual components
match up; rearranging the entries of a matrix will produce a different
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matrix. Matrix addition and scalar multiplication is defined similarly
to vectors:(

1 2 3
4 5 6

)
+

(
0 −1 −2
−3 −4 −5

)
=

(
1 1 1
1 1 1

)

10

(
1 2 3
4 5 6

)
=

(
10 20 30
40 50 60

)
.

Matrices are useful for many things, notably for solving linear equations and
for encoding linear transformations; more on these later in the course.

• As you can see, there are (infinitely!) many examples of vector spaces, some
of which look very different from the familiar examples of R2 and R3. Nev-
ertheless, much of the theory we do here will cover all of these examples
simultaneously. When we depict these vector spaces on the blackboard, we
will draw them as if they were R2 or R3, but they are often much larger,
and each point we draw in the vector space, which represents a vector, could
in reality stand for a very complicated object such as a polynomial, matrix,
or function. So some of the pictures we draw should be interpreted more as
analogies or metaphors than as a literal depiction of the situation.

* * * * *
Non-vector spaces

• Now for some examples of things which are not vector spaces.

• Latitude and longitude. The location of any point on the earth can
be described by two numbers, e.g. Los Angeles is 34 N, 118 W. This
may look a lot like a two-dimensional vector in R2, but the space of
all latitude-longitude pairs is not a vector space, because there is no
reasonable way of adding or scalar multiplying such pairs. For instance,
how could you multiply Los Angeles by 10? 340 N, 1180 W does not
make sense.

• Unit vectors. In R3, a unit vector is any vector with unit length, for
instance (0, 0, 1), (0,−1, 0), and (3

5
, 0, 4

5
) are all unit vectors. However

the space of all unit vectors (sometimes denoted S2, for two-dimensional
sphere) is not a vector space as it is not closed under addition (or under
scalar multiplication).
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• The positive real axis. The space R+ of positive real numbers is
closed under addition, and obeys most of the rules of vector spaces, but
is not a vector space, because one cannot multiply by negative scalars.
(Also, it does not contain a zero vector).

• Monomials. The space of monomials 1, x, x2, x3, . . . does not form a
vector space - it is not closed under addition or scalar multiplication.

* * * * *
Vector arithmetic

• The vector space axioms I-VIII can be used to deduce all the other
familiar laws of vector arithmetic. For instance, we have

• Vector cancellation law If u, v, w are vectors such that u+v = u+w,
then v = w.

• Proof: Since u is a vector, we have an additive inverse −u such that
−u+u = 0, by axiom IV. Now we add −u to both sides of u+v = u+w:

−u + (u + v) = −u + (u + w).

Now use axiom II:

(−u + u) + v = (−u + u) + w

then axiom IV:
0 + v = 0 + w

then axiom III:
v = w.

• As you can see, these algebraic manipulations are rather trivial. After
the first week we usually won’t do these computations in such painful
detail.

• Some other simple algebraic facts, which you can amuse yourself with
by deriving them from the axioms:

0v = 0; (−1)v = −v; −(v+w) = (−v)+(−w); a0 = 0; a(−x) = (−a)x = −ax
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* * * * *
Vector subspaces

• Many vector spaces are subspaces of another. A vector space W is a
subspace of a vector space V if W ⊆ V (i.e. every vector in V is also a
vector in W ), and the laws of vector addition and scalar multiplication
are consistent (i.e. if v1 and v2 are in W , and hence in V , the rule that
W gives for adding v1 and v2 gives the same answer as the rule that V
gives for adding v1 and v2.

• For instance, the space P2(R) - the vector space of polynomials of
degree at most 2 is a subspace of P3(R). Both are subspaces of P (R),
the vector space of polynomials of arbitrary degree. C([0, 1]), the space
of continuous functions on [0, 1], is a subspace of F([0, 1],R). And
so forth. (Technically, R2 is not a subspace of R3, because a two-
dimensional vector is not a three-dimensional vector. However, R3

does contain subspaces which are almost identical to R2. More on this
later).

• If V is a vector space, and W is a subset of V (i.e. W ⊆ V ), then
of course we can add and scalar multiply vectors in W , since they are
automatically vectors in V . On the other hand, W is not necessarily
a subspace, because it may not be a vector space. (For instance, the
set S2 of unit vectors in R3 is a subset of R3, but is not a subspace).
However, it is easy to check when a subset is a subspace:

• Lemma. Let V be a vector space, and let W be a subset of V . Then
W is a subspace of V if and only if the following two properties are
satisfied:

• (W is closed under addition) If w1 and w2 are in W , then w1 + w2 is
also in W .

• (W is closed under scalar multiplication) If w is in W and c is a scalar,
then cw is also in W .

• Proof. First suppose that W is a subspace of V . Then W will be
closed under addition and multiplication directly from the definition of
vector space. This proves the “only if” part.
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• Now we prove the harder “if part”. In other words, we assume that W is
a subset of V which is closed under addition and scalar multiplication,
and we have to prove that W is a vector space. In other words, we
have to verify the axioms I-VIII.

• Most of these axioms follow immediately because W is a subset of V ,
and V already obeys the axioms I-VIII. For instance, since vectors v1, v2

in V obey the commutativity property v1+v2 = v2+v1, it automatically
follows that vectors in W also obey the property w1 + w2 = w2 + w1,
since all vectors in W are also vectors in V . This reasoning easily gives
us axioms I, II, V, VI, VII, VIII.

• There is a potential problem with III though, because the zero vector 0
of V might not lie in W . Similarly with IV, there is a potential problem
that if w lies in W , then −w might not lie in W . But both problems
cannot occur, because 0 = 0w and −w = (−1)w (Exercise: prove this
from the axioms!), and W is closed under scalar multiplication. �

• This Lemma makes it quite easy to generate a large number of vector
spaces, simply by taking a big vector space and passing to a subset
which is closed under addition and scalar multiplication. Some exam-
ples:

• (Horizontal vectors) Recall that R3 is the vector space of all vectors
(x, y, z) with x, y, z real. Let V be the subset of R3 consisting of all
vectors with zero z co-ordinate, i.e. V := {(x, y, 0) : x, y ∈ R}. This is
a subset of R3, but moreover it is also a subspace of R3. To see this,
we use the Lemma. It suffices to show that V is closed under vector
addition and scalar multiplication. Let’s check the vector addition. If
we have two vectors in V , say (x1, y1, 0) and (x2, y2, 0), we need to
verify that the sum of these two vectors is still in V . But the sum is
just (x1 + x2, y1 + y2, 0), and this is in V because the z co-ordinate
is zero. Thus V is closed under vector addition. A similar argument
shows that V is closed under scalar multiplication, and so V is indeed
a subspace of R3. (Indeed, V is very similar to - though technically not
the same thing as - R2). Note that if we considered instead the space
of all vectors with z co-ordinate 1, i.e. {(x, y, 1) : x, y ∈ R}, then this
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would be a subset but not a subspace, because it is not closed under
vector addition (or under scalar multiplication, for that matter).

• Another example of a subspace of R3 is the plane {(x, y, z) ∈ R3 :
x + 2y + 3z = 0}. A third example of a subspace of R3 is the line
{(t, 2t, 3t) : t ∈ R}. (Exercise: verify that these are indeed subspaces).
Notice how subspaces tend to be very flat objects which go through the
origin; this is consistent with them being closed under vector addition
and scalar multiplication.

• In R3, the only subspaces are lines through the origin, planes through
the origin, the whole space R3, and the zero vector space {0}. In R2,
the only subspaces are lines through the origin, the whole space R2,
and the zero vector space {0}. (This is another clue as to why this
subject is called linear algebra).

• (Even polynomials) Recall that P (R) is the vector space of all poly-
nomials f(x). Call a polynomial even if f(x) = f(−x); for instance,
f(x) = x4 + 2x2 + 3 is even, but f(x) = x3 + 1 is not. Let Peven(R)
denote the set of all even polynomials, thus Peven(R) is a subset of
P (R). Now we show that Peven(R) is not just a subset, it is a sub-
space of P (R). Again, it suffices to show that Peven(R) is closed under
vector addition and scalar multiplication. Let’s show it’s closed un-
der vector addition - i.e. if f and g are even polynomials, we have to
show that f + g is also even. In other words, we have to show that
f(−x) + g(−x) = f(x) + g(x). But this is clear since f(−x) = f(x)
and g(−x) = g(x). A similar argument shows why even polynomials
are closed under scalar multiplication.

• (Diagonal matrices) Let n ≥ 1 be an integer. Recall that Mn×n(R)
is the vector space of n × n real matrices. Call a matrix diagonal if
all the entries away from the main diagonal (from top left to bottom
right) are zero, thus for instance 1 0 0

0 2 0
0 0 3


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is a diagonal matrix. Let Dn(R) denote the space of all diagonal n×n
matrices. This is a subset of Mn×n(R), and is also a subspace, because
the sum of any two diagonal matrices is again a diagonal matrix, and
the scalar product of a diagonal matrix and a scalar is still a diagonal
matrix. The notation of a diagonal matrix will become very useful
much later in the course.

• (Trace zero matrices) Let n ≥ 1 be an integer. If A is an n × n
matrix, we define the trace of that matrix, denoted tr(A), to be the
sum of all the entries on the diagonal. For instance, if

A =

 1 2 3
4 5 6
7 8 9


then

tr(A) = 1 + 5 + 9 = 15.

Let M0
n×n(R) denote the set of all n× n matrices whose trace is zero:

M0
n×n(R) := {A ∈ Mn×n : tr(A) = 0}.

One can easily check that this space is a subspace of Mn×n. We will
return to traces much later in this course.

• Technically speaking, every vector space V is considered a subspace of
itself (since V is already closed under addition and scalar multiplica-
tion). Also the zero vector space {0} is a subspace of every vector space
(for a similar reason). But these are rather uninteresting examples of
subspaces. We sometimes use the term proper subspace of V to denote
a subspace W of V which is not the whole space V or the zero vector
space {0}, but instead is something in between.

• The intersection of two subspaces is again a subspace (why?). For
instance, since the diagonal matrices Dn(R) and the trace zero matrices
M0

n×n(R) are both subspaces of Mn×n(R), their intersection Dn(R) ∩
M0

n×n(R) is also a subspace of Mn×n(R). On the other hand, the
union of two subspaces is usually not a subspace. For instance, the
x-axis {(x, 0) : x ∈ R} and y-axis {(0, y) : y ∈ R}, but their union
{(x, 0) : x ∈ R} ∪ {(0, y) : y ∈ R} is not (why?). See Assignment 1 for
more details.
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• In some texts one uses the notation W ≤ V to denote the statement
“W is a subspace of V ”. I’ll avoid this as it may be a little confusing at
first. However, the notation is suggestive. For instance it is true that
if U ≤ W and W ≤ V , then U ≤ V ; i.e. if U is a subspace of W , and
W is a subspace of V , then U is a subspace of V . (Why?)

* * * * *
Linear combinations

• Let’s look at the standard vector space R3, and try to build some
subspaces of this space. To get started, let’s pick a random vector in
R3, say v := (1, 2, 3), and ask how to make a subspace V of R3 which
would contain this vector (1, 2, 3). Of course, this is easy to accomplish
by setting V equal to all of R3; this would certainly contain our single
vector v, but that is overkill. Let’s try to find a smaller subspace of R3

which contains v.

• We could start by trying to make V just consist of the single point
(1, 2, 3): V := {(1, 2, 3)}. But this doesn’t work, because this space
is not a vector space; it is not closed under scalar multiplication. For
instance, 10(1, 2, 3) = (10, 20, 30) is not in the space. To make V a
vector space, we cannot just put (1, 2, 3) into V , we must also put
in all the scalar multiples of (1, 2, 3): (2, 4, 6), (3, 6, 9), (−1,−2,−3),
(0, 0, 0), etc. In other words,

V ⊇ {a(1, 2, 3) : a ∈ R}.

Conversely, the space {a(1, 2, 3) : a ∈ R} is indeed a subspace of R3

which contains (1, 2, 3). (Exercise!). This space is the one-dimensional
space which consists of the line going through the origin and (1, 2, 3).

• To summarize what we’ve seen so far, if one wants to find a subspace
V which contains a specified vector v, then it is not enough to contain
v; one must also contain the vectors av for all scalars a. As we shall see
later, the set {av : a ∈ R} will be called the span of v, and is denoted
span({v}).

• Now let’s suppose we have two vectors, v := (1, 2, 3) and w := (0, 0, 1),
and we want to construct a vector space V in R3 which contains both
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v and w. Again, setting V equal to all of R3 will work, but let’s try to
get away with as small a space V as we can.

• We know that at a bare minimum, V has to contain not just v and w,
but also the scalar multiples av and bw of v and w, where a and b are
scalars. But V must also be closed under vector addition, so it must
also contain vectors such as av+bw. For instance, V must contain such
vectors as

3v + 5w = 3(1, 2, 3) + 5(0, 0, 1) = (3, 6, 9) + (0, 0, 5) = (3, 6, 14).

We call a vector of the form av + bw a linear combination of v and w,
thus (3, 6, 14) is a linear combination of (1, 2, 3) and (0, 0, 1). The space
{av + bw : a, b ∈ R} of all linear combinations of v and w is called the
span of v and w, and is denoted span({v, w}). It is also a subspace of
R3; it turns out to be the plane through the origin that contains both
v and w.

• More generally, we define the notions of linear combination and span
as follows.

• Definition. Let S be a collection of vectors in a vector space V (either
finite or infinite). A linear combination of S is defined to be any vector
in V of the form

a1v1 + a2v2 + . . . + anvn

where a1, . . . , an are scalars (possibly zero or negative), and v1, . . . , vn

are some elements in S. The span of S, denoted span(S), is defined to
be the space of all linear combinations of S:

span(S) := {a1v1 + a2v2 + . . . + anvn : a1, . . . , an ∈ R; v1, . . . , vn ∈ S}.

• Usually we deal with the case when the set S is just a finite collection

S = {v1, . . . , vn}

of vectors. In that case the span is just

span({v1, . . . , vn}) := {a1v1 + a2v2 + . . . + anvn : a1, . . . , an ∈ R}.

(Why?)
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• Occasionally we will need to deal when S is empty. In this case we set
the span span(∅) of the empty set to just be {0}, the zero vector space.
(Thus 0 is the only vector which is a linear combination of an empty
set of vectors. This is part of a larger mathematical convention, which
states that any summation over an empty set should be zero, and every
product over an empty set should be 1.)

• Here are some basic properties of span.

• Theorem. Let S be a subset of a vector space V . Then span(S) is a
subspace of V which contains S as a subset. Moreover, any subspace
of V which contains S as a subset must in fact contain all of span(S).

• We shall prove this particular theorem in detail to illustrate how to go
about giving a proof of a theorem such as this. In later theorems we
will skim over the proofs more quickly.

• Proof. If S is empty then this theorem is trivial (in fact, it is rather
vacuous - it says that the space {0} contains all the elements of an
empty set of vectors, and that any subspace of V which contains the
elements of an empty set of vectors, must also contain {0}), so we shall
assume that n ≥ 1. We now break up the theorem into its various
components.

(a) First we check that span(S) is a subspace of V . To do this we need
to check three things: that span(S) is contained in V ; that it is closed
under addition; and that it is closed under scalar multiplication.

(a.1) To check that span(S) is contained in V , we need to take a typical
element of the span, say a1v1 + . . . + anvn, where a1, . . . , an are scalars
and v1, . . . , vn ∈ S, and verify that it is in V . But this is clear since
v1, . . . , vn were already in V and V is closed under addition and scalar
multiplication.

(a.2) To check that the space span(S) is closed under vector addition,
we take two typical elements of this space, say a1v1 + . . . + anvn and
b1v1 + . . . + bnvn, where the aj and bj are scalars and vj ∈ S for j =
1, . . . n, and verify that their sum is also in span(S). But the sum is

(a1v1 + . . . + anvn) + (b1v1 + . . . + bnvn)
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which can be rearranged as

(a1 + b1)v1 + . . . + (an + bn)vn

[Exercise: which of the vector space axioms I-VIII were needed in order
to do this?]. But since a1 + b1, . . . , an + bn are all scalars, we see that
this is indeed in span(S).

(a.3) To check that the space span(S) is closed under scalar multipli-
cation, we take a typical element of this space, say a1v1 + . . . anvn, and
a typical scalar c. We want to verify that the scalar product

c(a1v1 + . . . + anvn)

is also in span({v1, . . . , vn}). But this can be rearranged as

(ca1)v1 + . . . + (can)vn

(which axioms were used here?). Since ca1, . . . , can were scalars, we see
that we are in span(S) as desired.

(b) Now we check that span(S) contains S. It will suffice of course to
show that span(S) contains v for each v ∈ S. But each v is clearly a
linear combination of elements in S, in fact v = 1.v and v ∈ S. Thus v
lies in span(S) as desired.

(c) Now we check that every subspace of V which contains S, also
contains span(S). In order to stop from always referring to “that sub-
space”, let us use W to denote a typical subspace of V which contains
S. Our goal is to show that W contains span(S).

This the same as saying that every element of span(S) lies in W . So,
let v = a1v1 + . . . + anvn be a typical element of span(S), where the aj

are scalars and vj ∈ S for j = 1, . . . , n. Our goal is to show that v lies
in W .

Since v1 lies in W , and W is closed under scalar multiplication, we see
that a1v1 lies in W . Similarly a2v2, . . . , anvn lie in W . But W is closed
under vector addition, thus a1v1 + . . .+anvn lies in W , as desired. This
concludes the proof of the Theorem. �
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• We remark that the span of a set of vectors does not depend on what
order we list the set S: for instance, span({u, v, w}) is the same as
span({w, v, u}). (Why is this?)

• The span of a set of vectors comes up often in applications, when one
has a certain number of “moves” available in a system, and one wants
to see what options are available by combining these moves. We give
a example, from a simple economic model, as follows.

• Suppose you run a car company, which uses some basic raw materials
- let’s say money, labor, metal, for sake of argument - to produce some
cars. At any given point in time, your resources might consist of x
units of money, y units of labor (measured, say, in man-hours), z units
of metal, and w units of cars, which we represent by a vector (x, y, z, w).

Now you can make various decisions to alter your balance of resources.
For instance, suppose you could purchase a unit of metal for two units
of money - this amounts to adding (−2, 0, 1, 0) to your resource vector.
You could do this repeatedly, thus adding a(−2, 0, 1, 0) to your resource
vector for any positive a. (If you could also sell a unit of metal for two
units of money, then a could also be negative. Of course, a can always
be zero, simply by refusing to buy or sell any metal). Similarly, one
might be able to purchase a unit of labor for three units of money, thus
adding (−3, 1, 0, 0) to your resource vector. Finally, to produce a car
requires 4 units of labor and 5 units of metal, thus adding (0,−4,−5, 1)
to your resource vector. (This is course an extremely oversimplified
model, but will serve to illustrate the point).

• Now we ask the question of how much money it will cost to create a
car - in other words, for what price x can we add (−x, 0, 0, 1) to our
resource vector? The answer is 22, because

(−22, 0, 0, 1) = 5(−2, 0, 1, 0) + 4(−3, 1, 0, 0) + 1(0,−4,−5, 1)

and so one can convert 22 units of money to one car by buying 5 units
of metal, 4 units of labor, and producing one car. On the other hand,
it is not possible to obtain a car for a smaller amount of money using
the moves available (why?). In other words, (−22, 0, 0, 1) is the unique
vector of the form (−x, 0, 0, 1) which lies in the span of the vectors
(−2, 0, 1, 0), (−3, 1, 0, 0), and (0,−4,−5, 1).
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• Of course, the above example was so simple that we could have worked
out the price of a car directly. But in more complicated situations
(where there aren’t so many zeroes in the vector entries) one really has
to start computing the span of various vectors. [Actually, things get
more complicated than this because in real life there are often other
constraints. For instance, one may be able to buy labor for money, but
one cannot sell labor to get the money back - so the scalar in front of
(−3, 1, 0, 0) can be positive but not negative. Or storage constraints
might limit how much metal can be purchased at a time, etc. This
passes us from linear algebra to the more complicated theory of linear
programming, which is beyond the scope of this course. Also, due to
such things as the law of diminishing returns and the law of economies
of scale, in real life situations are not quite as linear as presented in
this simple model. This leads us eventually to non-linear optimization
and control theory, which is again beyond the scope of this course.]

• This leads us to ask the following question: How can we tell when one
given vector v is in the span of some other vectors v1, v2, . . . vn? For
instance, is the vector (0, 1, 2) in the span of (1, 1, 1), (3, 2, 1), (1, 0, 1)?
This is the same as asking for scalars a1, a2, a3 such that

(0, 1, 2) = a1(1, 1, 1) + a2(3, 2, 1) + a3(1, 0, 1).

We can multiply out the left-hand side as

(a1 + 3a2 + a3, a1 + 2a2, a1 + a2 + a3)

and so we are asking to find a1, a2, a3 that solve the equations

a1 +3a2 +a3 = 0
a1 +2a2 = 1
a1 +a2 a3 = 2.

This is a linear system of equations; “system” because it consists of
more than one equation, and “linear” because the variables a1, a2, a3

only appear as linear factors (as opposed to quadratic factors such as
a2

1 or a2a3, or more non-linear factors such as sin(a1)). Such a system
can also be written in matrix form 1 3 1

1 2 0
1 1 1

  a1

a2

a3

 =

 0
1
2


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or schematically as  1 3 1
1 2 0
1 1 1

∣∣∣∣∣∣
0
1
2

 .

To actually solve this system of equations and find a1, a2, a3, one of
the best methods is to use Gaussian elimination. The idea of Gaussian
elimination is to try to make as many as possible of the numbers in
the matrix equal to zero, as this will make the linear system easier to
solve. There are three basic moves:

• Swap two rows: Since it does not matter which order we display the
equations of a system, we are free to swap any two rows of the sys-
tem. This is mostly a cosmetic move, useful in making the system look
prettier.

• Multiply a row by a constant: We can multiply (or divide) both sides
of an equation by any constant (although we want to avoid multiplying
a row by 0, as that reduces that equation to the trivial 0=0, and the
operation cannot be reversed since division by 0 is illegal). This is
again a mostly cosmetic move, useful for setting one of the co-efficients
in the matrix to 1.

• Subtract a multiple of one row from another: This is the main move.
One can take any row, multiply it by any scalar, and subtract (or
add) the resulting object from a second row; the original row remains
unchanged. The main purpose of this is to set one or more of the matrix
entries of the second row to zero.

We illustrate these moves with the above system. We could use the
matrix form or the schematic form, but we shall stick with the linear
system form for now:

a1 +3a2 +a3 = 0
a1 +2a2 = 1
a1 +a2 +a3 = 2.

We now start zeroing the a1 entries by subtracting the first row from
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the second:
a1 +3a2 +a3 = 0

−a2 −a3 = 1
a1 +a2 +a3 = 2

and also subtracting the first row from the third:

a1 +3a2 +a3 = 0
−a2 −a3 = 1
−2a2 = 2.

The third row looks simplifiable, so we swap it up

a1 +3a2 +a3 = 0
−2a2 = 2
−a2 −a3 = 1

and then divide it by -2:

a1+ 3a2 +a3 = 0
a2 = −1
−a2 −a3 = 1.

Then we can zero the a2 entries by subtracting 3 copies of the second
row from the first, and adding one copy of the second row to the third:

a1 +a3 = 3
a2 = −1

−a3 = 0.

If we then multiply the third row by −1 and then subtract it from the
first, we obtain

a1 = 3
a2 = −1

a3 = 0

and so we have found the solution, namely a1 = 3, a2 = −1, a3 = 0.
Getting back to our original problem, we have indeed found that (0, 1, 2)
is in the span of (1, 1, 1), (3, 2, 1), (1, 0, 1):

(0, 1, 2) = 3(1, 1, 1) + (−1)(3, 2, 1) + 0(1, 0, 1).
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In the above case we found that there was only one solution for a1,
a2, a3 - they were exactly determined by the linear system. Sometimes
there can be more than one solution to a linear system, in which case
we say that the system is under-determined - there are not enough
equations to pin down all the variables exactly. This usually happens
when the number of unknowns exceeds the number of equations. For
instance, suppose we wanted to show that (0, 1, 2) is in the span of the
four vectors (1, 1, 1), (3, 2, 1), (1, 0, 1), (0, 0, 1):

(0, 1, 2) = a1(1, 1, 1) + a2(3, 2, 1) + a3(1, 0, 1) + a4(0, 0, 1).

This is the system

a1 +3a2 +a3 = 0
a1 +2a2 = 1
a1 +a2 +a3 +a4 = 2.

Now we do Gaussian elimination again. Subtracting the first row from
the second and third:

a1 +3a2 +a3 = 0
−a2 −a3 = 1
−2a2 +a4 = 2.

Multiplying the second row by −1, then eliminating a2 from the first
and third rows:

a1 −2a3 = 3
a2 +a3 = −1

2a3 +a4 = 0.

At this stage the system is in reduced normal form, which means that,
starting from the bottom row and moving upwards, each equation intro-
duces at least one new variable (ignoring any rows which have collapsed
to something trivial like 0 = 0). Once one is in reduced normal form,
there isn’t much more simplification one can do. In this case there is
no unique solution; one can set a4 to be arbitrary. The third equation
then allows us to write a3 in terms of a4:

a3 = −a4/2
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while the second equation then allows us to write a2 in terms of a3 (and
thus of a4:

a2 = −1− a3 = −1 + a4/2.

Similarly we can write a1 in terms of a4:

a1 = 3 + 2a3 = 3− a4.

Thus the general way to write (0, 1, 2) as a linear combination of (1, 1, 1),
(3, 2, 1), (1, 0, 1), (0, 0, 1) is

(0, 1, 2) = (3−a4)(1, 1, 1)+(−1+a4/2)(3, 2, 1)+(−a4/2)(1, 0, 1)+a4(0, 0, 1);

for instance, setting a4 = 4, we have

(0, 1, 2) = −(1, 1, 1) + (3, 2, 1)− 2(1, 0, 1) + 4(0, 0, 1)

while if we set a4 = 0, then we have

(0, 1, 2) = 3(1, 1, 1)− 1(3, 2, 1) + 0(1, 0, 1) + 0(0, 0, 1)

as before. Thus not only is (0, 1, 2) in the span of (1, 1, 1), (3, 2, 1),
(1, 0, 1), and (0, 0, 1), it can be written as a linear combination of such
vectors in many ways. This is because some of the vectors in this set are
redundant - as we already saw, we only needed the first three vectors
(1, 1, 1), (3, 2, 1) and (1, 0, 1) to generate (0, 1, 2); the fourth vector
(0, 0, 1) was not necessary. As we shall see, this is because the four
vectors (1, 1, 1), (3, 2, 1), (1, 0, 1), and (0, 0, 1) are linearly dependent.
More on this later.

• Of course, sometimes a vector will not be in the span of other vectors
at all. For instance, (0, 1, 2) is not in the span of (3, 2, 1) and (1, 0, 1).
If one were to try to solve the system

(0, 1, 2) = a1(3, 2, 1) + a2(1, 0, 1)

one would be solving the system

3a1+ a2 = 0
2a1 = 1
a1+ a2 = 2.
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If one swapped the first and second rows, then divided the first by two,
one obtains

a1 = 1/2
3a1+ a2 = 0
a1 +a2 = 2.

Now zeroing the a1 coefficient in the second and third rows gives

a1 = 1/2
a2 = −3/2
a2 = 3/2.

.

Subtracting the second from the third, we get an absurd result:

a1 = 1/2
a2 = −3/2
0 = 3.

Thus there is no solution, and (0, 1, 2) is not in the span.

* * * * *
Spanning sets

• Definition. A set S is said to span a vector space V if span(S) = V ;
i.e. every vector in V is generated as a linear combination of elements
of S. We call S a spanning set for V . (Sometimes one uses the verb
“generated” instead of “spanned”, thus V is generated by S and S is a
generating set for V .)

• A model example of a spanning set is the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
in R3; every vector in R3 can clearly be written as a linear combination
of these three vectors, e.g.

(3, 7, 13) = 3(1, 0, 0) + 7(0, 1, 0) + 13(0, 0, 1).

There are of course similar examples for other vector spaces. For in-
stance, the set {1, x, x2, x3} spans P3(R) (why?).
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• One can always add additional vectors to a spanning set and still get a
spanning set. For instance, the set {(1, 0, 0), (0, 1, 0), (0, 0, 1), (9, 14, 23), (15, 24, 99)}
is also a spanning set for R3, for instance

(3, 7, 13) = 3(1, 0, 0)+7(0, 1, 0)+13(0, 0, 1)+0(9, 14, 23)+0(15, 24, 99).

Of course the last two vectors are not playing any significant role here,
and are just along for the ride. A more extreme example: every vector
space V is a spanning set for itself, span(V ) = V .

• On the other hand, removing elements from a spanning set can cause it
to stop spanning. For instance, the two-element set {(1, 0, 0), (0, 1, 0)}
does not span, because there is no way to write (3, 7, 13) (for instance)
as a linear combination of (1, 0, 0), (0, 1, 0).

• Spanning sets are useful because they allow one to describe all the vec-
tors in a space V in terms of a much smaller space S. For instance,
the set S := {(1, 0, 0), (0, 1, 0), (0, 0, 1)} only consists of three vectors,
whereas the space R3 which S spans consists of infinitely many vec-
tors. Thus, in principle, in order to understand the infinitely many
vectors R3, one only needs to understand the three vectors in S (and
to understand what linear combinations are).

• However, as we see from the above examples, spanning sets can contain
“junk” vectors which are not actually needed to span the set. Such junk
occurs when the set is linearly dependent. We would like to now remove
such junk from the spanning sets and create a “minimal” spanning set
- a set whose elements are all linearly independent. Such a set is known
as a basis. In the rest of this series of lecture notes we discuss these
related concepts of linear dependence, linear independence, and being
a basis.

* * * * *
Linear dependence and independence

• Consider the following three vectors in R3: v1 := (1, 2, 3), v2 := (1, 1, 1),
v3 := (3, 5, 7). As we now know, the span span({v1, v2, v3}) of this set
is just the set of all linear combinations of v1, v2, v3:

span({v1, v2, v3}) := {a1v1 + a2v2 + a3v3 : a1, a2, a3 ∈ R}.
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Thus, for instance 3(1, 2, 3) + 4(1, 1, 1) + 1(3, 5, 7) = (10, 15, 20) lies in
the span. However, the (3, 5, 7) vector is redundant because it can be
written in terms of the other two:

v3 = (3, 5, 7) = 2(1, 2, 3) + (1, 1, 1) = 2v1 + v2

or more symmetrically

2v1 + v2 − v3 = 0.

Thus any linear combination of v1, v2, v3 is in fact just a linear combi-
nation of v1 and v2:

a1v1+a2v2+a3v3 = a1v1+a2v2+a3(2v1+v2) = (a1+2a3)v1+(a2+a3)v2.

• Because of this redundancy, we say that the vectors v1, v2, v3 are linearly
dependent. More generally, we say that any collection S of vectors in a
vector space V are linearly dependent if we can find distinct elements
v1, . . . , vn ∈ S, and scalars a1, . . . , an, not all equal to zero, such that

a1v1 + a2v2 + . . . + anvn = 0.

• (Of course, 0 can always be written as a linear combination of v1, . . . , vn

in a trivial way: 0 = 0v1+ . . .+0vn. Linear dependence means that this
is not the only way to write 0 as a linear combination, that there exists
at least one non-trivial way to do so). We need the condition that the
v1, . . . , vn are distinct to avoid silly things such as 2v1 + (−2)v1 = 0.

• In the case where S is a finite set S = {v1, . . . , vn}, then S is linearly
dependent if and only if we can find scalars a1, . . . , an not all zero such
that

a1v1 + . . . + anvn = 0.

(Why is the same as the previous definition? It’s a little subtle).

• If a collection of vectors S is not linearly dependent, then they are said
to be linearly independent. An example is the set {(1, 2, 3), (0, 1, 2)}; it
is not possible to find a1, a2, not both zero for which

a1(1, 2, 3) + a2(0, 1, 2) = 0,
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because this would imply

a1 = 0
2a1 +a2 = 0
3a1 +2a2 = 0

,

which can easily be seen to only be true if a1 and a2 are both 0. Thus
there is no non-trivial way to write the zero vector 0 = (0, 0, 0) as a
linear combination of (1, 2, 3) and (0, 1, 2).

• By convention, an empty set of vectors (with n = 0) is always linearly
independent (why is this consistent with the definition?)

• As indicated above, if a set is linearly dependent, then we can remove
one of the elements from it without affecting the span.

• Theorem. Let S be a subset of a vector space V . If S is linearly
dependent, then there exists an element v of S such that the smaller
set S − {v} has the same span as S:

span(S − {v}) = span(S).

Conversely, if S is linearly independent, then every proper subset S ′ (
S of S will span a strictly smaller set than S:

span(S ′) ( span(S).

• Proof. Let’s prove the first claim: if S is a linearly dependent subset
of V , then we can find v ∈ S such that span(S − {v}) = span(S).

• Since S is linearly dependent, then by definition there exists distinct
v1, . . . , vn and scalars a1, . . . , an, not all zero, such that

a1v1 + . . . + anvn = 0.

We know that at least one of the aj are non-zero; without loss of gen-
erality we may assume that a1 is non-zero (since otherwise we can just
shuffle the vj to bring the non-zero coefficient out to the front). We
can then solve for v1 by dividing by a1:

v1 = −a2

a1

v2 − . . .− an

a1

vn.
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Thus any expression involving v1 can instead be written to involve
v2, . . . , vn instead. Thus any linear combination of v1 and other vectors
in S not equal to v1 can be rewritten instead as a linear combination
of v2, . . . , vn and other vectors in S not equal to v1. Thus every linear
combination of vectors in S can in fact be written as a linear combina-
tion of vectors in S−{v1}. On the other hand, every linear combination
of S − {v1} is trivially also a linear combination of S. Thus we have
span(S) = span(S − {v1}) as desired.

• Now we prove the other direction. Suppose that S ⊆ V is linearly
independent. And le S ′ ( S be a proper subset of S. Since every
linear combination of S ′ is trivially a linear combination of S, we have
that span(S ′) ⊆ span(S). So now we just need argue why span(S ′) 6=
span(S).

Let v be an element of S which is not contained in S ′; such an element
must exist because S ′ is a proper subset of S. Since v ∈ S, we have
v ∈ span(S). Now suppose that v were also in span(S ′). This would
mean that there existed vectors v1, . . . , vn ∈ S ′ (which in particular
were distinct from v) such that

v = a1v1 + a2v2 + . . . + anvn,

or in other words

(−1)v + a1v1 + a2v2 + . . . + anvn = 0.

But this is a non-trivial linear combination of vectors in S which sum to
zero (it’s nontrivial because of the −1 coefficient of v). This contradicts
the assumption that S is linearly independent. Thus v cannot possibly
be in span(S ′). But this means that span(S ′) and span(S) are different,
and we are done. �

* * * * *
Bases

• A basis of a vector space V is a set S which both spans S, but is
also linearly independent. In other words, a basis consists of a bare
minimum number of vectors needed to span all of V ; remove one of
them, and you fail to span V .
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• Thus the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis for R3, because it
both spans and is linearly independent. The set {(1, 0, 0), (0, 1, 0), (0, 0, 1), (9, 14, 23)}
still spans R3, but is not linearly independent and so is not a basis.
The set {(1, 0, 0), (0, 1, 0)} is linearly independent, but does not span
all of R3 so is not a basis. Finally, the set {(1, 0, 0), (2, 0, 0)} is neither
linearly independent nor spanning, so is definitely not a basis.

• Similarly, the set {1, x, x2, x3} is a basis for P3(R), while the set {1, x, 1+
x, x2, x2 + x3, x3} is not (it still spans, but is linearly dependent). The
set {1, x + x2, x3} is linearly independent, but doesn’t span.

• One can use a basis to represent a vector in a unique way as a collection
of numbers:

• Lemma. Let {v1, v2, . . . , vn} be a basis for a vector space V . Then
every vector in v can be written uniquely in the form

v = a1v1 + . . . + anvn

for some scalars a1, . . . , an.

• Proof. Because {v1, . . . , vn} is a basis, it must span V , and so every
vector v in V can be written in the form a1v1+. . .+anvn. It only remains
to show why this representation is unique. Suppose for contradiction
that a vector v had two different representations

v = a1v1 + . . . + anvn

v = b1v1 + . . . + bnvn

where a1, . . . , an are one set of scalars, and b1, . . . , bn are a different set
of scalars. Subtracting the two equations we get

(a1 − b1)v1 + . . . + (an − bn)vn = 0.

But the v1, . . . , vn are linearly independent, since they are a basis. Thus
the only representation of 0 as a linear combination of v1, . . . , vn is the
trivial representation, which means that the scalars a1− b1, . . . , an− bn

must be equal. That means that the two representations a1v1 + . . . +
anvn, b1v1 + . . . + bnvn must in fact be the same representation. Thus
v cannot have two distinct representations, and so we have a unique
representation as desired. �
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• As an example, let v1 and v2 denote the vectors v1 := (1, 1) and v2 :=
(1,−1) in R2. One can check that these two vectors span R2 and are
linearly independent, and so they form a basis. Any typical element,
e.g. (3, 5), can be written uniquely in terms of v1 and v2:

(3, 5) = 4(1, 1)− (1,−1) = 4v1 − v2.

In principle, we could write all vectors in R2 this way, but it would
be a rather non-standard way to do so, because this basis is rather
non-standard. Fortunately, most vector spaces have “standard” bases
which we use to represent them:

• The standard basis of Rn is {e1, e2, . . . , en}, where ej is the vector whose
jth entry is 1 and all the others are 0. Thus for instance, the standard
basis of R3 consists of e1 := (1, 0, 0), e2 := (0, 1, 0), and e2 := (0, 0, 1).

• The standard basis of the space Pn(R) is {1, x, x2, . . . , xn}. The stan-
dard basis of P (R) is the infinite set {1, x, x2, . . .}.

• One can concoct similar standard bases for matrix spaces Mm×n(R)
(just take those matrices with a single coefficient 1 and all the others
zero). However, there are other spaces (such as C(R)) which do not
have a reasonable standard basis.
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