Supplemental handout - Some basic set theory.

As you should now be aware, this course deals quite often with sets. A
set is any collection of objects, e.g. {1,2,3,4,5} is a set of numbers. A
vector space is a set of vectors; so is a basis.

Hopefully, most of you have seen some set notation in earlier courses,
but if not, here is a very brief review. (For a really thorough review of
set theory, see the Math M112 or Philosophy 134 course).

Set theory, by itself, is not all that exciting or interesting. However,
almost every other branch of mathematics (and algebra, in particular)
relies on set theory as its foundation, so it is important to get at least
some grounding in set theory before doing other advanced areas of
mathematics.

A set S is a collection of objects. If x is an object, we say that x is an
element of S or x € S if z lies in the collection; otherwise we say that
x ¢ S. For instance, 3 € {1,2,3,4,5} but 7 ¢ {1,2,3,4,5}.

One very common way to define a set is to take all the elements of
some bigger set which obey a certain property: the set

{z € X : x obeys property P}

denotes all the elements x in X which obey a certain property P. For
instance,
{reR:2<1x<3}

denotes all the real numbers strictly between 2 and 3. Sometimes we
abbreviate the above notation, e.g. {z :2 <z <3} or even {2 < z <
3}, although too much abbreviation often becomes confusing.

Another way to make sets is to take all the elements x obeying a certain
property P, and then apply a function f to each such element:

{f(z) : x € X,z obeys property P}.
For instance, the set

{r+1:2€R,2<2 <3}

1



denotes all the numbers of the form x + 1, where z is a real number
strictly between 2 and 3; this is the same set as {y € R: 3 <y < 4}
(as one can see by making a substitution y := z + 1).

A special example of a set is the empty set (), also denoted {}. This
set contains no elements, i.e. x & () for all z. All other sets contain at
least one element.

Two sets are equal, S1 = S, if they have exactly the same elements;
every element of S; is an element of Sy and vice versa. Thus, for
instance, {1,2,3,4,5} and {3,4,2,1,5} are the same set, since they
contain exactly the same elements. If one wants to prove that two sets
S1, S9 are equal, one has to show two things:

(a) Every element z of Sj, also belongs to Sy (i.e. S; C Sy);
(b) Every element z of S, also belongs to S; (i.e. Sy C S4).
To put it another way, S; = Sy if and only if
r€ES = €5
for all objects z.
Thus, for instance, if one wants to show
{(z,y,2) € R*: 2 +y+ 2z =0} =span{(1,0,-1),(1,—1,0)},
one has to show two things:

(a) Every element (z,%, z) in R® with 2 +y + 2z = 0, can be written as
a linear combination of (1,0, —1) and (1,—1,0).

(b) Every vector (z,y, z) which is a linear combination of (1,0, —1) and
(1,—1,0), is in R?® and satisfies the property z +y + z = 0.

A set S; is a subset of Sy, denoted S7; C S5, if every element of S is
also an element of Sy:

Forany z, z€S5, = x¢€095.

Thus for instance {1,2,4} C {1,2,3,4,5}. Note that every set is con-
sidered a subset of itself. We say that S; is a proper subset of Ss,
denoted S; C Sy, if S C Sy and S; # Ss.
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e Given any two sets Si, So, the union S; U S, of the two sets consists of
all the elements which belong to S; or Sy or both. In other words, for
all objects z,

r€SUSy < r €S orz€Ss.

(In mathematics, “or” refers to inclusive or: “X or Y is true” means
that “either X is true, or Y is true, or both are true”.)

e Meanwhile, the intersection S1 N Sy of two sets consists of all the ele-
ments which belong to both S; and S5. Thus, for all objects x,

r€e S NSy < zx€S;and x € 5.

Thus for instance, {1,2,4} U {2,3,4} = {1,2,3,4}, and {1,2,4} N
{2,3,4} = {2,4}. Some more examples: {1,2}N{3,4} =0, {2,3}Ud =
{2,3}, and {2,3} N0 = 0.

e By the way, one should be careful with the English word “and”: rather
confusingly, it can mean either union or intersection, depending on
context. For instance, if one talks about a set of “boys and girls”, one
means the union of a set of boys with a set of girls, but if one talks
about the set of people who are single and male, then one means the
intersection of the set of single people with the set of male people. (Can
you work out the rule of grammar that determines when “and” means
union and when “and” means intersection?). One reason we resort to
mathematical symbols instead of English is that mathematical symbols
always have a precise and unambiguous meaning.

e Note, by the way, that the union VUW of two vector spaces is not the
same thing as the sum V + W of two vector spaces; thus Q7 and Q8 of
Assignment 1 are referring to two very different things.

e Given two sets A and B, we define the set A — B or A\B to be the set
A with any elements of B removed:

A—B:={r € A:z ¢ B};

for instance, {1,2,3,4}\{2,4,6} = {1,3}. In many cases B will be a
subset of A, but not necessarily.
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e One has to keep the concept of a set distinct from the elements of that
set; for instance, the line {(¢,%,t) : ¢ € R} is not the same thing as
the point (¢,t,t). To make this more plain, the following two sets are
equal:

{(t,t,t) : t € R} = {(2t,2t,2t) : t € R}

(see below), while the following two points are in general not equal:
(t,1,t) # (2t,2t, 2¢).

Thus, it is a good idea to remember to put those curly braces {} in
when you talk about sets, lest you accidentally confuse a set with its
elements.

e Another example: the sets
{t+1:t=1,2,3,4}and {6 —t:t=1,2,3,4}

are both equal - in fact, they both describe the set {2,3,4,5} - even
though ¢t + 1 and 6 — ¢ are never equal to each other for ¢t =1, 2,3, 4.

e How does one show that the two sets {(¢,t,t) : ¢ € R} and {(2¢,2t, 2t) :
t € R} are equal? As we saw, this is not simply a matter of equating
the two expressions inside the braces. Well, the first thing to note
is that the letter ¢ is being used to denote two different things here.
When that happens, it is often helpful to change one of the letters to
reduce confusion; for instance one can rewrite {(¢,t,t) : t € R} as
{(s,s,$) : s € R}. Clearly this describes the same set. So now we want
to show that the two sets

{(s,s,s8) : s € R} and {(2t,2t,2t) : t € R}
are equal.

e Remember, to show two sets S;, Sy are equal, we need to show that
every element of S; is an element of S5 and conversely. Applying this
to our particular situation, we see that we have to show two things:

e (a) Every point of the form (s, s, s) for some s € R, is also of the form
(2t,2t, 2t) for some t € R.



(b) Every point of the form (2t,2t,2¢) for some ¢ € R, is also of the
form (s, s, s) for some s € R.

To see (a), just observe that (s,s,s) = (2(s/2),2(s/2),2(s/2)), so we
can write (s, s, s) in the form (2¢, 2t, 2t) by setting ¢ := s/2. (Note that
we are allowed to set ¢ to be whatever we want, so long as it is real,
since we only specified “for some t € R”, as opposed to, say, “for all
t € R”). Similarly to show (b), observe that we can write (2t, 2t, 2t) in
the form (s, s, s) by setting s := 2¢. [Note how confusing (a) and (b)
would be if we did not change ¢ to s at the very beginning]]
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Images and inverse images

Now we introduce the concept of a function. A function f : X — Y
from one set X to another set Y is an object which assigns to each ele-
ment z in X, an element f(z) in Y. A very basic property of functions
is that if x = 2', then f(z) = f(2): functions preserve equality.

X is sometimes called the domain of f, and Y is called the range.

Two functions f : X = Y, g : X — Y are said to be equal, f = g,
if and only if f(z) = g(z) for all x € X. (If f(z) and g(x) agree for
some values of z, but not others, then we do not consider f and g to be
equal). For instance, the functions 2 + 2z + 1 and (z + 1)? are equal
on the domain R. The functions = and |z| are equal on the positive
real axis, but are not equal on R.

If f: X — Y is a function from X to Y, and S is a set in X, we define
f(S) to be the set

f(8) :={f(a) 2 € S}
this set is a subset of Y, and is sometimes called the image of S under
the map f. For instance, if f : R — R is the map f(z) = 2z, then

f({1,2,3}) ={2,4,6}.

Thus to compute f(S), we take every element = of S, and apply f
to each element individually, and then put all the resulting objects
together to form a new set.



e In the above example, the image had the same size as the original set.
But sometimes the image can be smaller, because f is not one-to-one.
For instance, if f : R — R is the map f(z) = 2%, then

f({-1,0,1,2}) ={0,1,4}.
e Note that
f(z) € f(S) <= z€S8.
e If U is a subset of Y, we define the set f~!(U) to be the set
fHU) ={r e X: f(z) e U}.

In other words, f~1(U) consists of all the stuff in X which maps into
U. Thus for instance, if f : R — R is the map f(z) = 2z, then

f_l({Qﬂ 4,6}) = {1,2,3},
while if f: R — R is the map f(z) = 2%, then

f({0,1,4}) = {-2,-1,0,1,2}.

We call f~!(U) the inverse image of U. Note that f does not have to
be invertible in order for f~!(U) to make sense. Also note that images
and inverse images do not quite invert each other: in the example
of f(z) = z?, note that f~1(f({-1,0,1,2})) did not quite cancel to
{-1,0,1,2}. (In general, what can one say about f~!(f(S)) and S?
What about f(f~*(U)) and U?)

e Note that
fz) eU < ze f1(U).

e A function f is one-to-one if different elements map to different ele-
ments:

z#3 = flz)# @)
Thus for instance, the map f(z) = z? from R to R is not one-to-
one because the distinct elements —1, 1 map to the same element 1.
Equivalently, a function is one-to-one if

f@) =) = z=d.

One-to-one functions are also called injective.
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A function f is onto if f(X) =Y, i.e. every element in Y comes from
applying f to some element in X:

For every y € Y, there exists z € X such that f(z) = y.

For instance, the function f(x) = z2 from R to R is not onto because
the negative numbers are not in the image of f. Onto functions are
also called surjective.

Functions f : X — Y which are both one-to-one and onto are also
called bijective or invertible. If f is bijective, then for every y € Y,
there is exactly one x such that f(x) =y (there is at least one because
of surjectivity, and at most one because of injectivity). This value of x
is sometimes denoted f~!(y); thus f~' is a map from Y — X. We have
the cancellation laws f~'(f(z)) = z for all z € X and f(f~'(y)) =y
for all y € Y (why?).

The notions of spanning and linear independence are similar to the
notions of surjection and injection respectively, while the notion of
basis is similar to that of bijection. This can be made precise. Given
any collection vy, ..., v, of vectors in a vector space V', one can consider
the map 7" : R" — V defined by

T(a1,..-,0n) := @101 + ... + AuU,.
Now observe that
(a) T is surjective if and only if the vectors {vy,...,v,} span V (why?);

(b) T is injective if and only if the vectors {vy,...,v,} are linearly
independent (why?);

(¢) T is bijective if and only if the vectors {vi,...,v,} are a basis
(why?).

We will return to these points in the Week 3 notes.
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Proofs in set theory



Here we give some examples of proofs in set theory. The concepts given
above are not very deep, and one can understand most things with di-
agrams (Venn diagrams to understand unions and intersections, and
pictures of an arrow from one space to another space to understand
functions). Of course, at the end of the day we want a rigorous proof.
Despite the fact that most statements in set theory are intuitively ob-
vious, writing a proof requires thinking clearly and unfolding all the
definitions methodically. Here is an example:

Question: Let A, B be two subsets of a set X, andlet f: X —» Y
be a function. Show that f(ANB) C f(A) N f(B).

Before we go to the proof, try drawing a picture of what’s going on
here.

Proof We have to show that every element of f(A N B) is also an
element of f(A) N f(B). So, let’s pick an element y € f(A N B), and
try to show that y is also in f(A) N f(B). This is the same as showing
that y is in f(A) and that y is in f(B).

Let’s first try to show that y is in f(A). Since y € f(A N B), we know
from the definition of image that y = f(z) for some z € AN B. Since
r € AN B, we certainly have x € A. But then y = f(z) is in f(A),
just from the definition of image again. Similarly y is in f(B), and so

yisin f(A) N f(B) as desired. .

If you are uncomfortable with this type of proof, you might want to
try some examples. In the following examples, A, B, C' are subsets of a
set X, f: X — Y is a function from X to Y (not necessarily injective,
surjective, or invertible), and U, V are subsets of Y.

a) Show that AN (BUC)=(ANB)U(ANC).
b) Show that A C Bif and only if AUB = B and AN B = A.

(

(

(c) Show that AUP = A, ANP=0, and 0 C A.

(d) Show that (A\B) UB = A, and (A\B) N B = 0.
(

e) Show that f(AUB) = f(A)U f(B) and that f(A)\f(B) C f(A\B).
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e (f) Show that fH(UUV) =

YUY U f~YV), that fFL(UNV) =
f~YU) N f~Y(V), and that f -

-
HO\V) = fTHONHV).
e (g) Show that f(f'(S)) = S for every S C YV if and only if f is

surjective.
e (h) Show that f '(f(S)) = S for every S C X if and only if f is
injective.

e Note: These exercises are not for course credit! They are just to give
you some practice as to how to do the type of proofs which will appear
in this course.



