Solutions to the practice final

e Ql(a). Clearly S is a subset of P, since all of its elements lie in P, by
definition. To verify that it is a subspace, we have to check that S is
closed under addition and scalar multiplication.

Let us check S is closed under addition. If p(z) and ¢(z) are elements
of S, then p, ¢ lie in P, and p(0) + p"(0) = ¢(0) + ¢"(0) = 0. Thus the
polynomial p 4 ¢ also lies in P,, and

(p+)(0) + (»+¢)"(0) = p(0) + p"(0) + ¢(0) + ¢"(0) =0+0=10

and so p + ¢ also lies in S. Thus S is closed under addition.

Now let us check S is closed under scalar multiplication. If p(z) is an
element of S and c is a scalar, then p lies in P, and p(0) 4+ p”(0) = 0.
Thus the polynomial cp also lies in P,, and

(cp)(0) + (cp)"(0) = ¢(p(0) + p"(0)) =0 =10

and so cp also lies in S. Thus S is closed under scalar multiplication.

Since S lies in P,, and is closed under both addition and scalar multi-
plication, it is a subspace of P;.

e Q1(b). Before we begin, let us understand the space S better. An
element p of S lies in Py, so is of the form p(z) = ax? + bz + ¢ for some
scalars a, b,c. However, not every such polynomial lies in S, because
we have the condition p(0) + p”(0) = 0. Since p'(z) = 2ax + b and
p"(z) = 2a, we see that p(0) + p”(0) = ¢ + 2a. Thus we must have
¢+ 2a = 0 in order for p to lie in S. In summary, S consists of all the
polynomials ax? + bz + ¢ for which ¢+ 2a is equal to 0. In other words,
¢ is equal to —2a, and we can write p as the form az? + bz — 2a.

We can now see by inspection that p is nothing more than a linear
combination of the polynomials z2 —2 and z, indeed p = a(z?—2) +bz.
Thus S is nothing more than the space of all linear combinations of
2?2 — 2 and z. Since 2 — 2 and z are clearly linearly independent
(neither of them is a scalar multiple of the other), we see that S is thus
two-dimensional, and has {z® — 2, z} as a basis.



There are of course many other bases for S. One way to find a basis
is simply to start with a single non-zero element of S, e.g. 2+ — 2.
This does not span S, so we then add another element not in the span
of the previous element, e.g. 2+ 2z —2. Then we can check that these
two elements span (every polynomial in S can be written as a linear
combination of 22 +x—2 and 2%+ 2z —2, and so {z*+z—2, 2>+ 22— 2}
is a basis for S.

Q2(a) We need to check whether T preserves addition and also preserves
scalar multiplication.

First let’s see if T' preserves addition. We need to check that T(A+B) =
T A+ TB for all matrices A, B in Msy>(R). But

T(A+B)=Q(A+B)=QA+QB=TA+TB
so T does indeed preserve addition.
Now let’s see if T preserves scalar multiplication. We need to check
that T'(cA) = ¢T' A for all scalars ¢ and all matrices A in Msy2(R). But
T(cA) =Q(cA) = c(QA) =cTA

so T' does indeed preserve scalar multiplication. Thus 7' is a linear
transformation.

Q2(b) The kernel (or nullspace) of T is the set of all matrices A in
Msyo(R) for which TA = 0; note that 0 here means the 2 X 2 zero
matrix, since T'A is a 2 x 2 matrix. If we write

a b
A= ( c d )
then we see that

20 a b 2a 2b
TA:QA:(O 3)(0 d):<30 Sd)

so if TA = 0, then 2a = 2b = 3¢ = 3d = 0, which implies that a = b =
¢ = d = 0, which implies that A = 0. Thus the only matrix A which
lies in the null space of T is the zero matrix, so Ker(T) = N(T) = {0}.
(Another way to see this is just to use the fact that @) is an invertible
matrix (it has non-zero determinant), so that if QA = 0, this forces

Q'QA=A=0)



e Q2(c). Myy2(R) is four-dimensional, and the null space is 0-dimensional,
so by the dimension theorem the range R(T) is four-dimensional. But
R(T) is a subspace of Mays(R), which is also four-dimensional. Hence
R(T') must be all of Myys(R). There are many bases for this space; the
standard basis is

o) (o)) Gip

e Q2(d). Because the nullity of T is zero, T is one-to-one. Because the
range R(T) of T is equal to all of My.s(R), T is onto. Since T is
one-to-one and onto, it is an isomorphism.

e Q3. There do not appear to be any obvious trig identities showing that
cos(z), cos(2z), and cos(3x) are linearly dependent, so let’s try to show
that they are linearly independent. Suppose for contradiction that we
could find scalars a, b, ¢, not all zero, such that acos(z) + bcos(2z) +
ccos(3z) is the zero function, i.e.

acos(z) + beos(2z) 4+ ccos(3z) = 0 for all z.

To use this, let’s plug in a few values of z. If z = 0, we obtain

a+b+c=0.
If x = m, we obtain

—a+b—c=0.
If x = m/2, we obtain

b=0.

If z = 7/3, we obtain

1 1b 0

—a—-b—c=0.
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Combining all these facts and using a bit of Gaussian elimination we see
that a = b = ¢ = 0. So the only linear combination of cos(z), cos(2x),
cos(3z) which gives the zero function is the zero linear combination,
and so these three functions are linearly independent.



e Q4(a). We first work out the characteristic polynomial of A (which will
depend on ¢, of course). This is

1-X 0 0
f(A)=det | O -2 1 =(1-X(\—-e¢).
0 c -2

This has roots at A =1 and A = £/c, so these are the eigenvalues.

e Q4(b). The answer to this question depends on whether one wants to
diagonalize over the reals or the complexes. Let’s first suppose we are
diagonalizing over the reals.

The first thing we need is for the characteristic polynomial to split;
this will only happen if ¢ is positive or zero. So when c is negative we
cannot diagonalize over the reals.

Now suppose c is zero or positive. If there no repeated roots then the
matrix is diagonalizable. The roots A = 1, A = +4/c, and A = —/c.
Thus we have diagonalizability unless ¢ = 0 or ¢ = 1.

Let’s look at the ¢ = 0 case; here the characteristic polynomial has a
single eigenvalue at 1 and a repeated eigenvalue at 0. To see whether it
is diagonalizable, we have to look at the eigenspaces and see if there are
enough eigenvectors to span R®. First let us look at the eigenvectors
with eigenvalue 1. These eigenvectors are the solution to the equation

1 00 T T
0 01 y | =1y
0 0O z z

A little Gaussian elimination shows that this equation is satisfied when
y = z = 0 and z is arbitrary. So the eigenvectors here are just the
x
elements | 0 of the z-axis.
0

Now let us look at the eigenvectors with eigenvalue (0. These are the
solutions to the equation

100 x 0
0 01 y | =10
0 00 z 0



A little Gaussian elimination shows that this equation is satisfied when
r = z = 0 and y is arbitrary, so the eigenvectors here are just the
0
elements | y | of the y-axis.
0

Thus the only eigenvectors of this matrix we have are those on the x
and y axes. These are not enough to span all of R® (both axes are
only one-dimensional, so together they can only hope to span a two-
dimensional space at most), so this matrix is not diagonalizable.

Now we look at the ¢ = 1 case. In this case the eigenvalues are +1 and
—1. The eigenvectors with eigenvalue +1 are the solutions to

1 00 T T
001 vy |l=1v |;
010 z z

one can check that this equation is obeyed when y = z and z is arbi-
trary. So the eigenvectors here are a two-dimensional space, consisting

x
of all vectors of the form [ y |. On the other hand, the eigenvectors
Yy
with eigenvalue —1 are the solutions to
1 00 T T
001 y l=—1v |,
010 z z
which one can check is obeyed when z = 0 and y = —z, so this is a one-
0
dimensional space consisting of vectors of the form | y . So there
-y
seem to be enough vectors here to form a basis of R?; for instance,
1 0 0
we can use 0], 1 |, and 1 as a basis of eigenvectors
0 1 -1

(the first two have eigenvalue 1, the third has eigenvalue -1). So A is
diagonalizable when ¢ = 1.



To summarize, when the field of scalars is the reals, A is diagonalizable
when c is positive, but not when c is 0 or negative.

When the field of scalars, the analysis is the same except when c is
negative. Now the characteristic polynomial (1 — A)(\? — ¢) does split
into three distinct roots (A = 1, and the two imaginary roots A =
+iy/—c), and so we now have diagonalizability when c is negative.

Qb5(a) If A is an eigenvalue of M, then we have an eigenvector v for
which Mv = A\v. Applying M to both sides we obtain

M?v = MM = AMv = Aw = M.
Applying M again we obtain
M3y = MMNv = NMv =M= \Nv.
Continuing in this manner, using induction, we see that
MFy = Ny

for k =1,2,3,.... Thus v is also an eigenvector of M* with eigenvalue
AF. Thus the eigenvectors of M* here are the same as those of M.
(Actually, that isn’t quite true; it might be that M* has some additional
eigenvectors that don’t come from this argument. The most we can say
right now is that the eigenspace of M* with eigenvalue A\* contains, but
might not be equal to, the eigenspace of M with eigenvalue \).

Q5(b). Suppose for contradiction that A had a non-zero eigenvalue
A # 0. Then by Q5(a), A" would have an eigenvalue \". But A" is
the zero matrix, and clearly the only eigenvalues of the zero matrix are
0. Thus A" = 0, and so A = 0, contradiction. Thus the only possible
eigenvalue of A is 0.

Q6. Note: this question is quite tricky!

Q6(a). First suppose that V is the direct sum of W; and W,. This
means that V = W; + W, and that W, N W, = {0}. We have to show
that every vector v in V' can be written as v = £ +y where x € W; and
y € W, are unique.



Let v € V. Since V = W7 + W5, we know that v can be written in the
form v = ¢ + y where x € W, and y € W,. This looks like what we
want, but we also need x and y to be unique. Suppose for contradiction
that there was another way to write v in this form, e.g. v = 2/ + ¢/
where ' € W, and y' € W5, where z',y' were not the same as z,y.
Then z +y = 2’ + v/, which means that x — 2’ = ¢ —y. But z — 2’
lies in W7 and y' — y lies in W5, so both x — 2’ and 3’ — y must lie in
WinW, ={0}. Thusz —2' =y —y =0, and so z =2’ and y = ¢/,
contradiction. Thus there is only one way to write v = x + y in this
form.

Now suppose instead that every vector v in V' can be written as v = z+y
where z € W; and y € W, are unique. Then we have V = W; + W,
because every vector v in V' can be written as the sum of a vector in
Wi and a vector in Ws. Now we show that W; N Wy = {0}. Suppose
for contradiction that W; N W, contained a non-zero vector v. Then
v lies in both W; and W,, as does 0. Thus we can write v = = + v,
where x € W, and y € W5 in at least two different ways: v = 0+ v and
v = v + 0. But this is a contradiction. Thus W; N W, = 0.

Q6(b). First suppose that V is the direct sum of W7 and Wj. Then
every v € V can be written as v = x 4+ y in exactly one way, where
x € Wy and y € Wy, Define the transformation 7' : V' — V' by setting
Tv =1y, ie. we set Tv to be the W5 component of the decomposition
of v. We now have to check that 7" obeys all the desired properties.

First, we check that 7" is linear. Suppose that v,v" € V; we have to
check that T'(v +v') = Tv + Tv'. Write v = z + y and v/ = 2’ + ¢/,
where z,2' € Wi and y,y' € Wy. Then v +v' = (z + 2') + (y + /).
Since x + 2’ € W7 and y + ¢ € Ws, we see that we have decomposed
v+ 2" into a sum of something in W; and something in Wj. Since there
is only one way to do this, we see that y + 3’ must match 7' (v 4+ '), as
desired. Thus 7T preserves addition. A similar argument shows that 7'
preserves scalar multiplication, so that 7" is linear.

Now we show that N(T) = W;. First we show that every element of
N(T) is also in W;. Let v € N(T); then Tv = 0. Thus when we
decompose v = x4+ y, we have y = Tv =0, so v = z. But z lies in W7,
hence v lies in W;. Conversely, we need to show that every element of



Wi lies in N(T). If v € Wi, then the decomposition v = v + 0 splits v
as the sum of a vector in W; and a vector in W5. Thus by definition of
T, Tv =0, and so v is in N(T).

Now we show that R(T) = W,. First we show that every element of
R(T) is also in Wy. Every vector in R(T) is of the form Tv for some
v € V, and hence is equal to the vector y in the unique decomposition
v = z + y of v into the sum of a vector z in W; and y in W,. But
since T'v is equal to vy, it lies in W5. Conversely, we need to show that
every vector in W lies in R(T'). Let v be a vector in Wy. Then the
decomposition v = 0 + v splits v into the sum of a vector x in W and
y in W5, thus T'v = v by the definition of 7. Thus v lies in the range
of T.

Now we show that 72 = T. Let v be any vector in V'; we need to show
that T?v = Tv. Decompose v = z + y, where z € Wy and y € Wa; we
have by definition that Tv = y. Since we can decompose y =0+ y we
also have that Ty = y. Thus T?v = Ty = y = T as desired.

Now we have to prove the other direction of 6(b), i.e. we assume that
there is a linear transformation 7" with the properties listed, and we
want to prove that V' is the direct sum of W; and W5. By part (a), we
need to show that V = W, + W, and that W, N W, = {0}.

First we show that V = W; + W, i.e. every vector v can be written in
the form v = = + y for some x € W, and y € W,. To do this, we write
v = (v=Twv)+Tv. Clearly Tv is in the range of T and is hence in W; by
assumption. Also, note that T'(v — Tv) = Tv — T?v =Tv —Tv = 0 by
assumption, so that v = T'w is in the null space of T" and is hence in W;
by assumption. Thus the decomposition v = (v — Tw) + Tv splits v as
the sum of a vector in W, and a vector in Wy, and hence v € W; + W,
as desired.

Now we show that W; N Wy, = {0}. Suppose for contradiction that
there was a non-zero vector v in W; N W,. Since v lies in W, it is in
the range of T' by assumption, thus v = T'w for some vector w. On the
other hand, since v lies in W7, it is in the null space of 7' by assumption,
thus Tw = 0. Substituting v = Tw into this we obtain T?w = 0. But
since T? = T, we thus have Tw = 0, so v = 0, a contradiction. Thus
Wi N W, can only contain the zero vector.



