Mathematics 115A/3 Terence Tao Final Examination, Dec 10, 2002

Total

Put down a nickname if you want your score posted.

The test points.	consists of	eight	problems	of varying	g difficulty	and	value,	adding	up t	to 10
Good luc	k!									
				Ful	l name: _					
				Stud	lent ID: _					
				Nic	kname: _					
				Si	gnature: .					
Problem	1		<u>-</u>							
Problem	2		-							
Problem	3		<u>-</u>							
Problem	4		-							
Problem	5		-							
Problem	6		-							
Problem	7		-							
Problem	8		-							

Problem 1. (15 points) Let W be a finite-dimensional real vector space, and let U and V be two subspaces of W. Let U+V be the space

$$U + V := \{u + v : u \in U \text{ and } v \in V\}.$$

You may use without proof the fact that U + V is a subspace of W.

(a) (5 points) Show that $\dim(U+V) \leq \dim(U) + \dim(V)$.

⁽b) (5 points) Suppose we make the additional assumption that $U \cap V = \{0\}$. Now prove that $\dim(U+V) = \dim(U) + \dim(V)$.

Problem 1 continued.

(c) (5 points) Let U and V be two three-dimensional subspaces of \mathbf{R}^5 . Show that there exists a non-zero vector $v \in \mathbf{R}^5$ which lies in both U and V. (Hint: Use (b) and argue by contradiction).

Problem 2. (10 points) Let $P_2(\mathbf{R})$ be the space of polynomials of degree at most 2, with real coefficients. We give $P_2(\mathbf{R})$ the inner product

$$\langle f,g
angle := \int_0^1 f(x)g(x) \; dx.$$

You may use without proof the fact that this is indeed an inner product for $P_2(\mathbf{R})$.

(a) (5 points) Find an orthonormal basis for $P_2(\mathbf{R})$.

(b) (5 points) Find a basis for span $(1, x)^{\perp}$.

$$Tf := \frac{df}{dx},$$

thus for instance $T(x^3 + 2x) = 3x^2 + 2$. You may use without proof the fact that T is indeed a linear transformation. Let $\beta := (1, x, x^2, x^3)$ be the standard basis for $P_3(\mathbf{R})$.

(a) (5 points) Compute the matrix $[T]^{\beta}_{\beta}$.

(b) (3 points) Compute the characteristic polynomial of $[T]_{\beta}^{\beta}$.

Ans.		

(c) (5 points) What are the eigenvalues and eigenvectors of T? (Warning: the eigenvectors of T are related to, but not quite the same as, the eigenvectors of $[T]^{\beta}_{\beta}$.

Problem 3 continues on the next page.

Problem 3 continued.

(d) (2 points) Is T diagonalizable? Explain your reasoning.

$$T(x, y, z, w) := (x + y + z, y + 2z + 3w, x - z - 2w).$$

You may use without proof the fact that T is a linear transformation.

(a) (5 points) What is the nullity of T?

Ans.

(b) (5 points) Find a basis for the null space. (This basis does *not* need to be orthogonal or orthonormal).

Ans.

(c) (5 points) Find a basis for the range. (This basis does not need to be orthogonal or orthonormal).

Ans.

Problem 5. (10 points) Let V be a real vector space, and let $T:V\to V$ be a linear transformation such that $T^2=T$. Let R(T) be the range of T and let N(T) be the null space of T.

(a) (5 points) Prove that $R(T) \cap N(T) = \{0\}.$

(b) (5 points) Let R(T) + N(T) denote the space

$$R(T) + N(T) := \{x + y : x \in R(T) \text{ and } y \in N(T)\}.$$

Show that R(T) + N(T) = V. (**Hint:** First show that for any vector $v \in V$, the vector v - Tv lies in the null space N(T)).

Problem 6. (15 points) Let A be the matrix

$$A := \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{array}\right)$$

(a) (5 points) Find a complex invertible matrix Q and a complex diagonal matrix D such that $A=QDQ^{-1}$. (Hint: A has -1 as one of its eigenvalues).

(b) (5 points) Find three elementary matrices E_1 , E_2 , E_3 such that $A = E_1 E_2 E_3$. (Note: this problem is not directly related to (a)).

(c) (5 points) Compute A^{-1} , by any means you wish.

Ans.

Problem 7. (10 points) Let f, g be continuous, complex-valued functions on [-1, 1] such that $\int_{-1}^{1} |f(x)|^2 dx = 9$ and $\int_{-1}^{1} |g(x)|^2 dx = 16$.

(a) (5 points) What possible values can $\int_{-1}^{1} f(x) \overline{g(x)} dx$ take? Explain your reasoning.

Ans.

(b) (5 points) What possible values can $\int_{-1}^{1} |f(x) + g(x)|^2 dx$ take? Explain your reasoning.

Ans.

Ans.

Problem 8. (10 points) Find a 2×2 matrix A with real entries which has trace 5, determinant 6, and has $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ as one of its eigenvectors. (Hint: First work out what the characteristic polynomial of A must be. There are several possible answers to this question; you only have to supply one of them.)