(Partial) Solutions to Homework 5

Jon Handy

Q1:

Claim. Let V and W be finite-dimensional vector spaces and T : V — W be an isomorphism. Let Vj
be a subspace of V.

1. The set T(Vy) is a subspace of W.
2. dim(Vp) = dim(T' (Vo).

Proof: 1. This can be found in the solutions for HW3 (Q8).
2. This can also be done using bases, but the quickest way is as follows. Consider the restriction Ty,
of T to V. Since Ty, is still injective, we have

dim N(Ty,) + dim R(Ty,) = dim(V})
dim R(Ty,) = dim(V})
dim(T(V)) = dim(Vp)
as asserted. O

QT:
Claim. Let T : P,(R) — R™*! be the map
T(f) = (£(0),£(1), f(2),..., f(n)).
Then
1. T is linear, and

2. T is an isomorphism.

Proof: 1. It suffices to show that given a € R and f,g € P,(R), T(af + g) = oT(f) + T(g). Here
we have

T(af+g) = ((af +9)0),(af +9)1),...,(af +g)(n))
= (af(0) +g(0),...,af(n) + g(n))
= a(f(0),...,f(n)) + (9(0),... ,g(n))
T(af+g) = oT(f)+T(9),

which is the desired equality.



2. Since P,(R) and R"*! are finite-dimensional vector spaces of the same dimension, it suffices to
show that T is injective. We recall that a nonzero polynomial of degree n has at most n distinct roots.
Thus if (f(0),...,f(n)) =(0,...,0) then f € P,(R) has n + 1 zeros, whence f is the zero polynomial.
Thus N(T') = {0}, i.e T is injective. O

Q8:
Claim. Let A, B be n X n matrices such that AB = I,,, where I, is the n X n identity matriz. Than
1. LyLp = Ign, where Igxn is the identity on R™.
2. Lp is a bijection.
3. LgLy = Iz~
4. BA=1,.

Proof: 1. By definition, Lyz = Az for any z € R"*. Thus LyLpx = La(Bz) = A(Bz) = (AB)z =
I,x = Ig~x. Tt follows that LoaLg = Ig~.

2. Suppose that Lgx = Lpy for some z,y € R*. Then z = Ignx = LaLpx = LaLpy = Ig~y = vy,
i.e. £ = y. Thus Lg is injective. Being a map between finite-dimensional vector spaces of the same
dimension, Lp must also be surjective. Hence Lp is a bijection.

3. Since Lp is surjective, given © € R” there is y € R™ such that Ly = x. Thus LgLax =
LgLaLpy=Lp(LaLg)y= Le(Ig~)y = Lpy = x. Thus LgLax = z for every x, whence LgL 4 = Ign.

4. If {eq,...,e,} is the standard basis in R” then BAe; = LgLye; = Igne; = e;, so represented
as a matrix in the standard basis, BA is the diagonal matrix with ones on the diagonal,i.e. BA=1I,. O

Q10:

Claim. Let V be a finite dimensional vector space, let T : V — V be a linear transformation, and let
S:V =V be an invertible linear transformation [i.e. an isomorphism].

1. R(STS 1) = S(R(T)) and N(STS~ ) = SN(T)
2. rank(T) = rank(ST'S™!) and nullity(T) = nullity(STS 1)

Proof: 1. Being an isomorphism, S satisfies S(V) = V and S~ '(V) = V. Thus R(STS ') =
STS~Y(V) = S(T(S~1(V))) = S(T(V)) = S(R(T)).

In a similar way, we may obtain N(STS—1) = (STS~1)~1(0) = ST-1S71(0) = S(T~1(S~1(0))).
Since S*! is injective (being an isomorphism), we know that N(S*!) = S¥1(0) = 0. Thus we find that
N(STS 1) = S(T~1(0)) = SN(T). (Important: see note below.)

2. Using Q1 and (1), we have that rank(ST'S 1) = dimR(STS!) = dim S(R(T)) = dimR(T) =
rank(7T). A similar chain of equalities is obtained for the nullity. O

Important note: It is important to note that the equality (STS™!) = ST~1S~1! is not true in the
sense of a function from V to V-in general T~! is not a function since 7~!(z) may not have a single
value for z. If N(T) # 0, for instance, we would have to have T~-(0) = z and T~!(0) = y for distinct
elements z,y € N(T'). Not being single-valued on an element, T~ : V — V cannot be a function.

The way we can regard T~! is as a function T~ : P(V) — P(V), where P(V) denotes the power set
of V, that is the set of all subsets of V. Thus T~ is viewed as a set function, a function from sets to



sets. In particular, we regard T 1(z) as T 1({z}) = {y € V|Ty = z}. Then ST 'S ! : P(X) —» P(X)
is regarded as a composition of set functions. This is the fashion in which our proof actually makes
sense.



