(Partial) Solutions to Homework 2

Jon Handy

Q4: For this problem we want to find a map $T: \mathbb{R}^2 \to \mathbb{R}^2$ for which R(T) = N(T). As most people saw, this will require dim $R(T) = \dim N(T) = 1$. Let $\{x\}$ be a basis for N(T). Extending this to a basis $\{x,y\}$ of \mathbb{R}^2 , we need to have $Ty = \alpha x$ for some $\alpha \in \mathbb{R}$. Giving this a coordinate representation with respect to this (ordered) basis, T is determined by $(a,b) \mapsto (\alpha b,0)$. Thus, in some sense every such linear map T looks like a truncation composed with a flip $((x,y) \mapsto (0,y) \mapsto (y,0))$ up to some scalar multiple.

Q7:

Claim. Let V be an n-dimensional vector space with an ordered basis $\beta = \{v_1, v_2, \dots, v_n\}$. If we define $T: V \to F^n$ by $T(x) = [x]_{\beta}$, then T is linear.

Proof: If $x, y \in V$ can be written $x = \sum a_1 v_i$ and $y = \sum b_i v_i$, then

$$[x]_{\beta} = \left(\begin{array}{c} a_1 \\ \vdots \\ a_n \end{array} \right) \qquad [y]_{\beta} = \left(\begin{array}{c} b_1 \\ \vdots \\ b_n \end{array} \right).$$

Then we have, for $c, d \in F$

$$T(cx + dy) = [cx + dy]_{\beta}$$

$$= \begin{pmatrix} ca_1 + db_1 \\ \vdots \\ ca_n + db_n \end{pmatrix}$$

$$= c \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + d \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

$$T(cx + dy) = c[x]_{\beta} + d[y]_{\beta}.$$

It follows that for every $c, d \in F$ and every $x, y \in V$, T(cx + dy) = cTx + dTy. Thus T is linear. \square

Q8:

Claim. Let V, W be vector spaces, and let $T: V \to W$ be a linear transformation.

1. If U is a subspace of W then the set

$$T^{-1}(U) := \{ v \in V : T(v) \in U \}$$

is a subspace of V. Thus N(T) is a subspace of V.

2. If X is a subspace of V then the set

$$T(X) := \{ Tv : v \in X \}$$

is a subspace of W. Thus R(T) is a subspace of W.

- **Proof:** 1. Note that $0 \in T^{-1}(U)$ since $T0 = 0 \in U$. If $\alpha \in F$ and $v \in T^{-1}(U)$ then $T(\alpha v) = \alpha Tv \in U$ since $Tv \in U$ and U is closed under scalar multiplication. Thus $\alpha v \in T^{-1}(U)$. Similarly, if $v, w \in T^{-1}(U)$ then $T(v + w) = Tv + Tw \in U$ since U is closed under addition. Thus $v + w \in T^{-1}(U)$. Since $\{0\}$ is a subspace, it follows that N(T) is a subspace.
- 2. Here $0 \in X$ so $0 \in T(X)$ since T0 = 0. If $\alpha \in F$ and $Tv \in T(X)$ then $\alpha Tv = T(\alpha v) \in T(X)$ since $v \in X$ and X is closed under scalar multiplication. Thus $\alpha v \in T(X)$. Similarly, if $Tv, Tw \in T(X)$ then $Tv + Tw = T(v + w) \in T(X)$ since X is closed under addition. Thus $v + w \in T(X)$.

Since V is a subspace, it follows that T(V) = R(T) is a subspace.