(Partial) Solutions to Homework 2

Jon Handy

Q3:

Claim. 1. If T is linear then T(0) = 0.

- 2. A map T is linear iff $T(\alpha x + y) = \alpha T(x) + T(y)$ for all $x, y \in V$ and $\alpha \in F$.
- 3. A map T is linear iff for $x_1, \ldots, x_n \in V$ and $a_1, \ldots, a_n \in F$ we have

$$T\left(\sum_{i=1}^{n} a_i x_i\right) = \sum_{i=1}^{n} a_i T(x_i). \tag{1}$$

Proof: 1. If T is linear then for any $v \in V$

$$T(0) = T(0\dot{v}) = 0T(v) = 0.$$

2. If T is linear then

$$T(\alpha x + y) = T(\alpha x) + T(y) = \alpha T(x) + T(y)$$

for all $x, y \in V$ and $\alpha \in F$

If $T(\alpha x + y) = \alpha T(x) + T(y)$ for all $x, y \in V$ and $c \in F$ then picking $\alpha = 1$ gives

$$T(x+y) = T(x) + T(y)$$

for all $x, y \in V$. Similarly, if we pick y = 0 then we find that

$$T(\alpha x) = \alpha T(x)$$

for all $x \in V$ and $\alpha \in F$, where we note that T(0) = 0 since for $\alpha = 1$ and x = y = 0 we have

$$T(0) = T(\alpha x + y) = T(0) + T(0)$$

 $0 = T(0).$

3. If equation (1) holds then choosing n=2, $a_2=1$, and denoting $a_1=\alpha$, $x_1=x$, and $x_2=y$ gives

$$T\left(\sum_{i=1}^{2} a_i x_i\right) = \sum_{i=1}^{2} a_i T(x_i)$$
$$T(\alpha x + y) = \alpha T(x) + T(y),$$

which implies that T is linear by (2).

Suppose that T is linear. We will show that the equation (1) holds by induction. For n=2, we have

$$T\left(\sum_{i=1}^{2} a_{i} x_{i}\right) = T(a_{1} x + a_{2} y)$$

$$= T(a_{1} x) + T(a_{2} y)$$

$$= a_{1} T(x) + a_{2} T(y)$$

$$T\left(\sum_{i=1}^{2} a_{i} x_{i}\right) = \sum_{i=1}^{2} a_{i} T(x_{i}).$$

If we know that the equation holds for n = k, we find that

$$T\left(\sum_{i=1}^{k+1} a_i x_i\right) = T\left(\sum_{i=1}^{k} a_i x_i + a_{k+1} x_{k+1}\right)$$

$$= T\left(\sum_{i=1}^{k} a_i x_i\right) + T(a_{k+1} x_{k+1})$$

$$= \sum_{i=1}^{k} a_i T(x_i) + a_{k+1} T(x_{k+1})$$

$$T\left(\sum_{i=1}^{k+1} a_i x_i\right) = \sum_{i=1}^{k+1} a_i T(x_i),$$

which is exactly equation (1) for n = k + 1. It follows from induction that (1) holds for all $n \in \mathbb{N}$.

Q6:

Claim. Let V be a vector space, and let A, B be two subsets of V. If B spans V and $\langle A \rangle$ contains B, then A spans V.

Proof: If $B \subset \langle A \rangle$ then for every vector $b \in B$ we have an expansion

$$b = \sum_{a \in A} \alpha_{ba} a$$

for some scalars $\alpha_{ba} \in F$ (all but finitely many are zero for each fixed index b). Since B spans V, we have, for any $x \in V$ an expansion of the form

$$x = \sum_{b \in B} \beta_b b,$$

where only finitely many of the $\beta_b \in F$ are nonzero. Then

$$x = \sum_{b \in B} \beta_b b$$

$$= \sum_{b \in B} \beta_b \left(\sum_{a \in A} \alpha_{ba} a \right)$$

$$x = \sum_{a \in A} \left(\sum_{b \in B} \beta_b \alpha_{ba} \right) a.$$

so it follows that A spans V.

Q7:

Claim. If V is a vector space which is spanned by a finite set S of n elements then V is finite dimensional, with dimension less than or equal to n.

Proof: We construct, algorithmically, a maximal linearly independent subset of S.

Choose some nonzero vector $s_1 \in S$. If $\langle s_1 \rangle \neq \langle S \rangle$ then we may find some nonzero element $s_2 \in S \setminus \{s_1\}$ such that $s_2 \notin \langle s_1 \rangle$. Not that s_1 and s_2 are linearly independent. Continuing in this fashion, if $\langle s_1, s_2 \rangle \neq \langle S \rangle$ then we may find a nonzero vector $s_3 \in S \setminus \{s_1, s_2\}$ such that $s_3 \notin \langle s_1, s_2 \rangle$. Now, by construction s_3 is independent of $\{s_1, s_2\}$, and $\{s_1, s_2\}$ is linearly independent by construction, so $\{s_1, s_2, s_3\}$ is a linearly independent set. Inductively, at the kth step we have k linearly independent vectors $\{s_1, s_2, \ldots, s_k\}$. If $\langle s_1, s_2, \ldots, s_k \rangle \neq \langle S \rangle$ then we can find a nonzero vector $s_{k+1} \in S \setminus \{s_1, s_2, \ldots, s_k\}$. Now by construction s_{k+1} is independent of $\{s_1, s_2, \ldots, s_k\}$; since this latter is a linearly independent set, $\{s_1, s_2, \ldots, s_{k+1}\}$ is a linearly independent subset of S.

Since the number of elements in the set S is finite, this process will terminate with some linearly independent subset $\{s_1, \ldots, s_m\}$ of S. Some examination of this algorithm reveals that the only reason that this algorithm might terminate is if $\langle s_1, \ldots, s_m \rangle = \langle S \rangle$. Since S spans V, we have a linearly independent subset of S spanning V. In particular, $m \leq n$, so dim $V = m \leq n$.

Q8:

Claim. The space $\mathcal{F}(\mathbb{R}, \mathbb{R})$ of functions from \mathbb{R} to \mathbb{R} is infinite dimensional.

Proof: (Proof 1): Suppose, for contradiction, that $\mathcal{F}(\mathbb{R}, \mathbb{R})$ has finite dimension n. Clearly the polynomials of degree less than or equal to n, $P_n(\mathbb{R})$, are contained in $\mathcal{F}(\mathbb{R}, \mathbb{R})$. Yet then the basis $\{1, x, \ldots, x^n\}$ is a linearly independent set of size n+1, contradicting that $\dim \mathcal{F} = n$. Thus $\mathcal{F}(\mathbb{R}, \mathbb{R})$ cannot be finite dimensional.

(Proof 2): Clearly the spaces $P_n(\mathbb{R})$ are contained in $\mathcal{F}(\mathbb{R},\mathbb{R})$. Thus the linearly independent set $\{1,x,\ldots,x^n\}$ is contained in $\mathcal{F}(\mathbb{R},\mathbb{R})$, whence dim $\mathcal{F}>n$. Since the integer n is arbitrary, it follows that $\mathcal{F}(\mathbb{R},\mathbb{R})$ cannot have finite dimension.