(Partial) Solutions to Homework 2

Jon Handy

Q3:
Claim. 1. IfT is linear then T(0) = 0.
2. Amap T is linear iff T(ax +y) = oT(x) + T'(y) for all z,y € V and o € F.

3. A map T is linear iff for x1,... ,0, € V and a1,... ,a, € F we have

T(Zaimi) = aiT(z). (1)
i=1 i=1
Proof: 1. If T is linear then for any v € V'

T(0) =T(0v) =0T'(v) =0.

2. If T is linear then
T(ax+y) =T(ax) + T(y) = aT(x) + T(y)

forallz,y e Vandae F
If T(ax +y) = aT(z) + T(y) for all z,y € V and ¢ € F then picking a = 1 gives

T(z+y) =T(z)+T(y)
for all z,y € V. Similarly, if we pick y = 0 then we find that
T(az) = aT(x)
for all z,€ V and a € F, where we note that 7'(0) = 0 since for « = 1 and z = y = 0 we have

TO)=T(azx+y) = T(0)+T(0)
0 = T(0).

3. If equation (1) holds then choosing n = 2, a; = 1, and denoting a1 = a, 1 = z, and 2 = y gives

T(ax+y) = ol(z)+T(y),

which implies that T is linear by (2).



Suppose that T is linear. We will show that the equation (1) holds by induction. For n = 2, we have

2
T(Za,xz) = T(al.'lf + azy)
i=1

= T(a1z) + T(azy)
= a1T(z) +aT(y)

If we know that the equation holds for n = k, we find that

k+1 k
T(Zaimz) = T(Zaixi + ak+1:ck+1>
i=1

i=1

k
= T(Zaixi) + T (ap+1Tp+1)

i=1

k
= Y aT(:) + ax1T(ks1)

i=1

kt1 k41
T ( ) ) = S aT),
i=1 i=1
which is exactly equation (1) for n = k + 1. It follows from induction that (1) holds for alln e N. O

Q6:
Claim. Let V be a vector space, and let A, B be two subsets of V. If B spans V and (A) contains B,
then A spans V.

Proof: If B C (A) then for every vector b € B we have an expansion
b= Z Apaa

for some scalars ap, € F' (all but finitely many are zero for each fixed index b). Since B spans V', we
have, for any € V' an expansion of the form

r= Z /Bbba
beB
where only finitely many of the 8, € F' are nonzero. Then

z = ) Bb

beB

= > B ( > abaa>

beB a€A

r = Z(Zﬂbaba>a-

a€A “beEB



so it follows that A spans V. O

QT:

Claim. If V is a vector space which is spanned by a finite set S of n elements then V is finite dimen-
sional, with dimension less than or equal to n.

Proof: We construct, algorithmically, a maximal linearly independent subset of S.

Choose some nonzero vector s; € S. If (s1) # {S) then we may find some nonzero element sy € S\{s1}
such that s & (s1). Not that s; and s, are linearly independent. Continuing in this fashion, if {sq, s3) #
(S) then we may find a nonzero vector s3 € S\ {s1, s2} such that s3 & (s1, s2). Now, by construction s3
is independent of {s1, s2}, and {s1, s2} is linearly independent by construction, so {s1, s2, s3} is a linearly

independent set. Inductively, at the kth step we have k linearly independent vectors {si, s2,...,s}. If
(s1,82,-..,8k) # {S) then we can find a nonzero vector sg4+1 € S\ {s1,52,--.,Sk}. Now by construction
Sg+1 is independent of {s1,$s,... ,sk}; since this latter is a linearly independent set, {s1, s2, ..., Sg+1}

is a linearly independent subset of S.

Since the number of elements in the set S is finite, this process will terminate with some linearly
independent subset {s1,... ,8,} of S. Some examination of this algorithm reveals that the only reason
that this algorithm might terminate is if (sy,...,s,) = (S). Since S spans V, we have a linearly inde-
pendent subset of S spanning V. In particular, m <n, so dimV =m < n. O

Q8:
Claim. The space F(R,R) of functions from R to R is infinite dimensional.

Proof: (Proof 1): Suppose, for contradiction, that F(R,R) has finite dimension n. Clearly the
polynomials of degree less than or equal to n, P,(R), are contained in F(R,R). Yet then the basis
{1,z,... ,2™} is a linearly independent set of size n + 1, contradicting that dim F = n. Thus F(R,R)
cannot be finite dimensional.

(Proof 2): Clearly the spaces P,(R) are contained in F(R,R). Thus the linearly independent set
{1,z,... ,2™} is contained in F(R,R), whence dim F > n. Since the integer n is arbitrary, it follows
that F(R,R) cannot have finite dimension. O



