PRACTICE FINAL MATH 115A.

WARNING: Your final exam may include topics that are not covered in this practice exam.

Please, e-mail comments to Professor Munoz-Garcia (munoz@math.ucla.edu)

EXERCISE 1. Let P_2 be the set of polynomials with real coefficients of degree ≤ 2 . We consider the set of polynomials

$$S = \{p(x) \in P_2 \text{ such that } p(0) + p''(0) = 0\}$$

- **1.a.** Is S a subspace of P_2 ?
- **1.b.** Find a basis for S and determine the dimension of S.

EXERCISE 2. We consider the matrix $Q = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.

Let $T: M_{2\times 2}(R) \longrightarrow M_{2\times 2}(R)$ be the map defined by T(M) = QM.

- **2.a.** Is T a linear transformation?
- **2.b.** What is the Kernel of T? Find the dimension of Ker(T).
- **2.c.** Find a basis of the range of T. Find the dimension of R (T).
- **2.d.** Is T one-to-one? Is T onto? Is T an isomorphism?

EXERCISE 3. We consider the real vector space F(R) consisting of all functions defined on R. Determine whether or not $f_1(x) = \cos x$, $f_2(x) = \cos 2x$ and $f_3(x) = \cos 3x$ are linearly independent.

EXERCISE 4. Let

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & c & 0 \end{pmatrix}$$

where c is a real number.

- **4.1.** Find the eigenvalues of A.
- **4.2.** For which values of c is the matrix A diagonalizable?

EXERCISE 5. Let M be a real $n \times n$ matrix, let λ be an eigenvalue of M. Let k be an integer with k > 1.

- **5.a.** Prove that λ^k is an eigenvalue of M^k . What are the corresponding eigenvectors?
- **5.b.** Let A be a real $n \times n$ matrix. Prove that if A is nilpotent, that is, if $A^r = 0$ for some integer $r \ge 1$, then 0 is its only eigenvalue.

EXERCISE 6. Let V be a finite dimensional vector space over a field F. Let W_1 and W_2 be subspaces of V.

1

Recall that we say that V is the direct sum of W_1 and W_2 if $V = W_1 + W_2$ (that is, every vector $v \in V$ can be written v = x + y where $x \in W_1$ and $y \in W_2$) AND $W_1 \cap W_2 = 0$.

We denote that V is the direct sum of W_1 and W_2 by writing $V = W_1 \oplus W_2$.

- **6.a.** Show that $V = W_1 \oplus W_2$ if and only if every vector $v \in V$ can be written v = x + y where $x \in W_1$ and $y \in W_2$ are unique.
 - **6.b.** Show that $V = W_1 \oplus W_2$ if and only if there exists a linear transformation

$$T:V\longrightarrow V$$

satisfying the three following conditions:

i.
$$Ker(T) = W_1$$

ii.
$$R(T) = W_2$$

iii.
$$T^2 = T \circ T = T$$
.

EXERCISE 7. Regarding the complex numbers as a vector space over the real numbers, define

$$(z_1, z_2) = \frac{1}{2}(z_1\bar{z}_2 + z_2\bar{z}_1)$$

- **7.a.** Show that (,) is an inner product.
- **7.b.** If $z_1 = \alpha_1 + \alpha_2 i$ and $z_2 = \beta_1 + \beta_2 i$, show that

$$(z_1, z_2) = \alpha_1 \beta_1 + \alpha_2 \beta_2$$

Show that (z, z) is the square of the absolute value of the complex number z in the usual sense.

- **7.c.** Let M_a be the linear transformation of C^n into itself defined by $M_a(z) = az$. Show that $M_a(z_1, M_a(z_2)) = a\bar{a}(z_1, z_2)$.
 - **7.d.** With M_a defined as in (c), show that M_a is an isometry if and only if |a|=1.
 - **7.e.** Letting $T(z) = \bar{z}$, show that T is an isometry.

EXERCISE 8. Let U be an orthogonal matrix. Show that the following are equivalent:

- **8.a.** U is symmetric.
- 8.b. $U^2 = I$.