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1. Distributions

In set theory, a function is an object f : X → Y which assigns to each point
x in a domain X precisely one point f(x) in the range Y ; thus the fundamental
operation available on a function is evaluation, x 7→ f(x). However, this is not
necessarily the case when the concept of function is employed in other fields of
mathematics. In geometry, for instance, the fundamental property of a function
may not necessarily be how it acts on points, but rather how it pushes forward
or pulls back more complicated objects than points (e.g. other functions, bundles
and sections, sheaves and schemes, etc.). Similarly, in analysis, a function need not
necessarily be defined by how it acts on points, but may instead be defined by how
it acts on other objects, such as sets or test functions. The former concept leads to
the notion of a measure; the latter, to that of a distribution.

Of course, all these notions of function and function-like objects are related. It
is helpful to think of the various notions of a function in analysis as forming a
spectrum1, ranging from the very “smooth” classes of functions to the very “rough”.
The smooth classes of functions have more operations available on them, but con-
versely they are very restrictive in their membership and one cannot necessarily
guarantee that one can always work in this category. Conversely, the rough classes
of functions are very general and it is easy to ensure that one is working in this
category, but the price one pays is that the number of operations available on these
functions is often sharply reduced. Nevertheless, the various classes of functions
can often be treated in a unified manner, because the smooth classes of functions
are often dense (in some suitable topology) in the rough classes of functions, and
so any operation defined on smooth classes has a good chance of having a unique
extension to the rough classes. Because of this convenient fact, it is often not nec-
essary to care too much exactly what category of function one is working with in
analysis (particularly if one has obtained quantitative control on one’s functions,
which will be stable in passing under limits from smooth to rough functions or
vice versa); nevertheless there are subtleties and pitfalls involved if one moves too
carelessly between the categories of functions (for instance, multiplying two dis-
tributions together is a fairly dangerous thing to attempt without extreme care).
The situation is somewhat analogous to that between rational numbers and real
numbers; most operations defined on rational numbers (with some exceptions, e.g.

1This is an oversimplification; the various function spaces one deals with in analysis do not

quite form a totally ordered set. However, this intuitive model will serve as a heuristic first
approximation for this discussion.
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numerator and denominator) can extend easily enough to the more complicated
notion of real number, usually by some sort of limiting argument.

Here is a partial list of some categories of functions one encounters in analysis, in
descending order from smoothest to roughest. For simplicity we restrict ourselves
to functions (or function-like objects) from the interval [−1, 1] to the real line R.

• The class Cω([−1, 1]) of analytic functions. These are functions which
have a locally convergent Taylor expansion at every point, and include all of
the usual algebraic functions (except at their singularities), such as exp(x),
sin(x), polynomials, etc. These functions are extremely smooth, and also
have the very powerful property of extending analytically to some open set
in the complex plane, but are also extremely rigid; for example knowing
an analytic function on a small open set in fact determines that function
everywhere by analytic continuation. As such they are often too restrictive
a class to work with in analysis.

• The class C∞
c ([1, 1]) of test functions. On the interval [−1, 1], these are

simply the smooth (i.e. infinitely differentiable) functions which vanish on
neighbourhoods of the endpoints −1 and 1. They are more numerous than
analytic functions and are more tractable for analysis, for instance one can
construct smooth cutoff functions available to localize other functions to
a small set, whereas such a concept cannot exist in the analytic category
(it contradicts unique continuation). Also, all the operations from calculus
(differentiation, integration, composition, convolution, evaluation, etc.) are
available for these functions.

• The class C0([−1, 1]) of continuous functions. These functions are reg-
ular enough that evaluation x 7→ f(x) is well-defined for all x ∈ [−1, 1], and
one can certainly integrate such functions and perform algebraic operations
such as multiplication and composition, but they are not regular enough to
perform operations such as differentiation. Still they are usually considered
among the smoother examples of functions in analysis.

• The class L2([−1, 1]) of square-integrable functions. These are mea-
surable functions f : [−1, 1] → R for which the Lebesgue integral

∫ 1

−1
|f(x)|2 dx

is finite. Usually one equates any two such functions which agree up to sets
of measure zero; this implies in particular that it is usually no longer mean-
ingful to evaluate a square-integrable function f(x) at any specific point x,
though one can still talk about the function f on a set of positive measure
as being well-defined up to sets of measure zero. In particular one can
still Lebesgue integrate these functions even if one cannot evaluate them
at individual points. One key point about this class is that it is self-dual
L2([−1, 1]) ≡ L2([−1, 1])∗, in that any two functions in this class can be
paired together by the inner product 〈f, g〉 :=

∫ 1

−1
f(x)g(x) dx, and in fact

one can reconstruct what a square integrable function f is purely from
knowing what its inner products 〈f, g〉 are with all the other square inte-
grable functions g. Indeed, the continuous linear functionals on L2([−1, 1])
are all of the form g 7→ 〈f, g〉 for some f ∈ L2([−1, 1]) (this is a special case
of one of the Riesz representation theorems).
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• The class C0([−1, 1])∗ of finite Borel measures. A measure µ does not
necessarily have a value (or more precisely, a density dµ

dx ) at any given point,
but it can still assign a number to a measurable set, or to a measurable
function (if the latter is absolutely integrable). A finite Borel measure µ,
in particular, assigns a number µ(E) to every open set E, and also assigns
a number 〈µ, g〉 :=

∫ 1

−1
g dµ to every continuous function g ∈ C0([−1, 1]).

For instance, every square-integrable function f(x) is associated to a finite
Borel measure f(x) dx, which explains the repeated use of the inner product
notation 〈, 〉. Indeed, one can define a finite Borel measure µ as a continuous
linear functional g 7→ 〈µ, g〉 on the space of continuous functions (this is
another of the Riesz representation theorems).

• The class C∞([−1, 1])∗ of distributions. Just as measures can be viewed
as continuous linear functionals on C0([−1, 1]), a distribution µ is a contin-
uous linear functional on C∞

c ([−1, 1]) (endowed with the smooth topology),
thus a distribution can be viewed as a “virtual function” which cannot itself
be directly evaluated, but which can still be paired with any test function
g ∈ C∞

c ([−1, 1]), producing a number 〈µ, g〉. A famous example is the Dirac
distribution δ0, defined as the functional which when paired with any test
function g returns the evaluation g(0) of g at zero: 〈δ0, g〉 := g(0). Similarly
we have the derivative Dirac distribution −δ′0, which when paired with any
test function g returns the derivative g′(0) of g at zero: 〈−δ′0, g〉 := g′(0).
(The reason for the minus sign will be explained later). Since test func-
tions have so many operations available to them, the class of distributions
is quite large. While they cannot be evaluated or integrated on open sets,
there are still many operations available to them; we discuss this later.

• The class Cω([−1, 1])∗ of hyperfunctions. There are classes of functions
more general still than distributions; for instance there are hyperfunctions,
which roughly speaking one can think of as linear functionals that can
only be tested against analytic functions g ∈ Cω([−1, 1]) rather than test
functions g ∈ C∞([−1, 1]). However as the class of analytic functions is so
sparse, hyperfunctions tend not to be as useful as distributions in analysis.

At first glance, the concept of a distribution has limited utility, as all a distribution
µ is empowered to do is to be tested against test functions g to produce inner
products 〈µ, g〉. However, using this inner product, one can often take operations
which are initially only defined on test functions, and extend them to distributions
by duality. A typical example is with differentiation. Suppose one wants to know
how to define the derivative µ′ of a distribution, or in other words how to define
〈µ′, g〉 for any test function g and distribution µ. If µ was itself a test function
µ = f , then we could evaluate this using integration by parts (recalling that test
functions vanish on the boundary −1, 1) we have

〈f ′, g〉 =
∫ 1

−1

f ′(x)g(x) dx = −
∫ 1

−1

f(x)g′(x) dx = −〈f, g′〉.

Note that if g is a test function then so is g′. Thus we can generalize this formula
to arbitrary distributions by defining

〈µ′, g〉 := −〈µ, g′〉.
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Thus for instance 〈δ′0, g〉 = −〈δ0, g
′〉 = −g′(0). More formally, what we have done

here is computed the adjoint of the differentiation operation (as defined on the dense
space of test functions), and then taken adjoints again to define the differentiation
operation for general distributions. This procedure is well-defined and works for
many other concepts also, thus one can add two distributions, multiply a distribu-
tion by a smooth function, convolve two distributions, and compose distributions
on both left and right with suitably smooth functions. One can even take Fourier
transforms of distributions; for instance, the Fourier transform of the Dirac delta δ0

is the constant function 1, and conversely (this is essentially the Fourier inversion
formula), while the distribution

∑
n∈Z δ0(x− n) is its own Fourier transform (this

is essentially the Poisson summation formula). Thus the space of distributions is
quite a good space to work in, in that it contains a large class of functions (e.g.
all measures and integrable functions), and is also closed under a large number of
common operations in analysis. Because the test functions are dense in the space
of distributions, the operations as defined on distributions are usually compatible
with those on test functions; for instance, if f and g are test functions and f ′ = g in
the sense of distributions, then f ′ = g will also be true in the classical sense. This
often allows one to manipulate distributions as if they were test functions without
fear of confusion or inaccuracy. The main operations one has to be careful about
are evaluation x 7→ µ(x) and pointwise multiplication µ1, µ2 7→ µ1µ2 of distribu-
tions, both of which are usually not well defined (e.g. the square of the Dirac delta
distribution is not well defined as a distribution).

Another way to view distributions is as the weak limit of test functions. A sequence
of functions fn is said to converge weakly to a distribution µ is if 〈fn, g〉 → 〈µ, g〉 for
all test functions g. For instance, if ϕ is a test function with total integral

∫ 1

−1
ϕ = 1,

then the test functions fn(x) := nϕ(nx) can be shown to converge weakly to the
Dirac delta distribution δ0, while the functions f ′n = n2ϕ′(nx) converge weakly to
the derivative δ′0 of the Dirac delta. On the other hand, the functions gn(x) :=
cos(nx)ϕ(x) converge weakly to zero (this is a variant of the Riemann-Lebesgue
lemma). Thus weak convergence has some unusual features not present in stronger
notions of convergence, in that severe oscillations can sometimes “disappear” in the
limit. One advantage of working with distributions instead of smoother functions
is that one often has some compactness in the space of distributions under weak
limits (e.g. by the Banach-Alaoglu theorem). Thus distributions can be thought
of as asymptotic extremes of behavior of smoother functions, just as real numbers
can be thought of as limits of rational numbers.

The theory of distributions is particularly useful in the theory of linear partial
differential equations. For instance, to solve a PDE such as Lu = f where L
is a constant-coefficient differential operator, and f is a given test function, one
can often use distributions to obtain a (smooth) solution of the form u = f ∗ K,
where K is a distribution known as the fundamental solution of L. In particular,
distributions can be useful even for questions which only involve classical functions.
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