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Preface

Politics is for the present, but an equation is something for eternity.

(Albert Einstein)

This monograph is based on (and greatly expanded from) a lecture series given
at the NSF-CBMS regional conference on nonlinear and dispersive wave equations
at New Mexico State University, held in June 2005. Its objective is to present
some aspects of the global existence theory (and in particular, the regularity and
scattering theory) for various nonlinear dispersive and wave equations, such as the
Korteweg-de Vries (KdV), nonlinear Schrédinger, nonlinear wave, and wave maps
equations. The theory here is rich and vast and we cannot hope to present a
comprehensive survey of the field here; our aim is instead to present a sample of
results, and to give some idea of the motivation and general philosophy underlying
the problems and results in the field, rather than to focus on the technical details.
We intend this monograph to be an introduction to the field rather than an ad-
vanced text; while we do include some very recent results, and we imbue some more
classical results with a modern perspective, our main concern will be to develop
the fundamental tools, concepts, and intuitions in as simple and as self-contained
a matter as possible. This is also a pedagogical text rather than a reference; many
details of arguments are left to exercises or to citations, or are sketched informally.
Thus this text should be viewed as being complementary to the research literature
on these topics, rather than being a substitute for them.

The analysis of PDE is a beautiful subject, combining the rigour and technique
of modern analysis and geometry with the very concrete real-world intuition of
physics and other sciences. Unfortunately, in some presentations of the subject (at
least in pure mathematics), the former can obscure the latter, giving the impression
of a fearsomely technical and difficult field to work in. To try to combat this, this
book is devoted in equal parts to rigour and to intuition; the usual formalism of
definitions, propositions, theorems, and proofs appear here, but will be interspersed
and complemented with many informal discussions of the same material, centering
around vague “Principles” and figures, appeal to physical intuition and examples,
back-of-the-envelope computations, and even some whimsical quotations. Indeed,
the exposition and exercises here reflect my personal philosophy that to truly under-
stand a mathematical result one must view it from as many perspectives as possible
(including both rigorous arguments and informal heuristics), and must also be able
to translate easily from one perspective to another. The reader should thus be
aware of which statements in the text are rigorous, and which ones are heuristic,
but this should be clear from context in most cases.

To restrict the field of study, we shall focus primarily on defocusing equations,
in which soliton-type behaviour is prohibited. From the point of view of global
existence, this is a substantially easier case to study than the focusing problem, in

ix
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which one has the fascinating theory of solitons and multi-solitons, as well as various
mechanisms to enforce blow-up of solutions in finite or infinite time. However, we
shall see that there are still several analytical subtleties in the defocusing case,
especially when considering critical nonlinearities, or when trying to establish a
satisfactory scattering theory. We shall also work in very simple domains such
as Euclidean space R" or tori T", thus avoiding consideration of boundary-value
problems, or curved space, though these are certainly very important extensions to
the theory. One further restriction we shall make is to focus attention on the initial
value problem when the initial data lies in a Sobolev space H2(R?), as opposed to
more localised choices of initial data (e.g. in weighted Sobolev spaces, or self-similar
initial data). This restriction, combined with the previous one, makes our choice of
problem translation-invariant in space, which leads naturally to the deployment of
the Fourier transform, which turns out to be a very powerful tool in our analysis.
Finally, we shall focus primarily on only four equations: the semilinear Schrodinger
equation, the semilinear wave equation, the Korteweg-de Vries equation, and the
wave maps equation. These four equations are of course only a very small sample of
the nonlinear dispersive equations studied in the literature, but they are reasonably
representative in that they showcase many of the techniques used for more general
equations in a comparatively simple setting.

Each chapter of the monograph is devoted to a different class of differential
equations; generally speaking, in each chapter we first study the algebraic struc-
ture of these equations (e.g. symmetries, conservation laws, and explicit solutions),
and then turn to the analytic theory (e.g. existence and uniqueness, and asymptotic
behaviour). The first chapter is devoted entirely to ordinary differential equations
(ODE). One can view partial differential equations (PDE) such as the nonlinear
dispersive and wave equations studied here, as infinite-dimensional analogues of
ODE; thus finite-dimensional ODE can serve as a simplified model for understand-
ing techniques and phenomena in PDE. In particular, basic PDE techniques such
as Picard and Duhamel iteration, energy methods, continuity or bootstrap argu-
ments, conservation laws, near-conservation laws, and monotonicity formulae all
have useful ODE analogues. Furthermore, the analogy between classical mechan-
ics and quantum mechanics provides a useful heuristic correspondence between
Schrédinger type equations, and classical ODE involving one or more particles, at
least in the high-frequency regime.

The second chapter is devoted to the theory of the basic linear dispersive mod-
els: the Airy equation, the free Schridinger equation, and the free wave equation.
In particular, we show how the Fourier transform and conservation law methods,
can be used to establish existence of solutions, as well as basic estimates such as
the dispersive estimate, local smoothing estimates, Strichartz estimates, and X
estimates.

In the third chapter we begin studying nonlinear dispersive equations in earnest,
beginning with two particularly simple semilinear models, namely the nonlinear
Schrédinger equation (NLS) and nonlinear wave equation (NLW). Using these
equations as examples, we illustrate the basic approaches towards defining and
constructing solutions, and establishing local and global properties, though we de-
fer the study of the more delicate energy-critical equations to a later chapter. (The
mass-critical nonlinear Schrodinger equation is also of great interest, but we will
not discuss it in detail here.)
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In the fourth chapter, we analyze the Korteweg de Vries equation (KdV), which
requires some more delicate analysis due to the presence of derivatives in the non-
linearity. To partly compensate for this, however, one now has the structures of
nonresonance and complete integrability; the interplay between the integrability on
one hand, and the Fourier-analytic structure (such as nonresonance) on the other,
is still only partly understood, however we are able to at least establish a quite
satisfactory local and global wellposedness theory, even at very low regularities,
by combining methods from both. We also discuss a less dispersive cousin of the
KdV equation, namely the Benjamin-Ono equation, which requires more nonlinear
techniques, such as gauge transforms, in order to obtain a satisfactory existence
and wellposedness theory.

In the fifth chapter we return to the semilinear equations (NLS and NLW),
and now establish large data global existence for these equations in the defocusing,
energy-critical case. This requires the full power of the local wellposedness and per-
turbation theory, together with Morawetz-type estimates to prevent various kinds
of energy concentration. The situation is especially delicate for the Schrodinger
equation, in which one must employ the induction on energy methods of Bourgain
in order to obtain enough structural control on a putative minimal energy blowup
solution to obtain a contradiction and thus ensure global existence.

In the final chapter, we turn to the wave maps equation (WM), which is some-
what more nonlinear than the preceding equations, but which on the other hand
enjoys a strongly geometric structure, which can in fact be used to renormalise
most of the nonlinearity. The small data theory here has recently been completed,
but the large data theory has just begun; it appears however that the geometric
renormalisation provided by the harmonic map heat flow, together with a Morawetz
estimate, can again establish global existence in the negatively curved case.

As a final disclaimer, this monograph is by no means intended to be a defini-
tive, exhaustive, or balanced survey of the field. Somewhat unavoidably, the text
focuses on those techniques and results which the author is most familiar with, in
particular the use of the iteration method in various function spaces to establish a
local and perturbative theory, combined with frequency analysis, conservation laws,
and monotonicity formulae to then obtain a global non-perturbative theory. There
are other approaches to this subject, such as via compactness methods, nonlinear
geometric optics, infinite-dimensional Hamiltonian dynamics, or the techniques of
complete integrability, which are also of major importance in the field (and can
sometimes be combined, to good effect, with the methods discussed here); however,
we will be unable to devote a full-length treatment of these methods in this text. It
should also be emphasised that the methods, heuristics, principles and philosophy
given here are tailored for the goal of analyzing the Cauchy problem for semilinear
dispersive PDE; they do not necessarily extend well to other PDE questions (e.g.
control theory or inverse problems), or to other classes of PDE (e.g. conservation
laws or to parabolic and elliptic equations), though there are certain many connec-
tions and analogies between results in dispersive equations and in other classes of
PDE.

I am indebted to my fellow members of the “I-team” (Jim Colliander, Markus
Keel, Gigliola Staffilani, Hideo Takaoka), to Sergiu Klainerman, and to Michael
Christ for many entertaining mathematical discussions, which have generated much
of the intuition that I have tried to place into this monograph. I am also very
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thankful for Jim Ralston for using this text to teach a joint PDE course, and
providing me with careful corrections and other feedback on the material. I also
thank Soonsik Kwon and Shaunglin Shao for additional corrections. Last, but
not least, I am grateful to my wife Laura for her support, and for pointing out
the analogy between the analysis of nonlinear PDE and the electrical engineering
problem of controlling feedback, which has greatly influenced my perspective on
these problems (and has also inspired many of the diagrams in this text).

Terence Tao

Notation. As is common with any book attempting to survey a wide range
of results by different authors from different fields, the selection of a unified no-
tation becomes very painful, and some compromises are necessary. In this text I
have (perhaps unwisely) decided to make the notation as globally consistent across
chapters as possible, which means that any individual result presented here will
likely have a notation slightly different from the way it is usually presented in the
literature, and also that the notation is more finicky than a local notation would
be (often because of some ambiguity that needed to be clarified elsewhere in the
text). For the most part, changing from one convention to another is a matter of
permuting various numerical constants such as 2, 7, ¢, and —1; these constants are
usually quite harmless (except for the sign —1), but one should nevertheless take
care in transporting an identity or formula in this book to another context in which
the conventions are slightly different.

In this text, d will always denote the dimension of the ambient physical space,
which will either be a Euclidean space! R? or the torus T? := (R/27Z)?. (Chapter
1 deals with ODE, which can be considered to be the case d = 0.) All integrals on

these spaces will be with respect to Lebesgue measure dz. If x = (z1,...,2z4) and
€= (&,...,&) lie in R?, we use - £ to denote the dot product z-& := 21&; +...+
z4€q, and |z| to denote the magnitude |z| := (27 + ...+ 22)'/2. We also use ()

to denote the inhomogeneous magnitude (or Japanese bracket) (x) := (1 4 |z|?)*/?

of z, thus (z) is comparable to |z| for large = and comparable to 1 for small z.
In a similar spirit, if © = (21,...,24) € T? and k = (k1,...,kq) € Z% we define
k-x:=kx1+ ...+ kqrq € T. In particular the quantity e* is well-defined.

We say that [ is a time interval if it is a connected subset of R which contains
at least two points (so we allow time intervals to be open or closed, bounded or
unbounded). If u : I x R% — C" is a (possibly vector-valued) function of spacetime,

we write 0yu for the time derivative %, and Oz, u, . . ., Oy, u for the spatial derivatives
g—fl, ceey 8‘3—;3; these derivatives will either be interpreted in the classical sense (when

u is smooth) or the distributional (weak) sense (when u is rough). We use V u :
I x RY — C" to denote the spatial gradient V,u = (9,1, ...,0;,u). We can
iterate this gradient to define higher derivatives V¥ for k& = 0,1,.... Of course,

IWe will be using two slightly different notions of spacetime, namely Minkowski space R+
and Galilean spacetime R x R%; in the very last section we also need to use parabolic spacetime
Rt x R%. As vector spaces, they are of course equivalent to each other (and to the Euclidean
space Rd+1), but we will place different (pseudo)metric structures on them. Generally speaking,
wave equations will use Minkowski space, whereas nonrelativistic equations such as Schrodinger
equations will use Galilean spacetime, while heat equations use parabolic spacetime. For the most
part the reader will be able to safely ignore these subtle distinctions.
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these definitions also apply to functions on T¢, which can be identified with periodic
functions on R,

We use the Einstein convention for summing indices, with Latin indices ranging
from 1 to d, thus for instance z;0,,u is short for Z?:l 2j0z;u. When we come
to wave equations, we will also be working in a Minkowski space R'*% with a
Minkowski metric gog; in such cases, we will use Greek indices and sum from 0 to d
(with 2° = ¢ being the time variable), and use the metric to raise and lower indices.

Thus for instance if we use the standard Minkowski metric dg? = —dt? + |dz|?, then
dou = Oyu but % = —du.
In this monograph we always adopt the convention that f; = — fts ift < s.

This convention will usually be applied only to integrals in the time variable.
We use the Lebesgue norms

ez = ([ 5@ da)'”

for 1 < p < oo for complex-valued measurable functions f : R? — C, with the
usual convention
||f||L;°(Rd~>C) = ess sup |f(x)].
zeR4

In many cases we shall abbreviate L2(R? — C) as L2(R?), LP(RY), or even LP
when there is no chance of confusion. The subscript =, which denotes the dummy
variable, is of course redundant. However we will often retain it for clarity when
dealing with PDE, since in that context one often needs to distinguish between
Lebesgue norms in space x, time t, spatial frequency &, or temporal frequency
7. Also we will need it to clarify expressions such as ||z f]| zga), in which the
expression in the norm depends explicitly on the variable of integration. We of
course identify any two functions if they agree almost everywhere. One can of
course replace the domain R? by the torus T¢ or the lattice Z¢, thus for instance

Il za—cy = (> [F(R)P)VP.

keZd

One can replace C by any other Banach space X, thus for instance L2(R? — X)
is the space of all measurable functions u : R — X with finite norm

g = ( / ()% dz)/?
Rd

with the usual modification for p = oco. In particular we can define the mixed
Lebesgue norms L{L7 (I x R — C) = L{(I — L"(R% — C)) for any time interval
I as the space of all functions u : I x R — C with norm

sz amicy = (f 1O oy 001 = ([ ([ el dayors aey

with the usual modifications when ¢ = co or » = co. One can also use this Banach
space notation to make sense of the LP norms of tensors such as Vf, V2f, etc.,
provided of course that such derivatives exist in the LP sense.

In a similar spirit, if 7 is a time interval and k > 0, we use CF(I — X) to
denote the space of all k-times continuously differentiable functions u : I — X with
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the norm
k

|‘uHCf(I~>X) = Z ||3tJUHL§°(1_>X)-
=0

We adopt the convention that [lul|cx;_x) = o0 if u is not k-times continuously

differentiable. One can of course also define spatial analogues C*(R? — X) of these
spaces, as well as spacetime versions CF (I x R? — X). We caution that if I is not
compact, then it is possible for a function to be k-times continuously differentiable
but have infinite Cf norm; in such cases we say that u € CF, (I — X) rather than
u € CF(I — X). More generally, a statement of the form u € Xjoc(£2) on a domain
) means that we can cover €2 by open sets V such that the restriction u|y of u
to each of these sets V is in X (V'); under reasonable assumptions on X, this also
implies that u|x € X (K) for any compact subset K of Q. As a rule of thumb, the
global spaces X (Q2) will be used for quantitative control (estimates), whereas the
local spaces Xjoc(§2) are used for qualitative control (regularity); indeed, the local
spaces Xjoc are typically only Frechet spaces rather than Banach spaces. We will
need both types of control in this text, as one typically needs qualitative control to
ensure that the quantitative arguments are rigorous.

If (X, dx) is a metric space and Y is a Banach space, we use C%'(X — Y) to
denote the space of all Lipschitz continuous functions f : X — Y, with norm

1) = £y

loc

f o, . = su
” ||C°1(X Y) ©,2'€X At dx (v, )
(One can also define the inhomogeneous Lipschitz norm || f||cor == || fllcon +|fllco,

but we will not need this here.) Thus for instance C*'(R? — R™) is a subset
of COY(R? — R™), which is in turn a subset of C2 _(R? — R™). The space
'loo’cl(X —Y') is thus the space of locally Lipschitz functions (i.e. every z € X is
contained in a neighbourhood on which the function is Lipschitz).

In addition to the above function spaces, we shall also use Sobolev spaces H?,
WP, HS, WP, which are defined in Appendix A, and X*° spaces, which are
defined in Section 2.6.

If V and W are finite-dimensional vector spaces, we use End(V — W) to denote
the space of linear transformations from V to W, and End(V) = End(V — V) for
the ring of linear transformations from V to itself. This ring contains the identity
transformation id = idy .

If X and Y are two quantities (typically non-negative), weuse X <Y orY 2 X
to denote the statement that X < CY for some absolute constant C' > 0. We use
X = O(Y) synonymously with |X| < Y. More generally, given some parameters
ai,...,ap, we use X gy ap Y Or Y 24, . X to denote the statement that
X < C,,....0,Y for some (typically large) constant Cy, .. 4, > 0 which can depend
on the parameters ay, . .., a, and define X = Oy, ..o, (Y) similarly. Typical choices
of parameters include the dimension d, the regularity s, and the exponent p. We
will also say that X is controlled by ai1,...,ar if X = Oq,... q,(1). We use X ~
Y to denote the statement X <Y < X, and similarly X ~g,, o, Y denotes
X SZarnan Y Sar,...an X. We will occasionally use the notation X <4, . 4, Y
or Y >4, . 4. X to denote the statement X < ¢g4,... 4, Y for some suitably small
quantity cq,,...a, > 0 depending on the parameters ay,...,a;. This notation is
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somewhat imprecise (as one has to specify what “suitably small” means) and so we
shall usually only use it in informal discussions.
Recall that a function f : R — C is said to be rapidly decreasing if we have

(@)™ f (@) || L (ray < 00
for all N > 0. We then say that a function is Schwartz if it is smooth and all of its
derivatives 9% f are rapidly decreasing, where a = (a1, ..., aq) € Z4 ranges over
all multi-indices, and 9% is the differential operator
o2 = (g (Lo,

8171 8:17(1
In other words, f is Schwartz if and only if 9% f(z) = Oy a,n({(z)™™) for all a € Z4
and all N. We use S,(RY) to denote the space of all Schwartz functions. As
is well known, this is a Frechet space, and thus has a dual S,(R%)*, the space
of tempered distributions. This space contains all locally integrable functions of
polynomial growth, and is also closed under differentiation, multiplication with
functions g of symbol type (i.e. g and all its derivatives are of polynomial growth)
and convolution with Schwartz functions; we will not present a detailed description
of the distributional calculus here.






CHAPTER 1

Ordinary differential equations

Science is a differential equation. Religion is a boundary condition.
(Alan Turing, quoted in J.D. Barrow, “Theories of everything”)

This monograph is primarily concerned with the global Cauchy problem (or
initial value problem) for partial differential equations (PDE), but in order to as-
semble some intuition on the behaviour of such equations, and on the power and
limitations of the various techniques available to analyze these equations, we shall
first study these phenomena and methods in the much simpler context of ordinary
differential equations (ODE), in which many of the technicalities in the PDE anal-
ysis are not present. Conversely, the theory of ODEs, particularly Hamiltonian
ODEs, has a very rich and well-developed structure, the extension of which to non-
linear dispersive PDEs is still far from complete. For instance, phenomena from
Hamiltonian dynamics such as Kolmogorov-Arnold-Moser (KAM) invariant tori,
symplectic non-squeezing, Gibbs and other invariant measures, or Arnold diffusion
are well established in the ODE setting, but the rigorous theory of such phenomena
for PDEs is still its infancy.

One technical advantage of ODE, as compared with PDE, is that with ODE
one can often work entirely in the category of classical (i.e. smooth) solutions,
thus bypassing the need for the theory of distributions, weak limits, and so forth.
However, even with ODE it is possible to exhibit blowup in finite time, and in high-
dimensional ODE (which begin to approximate PDE in the infinite dimensional
limit) it is possible to have the solution stay bounded in one norm but become
extremely large in another norm. Indeed, the quantitative study of expressions
such as mass, energy, momentum, etc. is almost as rich in the ODE world as it is
in the PDE world, and thus the ODE model does serve to illuminate many of the
phenomena that we wish to study for PDE.

A common theme in both nonlinear ODE and nonlinear PDE is that of feedback
- the solution to the equation at any given time generates some forcing term, which
in turn feeds back into the system to influence the solution at later times, usually
in a nonlinear fashion. The tools we will develop here to maintain control of this
feedback effect - the Picard iteration method, Gronwall’s inequality, the bootstrap
principle, conservation laws, monotonicity formulae, and Duhamel’s formula - will
form the fundamental tools we will need to analyze nonlinear PDE in later chapters.
Indeed, the need to deal with such feedback gives rise to a certain “nonlinear way
of thinking”, in which one continually tries to control the solution in terms of itself,
or derive properties of the solution from (slightly weaker versions of) themselves.
This way of thinking may initially seem rather unintuitive, even circular, in nature,
but it can be made rigorous, and is absolutely essential to proceed in this theory.

1



2 1. ORDINARY DIFFERENTIAL EQUATIONS

1.1. General theory

It is a capital mistake to theorise before one has data. Insensibly
one begins to twist facts to suit theories, instead of theories to swit
facts. (Sir Arthur Conan Doyle, “A Study in Scarlet”)

In this section we introduce the concept of an ordinary differential equation
and the associated Cauchy problem, but then quickly specialise to an important
subclass of such problems, namely the Cauchy problem (1.7) for autonomous first-
order quasilinear systems.

Throughout this chapter, D will denote a (real or complex) finite dimensional
vector space, which at times we will endow with some norm ||||p; the letter D stands
for “data”. An ordinary differential equation (ODE) is an equation which governs
certain functions u : I — D mapping a (possibly infinite) time interval I C R to
the vector space! D. In this setup, the most general form of an ODE is that of a
fully nonlinear ODE

(1.1) G(u(t), dyul(t), ..., 0Fu(t),t) =0

where k > 1 is an integer, and G : D**1 x I — X is a given function taking values in
another finite-dimensional vector space X. We say that a function u € CF (I — D)
is a classical solution® (or solution for short) of the ODE if (1.1) holds for all ¢ € I.
The integer k is called the order of the ODE, thus for instance if £ = 2 then we
have a second-order ODE. One can think of u(t) as describing the state of some
physical system at a given time ¢; the dimension of D then measures the degrees
of freedom available. We shall refer to D as the state space, and sometimes refer
to the ODE as the equation(s) of motion, where the plural reflects the fact that X
may have more than one dimension. While we will occasionally consider the scalar
case, when D is just the real line R or the complex plane C, we will usually be
more interested in the case when the dimension of D is large. Indeed one can view
PDE as a limiting case of ODE as dim(D) — oc.

In this monograph we will primarily consider those ODE which are time-
translation-invariant (or autonomous), in the sense that the function G does not
actually depend explicitly on the time parameter ¢, thus simplifying (1.1) to

(1.2) G(u(t), dyu(t),...,0Fu(t)) =0

for some function G : Dt — X. One can in fact convert any ODE into a time-
translation-invariant ODE, by the trick of embedding the time variable itself into
the state space, thus replacing D with D x R, X with X x R, u with the function

1One could generalise the concept of ODE further, by allowing D to be a smooth manifold
instead of a vector space, or even a smooth bundle over the time interval I. This leads for instance
to the theory of jet bundles, which we will not pursue here. In practice, one can descend from this
more general setup back to the original framework of finite-dimensional vector spaces - locally
in time, at least - by choosing appropriate local coordinate charts, though often the choice of
such charts is somewhat artifical and makes the equations messier; see Chapter 6 for some related
issues.

2We will discuss non-classical solutions shortly. As it turns out, for finite-dimensional ODE
there is essentially no distinction between a classical and non-classical solution, but for PDE there
will be a need to distinguish between classical, strong, and weak solutions. See Section 3.2 for
further discussion.
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a(t) := (u(t),t), and G with the function®
G((uo, 50), (u1,51), ..., (ug, s)) := (G(uo, ..., ux),s1 — 1).
For instance, solutions to the non-autonomous ODE
dru(t) = F(t,u(t))
are equivalent to solutions to the system of autonomous ODE

Ou(t) = F(s(t),u(t)); Ows(t)—1=0

provided that we also impose a new initial condition s(0) = 0. This trick is not
always without cost; for instance, it will convert a non-autonomous linear equation
into an autonomous nonlinear equation.

By working with time translation invariant equations we obtain our first sym-
metry, namely the time translation symmetry

(1.3) u(t) — u(t — to).

More precisely, if u : I — D solves the equation (1.2), and ¢, € R is any time
shift parameter, then the time-translated function wu, : I 4+ ty — D defined by
gy () == u(t — to), where I +tg := {t +to : t € I} is the time translation of I,
is also a solution to (1.2). This symmetry tells us, for instance, that the initial
value problem for this equation starting from time ¢ = 0 will be identical (after
applying the symmetry (1.3)) to the initial value problem starting from any other
time ¢ = t,.

The equation (1.2) implicitly determines the value of the top-order derivative
OFu(t) in terms of the lower order derivatives u(t), dyu(t),...,0F tu(t). If the
hypotheses of the implicit function theorem? are satisfied, then we can solve for
OFu(t) uniquely, and rewrite the ODE as an autonomous quasilinear ODE of order
k

(1.4) OFu(t) = F(u(t), dpu(t),. .., 08 tu(t)),

for some function F : D¥ — D. Of course, there are times when the implicit
function theorem is not available, for instance if the domain ) of G has a different
dimension than that of D. If ) has larger dimension than D then the equation is
often over-determined; it has more equations of motion than degrees of freedom,
and one may require some additional hypotheses on the initial data before a solution
is guaranteed. If Y has smaller dimension than D then the equation is often under-
determined; it has too few equations of motion, and one now expects to have a
multiplicity of solutions for any given initial datum. And even if D and ) have
the same dimension, it is possible for the ODE to sometimes be degenerate, in that
the Jacobian that one needs to invert for the implicit function theorem becomes
singular.

3Informally7 what one has done is added a “clock” s to the system, which evolves at the fixed
rate of one time unit per time unit (% —1=0), and then the remaining components of the system
are now driven by clock time rather than by the system time. The astute reader will note that this
new ODE not only contains all the solutions to the old ODE, but also contains some additional
solutions; however these new solutions are simply time translations of the solutions coming from
the original ODE.

4An alternate approach is to differentiate (1.2) in time using the chain rule, obtaining an
equation which is linear in 8f+1u(t), and provided that a certain matrix is invertible, one can
rewrite this in the form (1.4) but with k replaced by k + 1.
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Degenerate ODE are rather difficult to study and will not be addressed here.
Both under-determined and over-determined equations cause difficulties for analy-
sis, which are resolved in different ways. An over-determined equation can often be
made determined by “forgetting” some of the constraints present in (1.2), for in-
stance by projecting Y down to a lower-dimensional space. In many cases, one can
then recover the forgotten constraints by using some additional hypothesis on the
initial datum, together with an additional argument (typically involving Gronwall’s
inequality); see for instance Exercises 1.13, (6.4). Meanwhile, an under-determined
equation often enjoys a large group of “gauge symmetries” which help “explain”
the multiplicity of solutions to the equation; in such a case one can often fix a spe-
cial gauge, thus adding additional equations to the system, to make the equation
determined again; see for instance Section 6.2 below. In some cases, an ODE can
contain both over-determined and under-determined components, requiring one to
perform both of these types of tricks in order to recover a determined equation,
such as one of the form (1.4).

Suppose that u is a classical solution to the quasilinear ODE (1.4), and that
the nonlinearity F : D¥ — D is smooth. Then one can differentiate (1.4) in time,
use the chain rule, and then substitute in (1.4) again, obtain an equation of the
form

IR u(t) = Fryr (u(t), dyu(t), ..., 0F tu(t))
for some smooth function Fy,1 : D¥ — D which can be written explicitly in terms
of G. More generally, by an easy induction we obtain equations of the form

(1.5) F u(t) = F (u(t), dpu(t), ..., 0F u(t))
for any k' > k, where Fy, : D — D is a smooth function which depends only on G
and k’. Thus, if one specifies the initial data u(to), ..., % 'u(to) at some fixed time

to, then all higher derivatives of u at tg are also completely specified. This shows in
particular that if u is £ — 1-times continuously differentiable and F' is smooth, then
u is automatically smooth. If w is not only smooth but analytic, then from Taylor
expansion we see that u is now fixed uniquely. Of course, it is only reasonable to
expect u to be analytic if F' is also analytic. In such a case, we can complement
the above uniqueness statement with a (local) existence result:

THEOREM 1.1 (Cauchy-Kowalevski theorem). Let k > 1. Suppose F : D¥ — D
is real analytic, let to € R, and let ug, ..., ux—1 € D be arbitrary. Then there exists
an open time interval I containing ty, and a unique real analytic solution u : I — D
to (1.4), which obeys the initial value conditions

’u(to) = UQ; 8tu(t0) = ULy 85_1’11,(150) = Uk—1-

We defer the proof of this theorem to Exercise 1.1. This beautiful theorem
can be considered as a complete local existence theorem for the ODE (1.4), in
the case when G is real analytic; it says that the initial position wu(tp), and the
first k — 1 derivatives, dsu(to), ..., 0" 'u(ty), are precisely the right amount of
initial data® needed in order to have a wellposed initial value problem (we will
define wellposedness more precisely later). However, it turns out to have somewhat

5Conventions differ on when to use the singular “datum” and the plural “data”. In this text,
we shall use the singular “datum” for ODE and PDE that are first-order in time, and the plural
“data” for ODE and PDE that are higher order (or unspecified order) in time. Of course, in both
cases we use the plural when considering an ensemble or class of data.
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limited application when we move from ODE to PDE (though see Exercise 3.25).
We will thus rely instead primarily on a variant of the Cauchy-Kowalevski theorem,
namely the Picard existence theorem, which we shall discuss below.

REMARK 1.2. The fact that the solution u is restricted to lie in a open interval
1, as opposed to the entire real line R, is necessary. A basic example is the initial
value problem

(1.6) uy = v u(0) =1

where u takes values on the real line R. One can easily verify that the function
u(t) :== ﬁ solves this ODE with the given initial datum as long as ¢ < 1, and thus
is the unique real-analytic solution to this ODE in this region. But this solution
clearly blows up (i.e. ceases to be smooth) at t = 1, and so cannot be continued®

real analytically beyond this point.

There is a simple trick available to reduce a k* order ODE such as (1.4) to a
first order ODE, at the cost of multiplying the number of degrees of freedom by k,
or more precisely, replacing the state space D by the phase space DF. Indeed, if
one defines the new function i : I — D" by

a(t) == (u(t), dpu(t),. .., 00 tu(t)),
then the equation (1.4) is equivalent to
dea(t) = F(a(t))

where F : DF — D* is the function

F(UO, . ,uk_l) = (ul, ey Uk—1, F(UQ, .. .,uk_l)).
Furthermore, @ is continuously differentiable if and only if w is k times continuously
differentiable, and the k initial conditions

u(to) =uo;  Ouulto) =ur; ...; O ‘u(te) = uk—1
collapse to a single initial condition
’ﬁ(fo) = 'ELQ = (UQ, N ,uk_l).

Thus for the remainder of this chapter, we shall focus primarily on the initial value
problem (or Cauchy problem) of obtaining solutions u(t) to the first-order ODE”

(1.7) Owu(t) = F(u(t)) for all t € I;  u(to) = uo.

where the interval I, the initial time ¢y, the initial datum uy € D, and the nonlin-
earity F': D — D are given. We will distinguish three types of solutions:

60ne can of course consider a meromorphic continuation beyond ¢t = 1, but this would require
complexifying time, which is a somewhat non-physical operation. Also, this complexification now
relies very heavily on the analyticity of the situation, and when one goes from ODE to PDE, it is
unlikely to work for non-analytic initial data. The question of whether one can continue a solution
in some weakened sense beyond a singularity is an interesting and difficult one, but we will not
pursue it in this text.

"One can interpret F' as a vector field on the state space D, in which case the ODE is simply
integrating this vector field; see Figure 1. This viewpoint is particularly useful when considering
the Hamiltonian structure of the ODE as in Section 1.4, however it is not as effective a conceptual
framework when one passes to PDE.
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F(u(t)
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® yp

FIGURE 1. Depicting F' as a vector field on D, the trajectory of
the solution u(t) to the first order ODE (1.7) thus “follows the
arrows” and integrates the vector field F'. Contrast this “classi-
cal solution” interpretation of an ODE with the rather different
“strong solution” interpretation in Figure 2.

e A classical solution of (1.7) is a function u € CL (I — D) which solves
(1.7) for all t € I in the classical sense (i.e. using the classical notion of
derivative).

e A strong solution of (1.7) is a function u € C2 (I — D) which solves (1.7)
in the integral sense that

¢
(1.8) u(t) = ug —|—/ F(u(s)) ds
to
holds for all® t € I;
o A weak solution of (1.7) is a function u € L>°(I — D) which solves (1.8)
in the sense of distributions, thus for any test function ¢ € C§°(I), one
has

Jutou) dt=uo [ v+ [ v /t:Fw(s)) dsdt.

Later, when we turn our attention to PDE, these three notions of solution
shall become somewhat distinct; see Section 3.2. In the ODE case, however, we
fortunately have the following equivalence (under a very mild assumption on F'):

LEMMA 1.3. Let F € CP (D — D). Then the notions of classical solution,

strong solution, and weak solution are equivalent.

PROOF. It is clear that a classical solution is strong (by the fundamental the-
orem of calculus), and that a strong solution is weak. If u is a weak solution, then

8Recall that we are adopting the convention that fst =—[ift<s.
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FIGURE 2. A schematic depiction of the relationship between the
initial datum wug, the solution wu(t), and the nonlinearity F'(u). The
main issue is to control the “feedback loop” in which the solution
influences the nonlinearity, which in turn returns to influence the
solution.

it is bounded and measurable, hence F'(u) is also bounded and measurable. Thus
the integral ftto F(u(s)) ds is Lipschitz continuous, and (since u solves (1.8) in the
sense of distributions) w(¢) is also Lipschitz continuous, so it is a strong solution
(we allow ourselves the ability to modify u on a set of measure zero). Then F'(u)
is continuous, and so the fundamental theorem of calculus and (1.8) again, u is in
fact in Cf, and is a classical solution. g

The three perspectives of classical, strong, and weak solutions are all important
in the theory of ODE and PDE. The classical solution concept, based on the differ-
ential equation (1.7), is particularly useful for obtaining conservation laws (Section
1.4) and monotonicity formulae (Section 1.5), and for understanding symmetries
of the equation. The strong solution concept, based on the integral equation (1.8),
is more useful for constructing solutions (in part because it requires less a priori
regularity on the solution), and establishing regularity and growth estimates on the
solution. It also leads to a very important perspective on the equation, viewing
the solution u(t) as being the combination of two influences, one coming from the
initial datum wo and the other coming from the forcing term F'(u); see Figure 2.
Finally, the concept of a weak solution arises naturally when constructing solutions
via compactness methods (e.g. by considering weak limits of classical solutions),
since continuity is not a priori preserved by weak limits.

To illustrate the strong solution concept, we can obtain the first fundamental
theorem concerning such Cauchy problems, namely the Picard existence theorem.
We begin with a simplified version of this theorem to illustrate the main point.

THEOREM 1.4 (Picard existence theorem, simplified version). Let D be a finite-
dimensional normed vector space. Let F € C%Y(D — D) be a Lipschitz function on
D with Lipschitz constant ||F||zon = M. Let 0 <T < 1/M. Then for any to € R
and ug € D, there exists a strong (hence classical) solution u : I — D to the Cauchy
problem (1.7), where I is the compact time interval I := [t — T, to + T).
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PROOF. Fix ug € D and ¢y € R, and let ® : CY(I — D) — C°(I — D) be the

map
t

D(u)(t) :=up+ [ F(u(t)) dt'.
to
Observe from (1.8) that a strong solution is nothing more than a fixed point of the
map ®. It is easy to verify that @ is indeed a map from C°(I — D) to C°(I — D).
Using the Lipschitz hypothesis on F' and the triangle inequality, we obtain
t

[@(u)(t) = @)B)llp = [ F(ult') - F(u(t) dt'|lp < /t Mlu(t) = v()||p dt’

to
for all t € I and u,v € CY(I — €.), and thus
[®(u) — @(v)|lco(r—p) < TM|lu—v||co(1—p).-
Since we have TM < 1, we see that ® will be a strict contraction on the complete
metric space C°(I — D). Applying the contraction mapping theorem (Exercise 1.2)

we obtain a fixed point to ®, which gives the desired strong (and hence classical)
solution to the equation (1.7). O

REMARK 1.5. An inspection of the proof of the contraction mapping theorem
reveals that the above argument in fact gives rise to an explicit iteration scheme
that will converge to the solution u. Indeed, one can start with the constant
solution u(® (t) := wg, and then define further iterates u(™ € Co(I — Q.) by
u(™ ;= ®&(u™=Y), or in other words

t
u(”)(t) =g _|_/ F(u("*l)(t’) dt’
to
These Picard iterates do not actually solve the equation (1.7) in any of the above
senses, but they do converge uniformly on I to the actual solution. See Figure 3.

REMARK 1.6. The above argument is perhaps the simplest example of the
iteration method (also known as the contraction mapping principle method or the
inverse function theorem method), constructing a nonlinear solution as the strong
limit of an iterative procedure. This type of method will be our primary means
of generating solutions which obey a satisfactory set of existence, uniqueness, and
regularity properties. Note that one needs to select a norm ||||p in order to obtain
a quantitative estimate on the time of existence. For finite-dimensional ODE, the
exact choice of norm is not terribly important (as all norms are equivalent), but
selecting the norm in which to apply the contraction mapping theorem will become
decisive when studying PDE.

Because F' is assumed to be globally Lipschitz (C’0=1), one can actually construct
a global solution to (1.7) in this case, by iterating the above theorem; see Exercise
1.10. However, in most applications F' will only be locally Lipschitz (Cﬁm1 ), and
so we shall need a more general version of the above existence theorem. One
such version (which also gives some further information, namely some Lipschitz

continuity properties on the solution map) is as follows.

THEOREM 1.7 (Picard existence theorem, full version). Let D be a finite-
dimensional normed vector space. Let tg € R, let ) be a non-empty subset of D,
and let No(Q) :={u € D : |[u—v|p < € for some v € Q} be the e-neighbourhood
of Q for some e > 0. Let F': D — D be a function which is Lipschitz on the closed
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FiGURE 3. The Picard iteration scheme. The map ® is basically
the loop from the solution u to itself. To obtain the fixed point,
start with the initial datum wug as the first approximant to u, and
apply @ repeatedly to obtain further approximations to u. As long
as the net contraction factor T° x M is less than 1, the iteration
scheme will converge to an actual solution.

neighbourhood N.(2) with some Lipschitz constant HF”C'OJ(W) =M >0, and
which is bounded by some A > 0 on this region. Let 0 < T < min(e/A,1/M),
and let T be the interval I := [tg — T, to + T|. Then for every ug € Q, there exists
a strong (hence classical) solution uw : I — N.(Q) to the Cauchy problem (1.7).
Furthermore, if we then define the solution maps Sy, (t) : Q@ — D fort € I and
Sty 1 2 — C°(I — D) by setting Sy, (t)(uo) = u(t) and Si,(uo) := u, then Sy, (t)
and Sy, are Lipschitz continuous maps, with Lipschitz constant at most ﬁ

PRrROOF. Write Q. := N.(Q2) for short. For each ug € Q let ®,, : C°(I —
Q.) — CYUI — Q) be the map

t
B, (1) (2) = 1o +/ Flu(s)) ds.
to
As before, a strong solution to (1.7) is nothing more than a fixed point of the map
®,,. Since F is bounded by A on . and T' < ¢/A, we see from the triangle
inequality that ®,, will indeed map C°(I — €.) to C°(I — Q.). Also, since F
has Lipschitz constant at most M on ()., we may argue as in the proof of Theorem
1.4 and conclude that ®,, will thus be a strict contraction on the complete metric
space CY(I — .) with contraction constant ¢ := TM < 1, and hence will have a
fixed point u = ®,,(u) € C°(I — Q.). This gives a strong (and hence classical)
solution to the equation (1.7).
Now let ug and @y be two initial data in €2, with corresponding solutions
St (ug) = u € C°(I — D), Sy, (i1g) = @ € C°(I — D) constructed above. Observe
from construction that ®,,,(u) = u and ®,, (@) = Pz, (@) + up — o = @ + up — o,
thus

u—1u =Py, (u) — Py, () + up — Uo-
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Taking norms and applying the contraction property and the triangle inequality,
we conclude

|lu =l cor—py < cllu—illcor—py + [[uo — to|D

and hence

|u—llcor—py < 11— CHUO — To||p-
This proves the desired Lipschitz property on S;,, and hence on each individual
St (t). O

REMARK 1.8. The above theorem illustrates a basic point in nonlinear differ-
ential equations: in order to construct solutions, one does not need to control the
nonlinearity F'(u) for all choices of state u, but only for those u that one expects to
encounter in the evolution of the solution. For instance, if the initial datum is small,
one presumably only needs to control F(u) for small v in order to obtain a local
existence result. This observation underlies many of the “perturbative” arguments
which we shall see in this text (see for instance Proposition 1.24 below).

REMARK 1.9. In the next section we shall complement the Picard existence
theorem with a uniqueness theorem. The hypothesis that F' is locally Lipschitz can
be weakened, but at the cost of losing the uniqueness; see Exercise 1.23.

EXERCISE 1.1. Begin the proof of the Cauchy-Kowalevski theorem by reducing
to the case k = 1, tg = 0, and ug = 0. Then, use induction to show that if the
higher derivatives 9;"u(0) are derived recursively as in (1.5), then we have some
bound of the form

187" u(0)|lp < K™ m!
for all m > 0 and some large K > 0 depending on F', where ||||p is some arbitrary
norm on the finite-dimensional space D. Then, define u : I — D for some sufficiently
small neighbourhood I of the origin by the power series

’U,(t) — Z 81?:;1"(0) £
m=0 '

and show that dyu(t) — G(u(t)) is real analytic on I and vanishes at infinite order
at zero, and is thus zero on all of I.

EXERCISE 1.2. (Contraction mapping theorem) Let (X, d) be a complete non-
empty metric space, and let ® : X — X be a strict contraction on X, thus there
exists a constant 0 < ¢ < 1 such that d(®(u), ®(v)) < cd(u,v) for all u,v € X.
Show that ® has a unique fixed point, thus there is a unique v € X such that
u = ®(u). Furthermore, if ug is an arbitrary element of X and we construct the
sequence u1, usg, ... € X iteratively by w41 := ®(u,), show that u, will converge
to the fixed point u. Finally, we have the bound

(1.9) (v, u) < —— L @, ®(v))
— C
for all v € X.

EXERCISE 1.3. (Inverse function theorem) Let D be a finite-dimensional vector
space, and let ® € CL_(D — D) be such that V®(z¢) has full rank for some
zg € D. Using the contraction mapping theorem, show that there exists an open
neighbourhood U of zp and an open neighbourhood V' of ®(x() such that ® is a
bijection from U to V, and that @~ is also C{. _.
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EXERCISE 1.4. Suppose we make the further assumption in the Picard existence
theorem that F € Cf (D — D) for some k > 1. Show that the maps S;,(t) and
S(t) are then also continuously k-times differentiable, and that u € CFTH(I — D).

EXERCISE 1.5. How does the Picard existence theorem generalise to higher or-
der quasilinear ODE? What if there is time dependence in the nonlinearity (i.e. the
ODE is non-autonomous)? The latter question can also be asked of the Cauchy-
Kowaleski theorem. (These questions can be answered quickly by using the reduc-
tion tricks mentioned in this section.)

EXERCISE 1.6. One could naively try to extend the local solution given by the
Picard existence theorem to a global solution by iteration, as follows: start with
the initial time ¢y, and use the existence theorem to construct a solution all the
way up to some later time ¢;. Then use u(t1) as a new initial datum and apply the
existence theorem again to move forward to a later time ¢2, and so forth. What
goes wrong with this strategy, for instance when applied to the problem (1.6)?

1.2. Gronwall’s inequality

It takes money to make money. (Proverbial)

As mentioned earlier, we will be most interested in the behaviour of ODE in
very high dimensions. However, in many cases one can compress the key features
of an equation to just a handful of dimensions, by isolating some important scalar
quantities arising from the solution w(t), for instance by inspecting some suitable
norm ||u(t)||p of the solution, or looking at special quantities related to conservation
or pseudoconservation laws such as energy, centre-of-mass, or variance. In many
cases, these scalar quantities will not obey an exact differential equation themselves,
but instead obey a differential inequality, which places an upper limit on how quickly
these quantities can grow or decay. One is then faced with the task of “solving”
such inequalities in order to obtain good bounds on these quantities for extended
periods of time. For instance, if a certain quantity is zero or small at some time
to, and one has some upper bound on its growth rate, one would like to say that
it is still zero or small at later times. Besides the iteration method used already
in the Picard existence theorem, there are two very useful tools for achieving this.
One is Gronwall’s inequality, which deals with linear growth bounds and is treated
here. The other is the continuity method, which can be used with nonlinear growth
bounds and is treated in Section 1.3.

We first give Gronwall’s inequality in an integral form.

THEOREM 1.10 (Gronwall inequality, integral form). Let u : [to,t1] — R™T be
continuous and non-negative, and suppose that u obeys the integral inequality

(1.10) u(t) < A+ /tt B(s)u(s) ds

for allt € [to, t1], where A > 0 and B : [to, t1] — R is continuous and nonnegative.
Then we have

(1.11) u(t) < Aexp(/ B(s) ds)

to

for all t € [to, t1].
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FIGURE 4. The linear feedback encountered in Theorem 1.10, that
causes exponential growth by an amount depending on the growth
factor B. Contrast this with Figure 2.

REMARK 1.11. This estimate is absolutely sharp, since the function u(t) :=
Aexp( ftz B(s) ds) obeys the hypothesis (1.10) with equality.

PRrROOF. By a limiting argument it suffices to prove the claim when A > 0. By
(1.10) and the fundamental theorem of calculus, (1.10) implies
d t t
E(A + [ B(s)u(s) ds) < B(t)(A+ [ B(s)u(s) ds)
t() t()

and hence by the chain rule

T tog(a + / Bls)uls) ds) < B(1).

Applying the fundamental theorem of calculus again, we conclude
t

10g(A—|—/ B(s)u(s) ds) < logA+/ B(s) ds.

t() tO

Exponentiating this and applying (1.10) again, the claim follows. O

There is also a differential form of Gronwall’s inequality in which B is allowed
to be negative:

THEOREM 1.12 (Gronwall inequality, differential form). Let u : [to,t1] — R*
be absolutely continuous and non-negative, and suppose that u obeys the differential
inequality

Oru(t) < B(t)u(t)

for almost every t € [to, t1], where B : [tg,t1] — R is continuous and nonnegative.
Then we have
¢
u(t) < uto)exp( | Bs) ds)
to
for all t € [to, t1].
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PROOF. Write v(t) := u(t) exp(— f:o B(s) ds). Then v is absolutely continuous,
and an application of the chain rule shows that d;v(t) < 0. In particular v(t) < v(to)
for all ¢ € [to,t1], and the claim follows. O

REMARK 1.13. This inequality can be viewed as controlling the effect of linear
feedback; see Figure 4. As mentioned earlier, this inequality is sharp in the “worst
case scenario” when d,u(t) equals B(t)u(t) for all ¢. This is the case of “adversarial
feedback”, when the forcing term B(t)u(t) is always acting to increase u(t) by
the maximum amount possible. Many other arguments in this text have a similar
“worst-case analysis” flavour. In many cases (in particular, supercritical defocusing
equations) it is suspected that the “average-case” behaviour of such solutions (i.e.
for generic choices of initial data) is significantly better than what the worst-case
analysis suggests, thanks to self-cancelling oscillations in the nonlinearity, but we
currently have very few tools which can separate the average case from the worst
case.

As a sample application of this theorem, we have

THEOREM 1.14 (Picard uniqueness theorem). Let I be an interval. Suppose we
have two classical solutions u,v € CL (I — D) to the ODE

dru(t) = F(u(t))

for some F € C’O’l(’D — D). If u and v agree at one time tg € I, then they agree

loc

for all times t € 1.

REMARK 1.15. Of course, the same uniqueness claim follows for strong or weak
solutions, thanks to Lemma 1.3.

PROOF. By a limiting argument (writing I as the union of compact intervals)
it suffices to prove the claim for compact I. We can use time translation invariance
to set to = 0. By splitting I into positive and negative components, and using the
change of variables t — —t if necessary, we may take I = [0, 7] for some T > 0.

Here, the relevant scalar quantity to analyze is the distance [|u(t) — v(t)|p
between u and v, where ||||p is some arbitrary norm on D. We then take the ODE
for u and v and subtract, to obtain

Bu(u(t) — v(t)) = F(u(t)) — F(o(t)) for all £ € [0,T]

Applying the fundamental theorem of calculus, the hypothesis u(0) = v(0), and the
triangle inequality, we conclude the integral inequality

(1.12) lu(t) —v(@)|p < /0 | F(u(s)) — F(v(s))|lp ds for all t € [0,T].

Since I is compact and w,v are continuous, we see that u(t) and v(t) range over
a compact subset of D. Since F is locally Lipschitz, we thus have a bound of the
form |F(u(s)) — F(v(s))] < M|u(s) — v(s)| for some finite M > 0. Inserting this
into (1.12) and applying Gronwall’s inequality (with A = 0), the claim follows. O

REMARK 1.16. The requirement that F' be Lipschitz is essential; for instance
the non-Lipschitz Cauchy problem

(1.13) Apu(t) = plu()|P~V/P; w(0) =0



14 1. ORDINARY DIFFERENTIAL EQUATIONS

FIGURE 5. The maximal Cauchy development of an ODE which
blows up both forwards and backwards in time. Note that in order
for the time of existence to be finite, the solution w(t) must go
to infinity in finite time; thus for instance oscillatory singularities
cannot occur (at least when the nonlinearity F' is smooth).

for some p > 1 has the two distinct (classical) solutions u(t) := 0 and v(t) :=
max(0,t)?. Note that a modification of this example also shows that one cannot
expect any continuous or Lipschitz dependence on the initial data in such cases.

By combining the Picard existence theorem with the Picard uniqueness theo-
rem, we obtain

THEOREM 1.17 (Picard existence and uniqueness theorem). Let F' € ﬁ)cl (D —
D) be a locally Lipschitz function, let to € R be a time, and let ug € D be an initial
datum. Then there exists a mazimal interval of existence I = (T_,Ty) for some
—o0 < T_ <ty < Ty < +00, and a unique classical solution u : I — D to the
Cauchy problem (1.7). Furthermore, if Ty is finite, we have ||u(t)]|p — oo as
t — Ty from below, and similarly if T_ is finite then we have ||u(t)||p — oo as

t — T_ from above.

REMARK 1.18. This theorem gives a blowup criterion for the Cauchy problem
(1.7): a solution exists globally if and only if the ||u(t)||p norm does not go to
infinity? in finite time; see Figure 5. (Clearly, if ||u(t)||p goes to infinity in finite
time, u is not a global classical solution.) As we shall see later, similar blowup
criteria (for various norms D) can be established for certain PDE.

PROOF. We define I to be the union of all the open intervals containing tq for
which one has a classical solution to (1.7). By the existence theorem, I contains a

9We sometimes say that a solution blows up at infinity if the solution exists globally as
t — oo, but that the norm ||u(t)||p is unbounded; note that Theorem 1.17 says nothing about
whether a global solution will blow up at infinity or not, and indeed both scenarios are easily seen
to be possible.
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neighbourhood of ¢y and is clearly open and connected, and thus has the desired
form I = (T-,T4) for some —oco < T_ < tp < T4 < +oo. By the uniqueness
theorem, we may glue all of these solutions together and obtain a classical solution
u: I — D on (1.7). Now suppose for contradiction that T} was finite, and that
there was some sequence of times t,, approaching T from below for which ||u(?)||p
stayed bounded. On this bounded set (or on any slight enlargement of this set) F’
is Lipschitz. Thus we may apply the existence theorem and conclude that one can
extend the solution u to a short time beyond T’y ; gluing this solution to the existing
solution (again using the uniqueness theorem) we contradict the maximality of I.
This proves the claim for 7', and the claim for 7_ is proven similarly. 0

The Picard theorem gives a very satisfactory local theory for the existence and
uniqueness of solutions to the ODE (1.7), assuming of course that F is locally
Lipschitz. The issue remains, however, as to whether the interval of existence
(T—,T4) is finite or infinite. If one can somehow ensure that ||u(t)||p does not
blow up to infinity at any finite time, then the above theorem assures us that the
interval of existence is all of R; as we shall see in the exercises, Gronwall’s inequality
is one method in which one can assure the absence of blowup. Another common
way to ensure global existence is to obtain a suitably “coercive” conservation law
(e.g. energy conservation), which manages to contain the solution to a bounded set;
see Proposition 1.24 below, as well as Section 1.4 for a fuller discussion. A third
way is to obtain decay estimates, either via monotonicity formulae (see Section
1.5) or some sort of dispersion or dissipation effect. We shall return to all of these
themes throughout this monograph, in order to construct global solutions to various
equations.

Gronwall’s inequality is causal in nature; in its hypothesis, the value of the
unknown function u(t) at times ¢ is controlled by its value at previous times 0 <
s < t, averaged against a function B(t) which can be viewed as a measure of
the feedback present in the system; thus it is excessive feedback which leads to
exponential growth (see Figure 4). This is of course very compatible with one’s
intuition regarding cause and effect, and our interpretation of ¢ as a time variable.
However, in some cases, when t is not being interpreted as a time variable, one
can obtain integral inequalities which are acausal in that u(t) is controlled by an
integral of u(s) both for s < ¢ and s > ¢t. In many such cases, these inequalities
lead to no useful conclusion. However, if the feedback is sufficiently weak, and one
has some mild growth condition at infinity, one can still proceed as follows.

THEOREM 1.19 (Acausal Gronwall inequality). Let 0 < o/ < o, 0 < 5/ < 3
and £,6 > 0 be real numbers. Let u : R — R* be measurable and non-negative,
and suppose that u obeys the integral inequality

(1.14) u(t) < A(t) + 6 / min (e~ =By (s) ds
R

for all t € R, where A : R — R™T is an arbitrary function. Suppose also that we
have the subexponential growth condition

sup e~ Mu(t) < oo,
teR
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Then if ¢ < min(a, 8) and § is sufficiently small depending on «,3,a/, 3 e, we
have

(1.15) u(t) < 2sup min(e=® 70 e F =9 A(s).
seR

for allt € R.

PROOF. We shall use an argument similar in spirit to that of the contraction
mapping theorem, though in this case there is no actual contraction to iterate as
we have an integral inequality rather than an integral equation. By raising o/ and
B’ (depending on ¢, , 3) if necessary we may assume ¢ < min(a/,3). We will
assume that there exists o > 0 such that A(t) > oecl!l for all t € R; the general
case can then be deduced by replacing A(t) by A(t) + oeltl and then letting o — 0,
noting that the growth of the ecl*l factor will be compensated for by the decay of
the min(e= (=) ¢=8(t=5)) factor since e < min(a’, #). Let B : R — R+ denote
the function

B(t) := supmin(e~® 7 ¢~ (=9)) A(4).
seR
Then we see that gesl!l < A(t) < B(t), that B is strictly positive, and furthermore
B obeys the continuity properties

(1.16) B(s) < max(e® =8 7' t=9))B(t)

for all ¢,s € R.

Let M be the smallest real number such that u(t) < M B(t) for all t € R; our
objective is to show that M < 2. Since B is bounded from below by oe®l!l, we see
from the subexponential growth condition that M exists and is finite. From (1.14)
we have

u(t) < B(t) + 5/ min(e” ™8 e=AE=9))y(s) ds.
R
Bounding u(s) by M B(s) and applying (1.16), we conclude
u(t) < B(t) + MB(t)(S/ min(e~ (@)= =(B=F)(=9)) g
R

Since 0 < o < a and 0 < B’ < 3, the integral is convergent and is independent of
t. Thus if ¢ is sufficiently small depending on «, 3, o/, 3, we conclude that

u(t) < B(t) + %MB(L‘)

which by definition of M implies M <1+ %M Since M is finite, we have M < 2
as desired. (|

The above inequality was phrased for a continuous parameter ¢, but it quickly
implies a discrete analogue:

COROLLARY 1.20 (Discrete acausal Gronwall inequality). Let 0 < o < «,
0< B <fB,5>0, and 0 < ¢ < min(a, 8) be real numbers. Let (un)nez be a
sequence of non-negative numbers such that

(1.17) Up < Ay + 6 Z min(efa(mfn%e*ﬁ(nfm))um
meZ
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for all t € R, where (Ap)nez is an arbitrary non-negative sequence. Suppose also
that we have the subexponential growth condition

sup upe " < 0.
neZz

Then if § is sufficiently small depending on o, 3,a’, 3, ¢, we have

(1.18) Uy < 2 sup min(e=® (M=) = rmmy 4
mEZ

for alln € Z.

This corollary can be proven by modifying the proof of the previous theorem,
or alternatively by considering the function w(t) := wuy, where [t] is the nearest
integer to t; we leave the details to the reader. This corollary is particularly useful
for understanding the frequency distribution of solutions to nonlinear dispersive
equations, in situations when the data is small (so the nonlinear effects of energy
transfer between dyadic frequency ranges |{| ~ 2" are weak). See for instance
[Tao5], [Tao6], [Tao7] for ideas closely related to this. One can also use these
types of estimates to establish small energy regularity for various elliptic problems
by working in frequency space (the smallness is needed to make the nonlinear effects
weak).

EXERCISE 1.7 (Comparison principle). Let I = [to, 1] be a compact interval,
and let u: I — R, v: I — R be two scalar absolutely continuous functions. Let
F e Co’l(I x R — R), and suppose that u and v obey the differential inequalities

loc
Opu(t) < F(t,u(t)); Ow(t) > F(t,v(t))

for all ¢ € I. Show that if u(to) < v(to), then u(t) < v(t) for all t € [to, 1], and
similarly if u(to) < v(to), then u(t) < v(t) for all t € [to,?1]. (Hint: for the first
claim, study the derivative of max(0,u(t) — v(¢))* and use Gronwall’s inequality.
For the second, perturb the first argument by an epsilon.)

EXERCISE 1.8. Give an example to show that Theorem 1.10 fails when B is
permitted to be negative. Briefly discuss how this is consistent with the fact that
Theorem 1.12 still holds for negative B.

EXERCISE 1.9 (Sturm comparison principle). Let I be a time interval, and let
u,v € CE (I = R) and a, f,g € C2 (I — R) be such that

O2u(t) 4+ a(t)opu(t) + f(t)u(t) = 0tv(t) + a(t)dsv(t) + g(t)v(t) = 0

for allt € I. Suppose also that v oscillates faster than u, in the sense that g(t) > f(t)
for all £ € I. Suppose also that u is not identically zero. Show that the zeroes of
v intersperse the zeros of u, in the sense that whenever ¢; < ts are times in [
such that u(t1) = u(t2) = 0, then v has at least one zero in the interval [tq,ts].
(Hint: reduce to the case when t; and to are consecutive zeroes of u, and argue by
contradiction. By replacing u or v with —u or —v if necessary one may assume that
u,v are nonnegative on [t1,%2]. Obtain a first order equation for the Wronskian
w0 —voyu.) This principle can be thought of as a substantial generalisation of the
observation that the zeroes of the sine and cosine functions intersperse each other.

EXERCISE 1.10. Let F € C2'(D — D) have at most linear growth, thus

loc

IF(w)lp <1+ |lul|p for all w € D. Show that for each ug € D and tp € R

~

there exists a unique classical global solution v : R — D to the Cauchy problem



18 1. ORDINARY DIFFERENTIAL EQUATIONS

(1.7). Also, show that the solution maps Sy, (t) : D — D defined by Sy, (uo) = u(to)
are locally Lipschitz, obey the time translation invariance Sy, (t) = So(t — to), and
the group laws Sy(t)So(t') = So(t +t') and Sp(0) = id. (Hint: use Gronwall’s in-
equality to obtain bounds on ||u(t)||p in the maximal interval of existence (T—,T)
given by Theorem 1.17.) This exercise can be viewed as the limiting case p = 1 of
Exercise 1.11 below.

EXERCISE 1.11. Let p > 1, let D be a finite-dimensional normed vector space,
and let F € C2X(D — D) have at most p**-power growth, thus || F(u)|p < 14]ul/%
for all w € D. Let tp € R and up € D, and let w: (T_,T}) — D be the maximal
classical solution to the Cauchy problem (1.7) given by the Picard theorem. Show

that if Ty is finite, then we have the lower bound
||u(t)||D zp (T+ — t)_l/(p_l)

as t approaches T from below, and similarly for 7_. Give an example to show
that this blowup rate is best possible.

EXERCISE 1.12 (Slightly superlinear equations). Suppose F € Cﬁ)cl (D - D)
has at most xlogx growth, thus

[F)lp < (1+ llullp)log(2 + [lulp)

for all u € D. Do solutions to the Cauchy problem (1.7) exist classically for all time
(as in Exercise 1.10), or is it possible to blow up (as in Exercise 1.11)? In the latter
case, what is the best bound one can place on the growth of ||u(t)||p in time; in
the former case, what is the best lower bound one can place on the blow-up rate?

EXERCISE 1.13 (Persistence of constraints). Let u : I — D be a (classical)
solution to the ODE dyu(t) = F(u(t)) for some time interval I and some F €
CP (D — D), and let H € CL_(D — R) be such that (F(v),dH (v)) = G(v)H(v)

for some G € Cf (D — R) and all v € D; here we use
d
(1.19) (u,dH (v)) := EH(U—FEU)L;:O

to denote the directional derivative of H at v in the direction w. Show that if
H (u(t)) vanishes for one time ¢ € I, then it vanishes for all ¢ € I. Interpret this
geometrically, viewing F' as a vector field and studying the level surfaces of H. Note
that it is necessary that the ratio G between (F,dH) and H be continuous; it is not
enough merely for (F,dH) to vanish whenever H does, as can be seen for instance
from the counterexample H(u) = u?, F(u) = 2|u|'/?, u(t) = t>.

EXERCISE 1.14 (Compatibility of equations). Let F,G € C}_
the property that
(1.20) (F(v),dG(v)) = (G(v),dF(v)) = 0

for all v € D. (The left-hand side has a natural interpretation as the Lie bracket
[F, G] of the differential operators F' -V, G - V associated to the vector fields F' and
G.) Show that for any ug € D, there exists a neighbourhood B C R? of the origin,
and a map u € C?(B — D) which satisfies the two equations

(1.21) Osu(s,t) = F(u(s,t)); Oru(s,t) = G(u(s,t))

for all (s,t) € B, with initial datum u(0,0) = ug. Conversely, if u € C?(B — D)
solves (1.21) on B, show that (1.20) must hold for all v in the range of u. (Hint:

(D — D) have
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use the Picard existence theorem to construct w locally on the s-axis {t = 0}
by using the first equation of (1.21), and then for each fixed s, extend u in the
t direction using the second equatlon of (1. 21) Use Gronwall s inequality and
(1.20) to establish that u(s,t) — — [y F(u(s',t)) ds' = 0 for all (s,t) in a
neighbourhood of the origin.) This isa sunple case of Frobem’us ’s theorem, regarding
when a collection of vector fields can be simultaneously integrated.

EXERCISE 1.15 (Integration on Lie groups). Let H be a finite-dimensional
vector space, and let G be a Lie group in End(H) (i.e. a group of linear transfor-
mations on H which is also a smooth manifold). Let g be the Lie algebra of G (i.e.
the tangent space of G at the identity). Let go € G, and let X € C’&i (R —g)
be arbitrary. Show that there exists a unique function g € C (R — G) such
that ¢g(0) = go and dig(t) = X (t)g(t) for all ¢ € R. (Hint: first use Gronwall’s
inequality and Picard’s theorem to construct a global solution ¢ : R — M, (C)
to the equation 0,g(t) = X(t)g(t), and then use Gronwall’s inequality again,
and local coordinate patches of G, to show that g stays on G.) Show that the
same claim holds if the matrix product X (t)g(¢) is replaced by the Lie bracket
[9(8), X ()] == g() X (t) — X (t)g(t).

EXERCISE 1.16 (Levinson’s theorem). Let L € C°(R — End(D)) be a time-
dependent linear transformation acting on a finite-dimensional Hilbert space D, and
let F € C°(R — D) be a time-dependent forcing term. Show that for every ug € D
there exists a global solution u € C2 (R — D) to the ODE dyu = L(t)u + F(t),
with the bound

(b)) < |U0|D+/ F(s)lp ds) exp/ 1) + L*(1))/2]0p )

for all t > 0. (Hint: control the evolution of |u(t)|? = (u(t),u(t))p.) Thus one can
obtain global control on a linear ODE with arbitrarily large coefficients, as long as
the largeness is almost completely contained in the skew-adjoint component of the
linear operator. In particular, if F' and the self-adjoint component of L are both
absolutely integrable, conclude that u(t) is bounded uniformly in ¢.

EXERCISE 1.17. Give examples to show that Theorem 1.19 and Corollary 1.20
fail (even when A is identically zero) if € or § become too large, or if the hypothesis
that u has subexponential growth is dropped.

EXERCISE 1.18. Let o, > 0, let d > 1 be an integer, let 0 < v < d, and let
u:R? — Rt and A: R? — R¥ be locally integrable functions such that one has
the pointwise inequality

e—alz—yl
u(a) < Aw)+3 [ Tuty) dy

for almost every z € R?. Suppose also that u is a tempered distribution in addition
to a locally integrable function. Show that if 0 < o/ < a and ¢ is sufficiently small
depending on «, o/, ~, then we have the bound

u(z) < 2e " A®Y)| Lo (ma)

for almost every z € R%. (Hint: you will need to regularise u first, averaging on a
small ball, in order to convert the tempered distribution hypothesis into a pointwise
subexponential bound. Then argue as in Proposition 1.19. One can then take limits
at the end using the Lebesgue differentiation theorem.)
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EXERCISE 1.19 (Singular ODE). Let F,G € C%*(D — D) be Lipschitz maps
with F(0) = 0 and [|[F|lzoap_py < 1. Show that there exists a 7' > 0 for
which there exists a unique classical solution uw : (0,7] — D to the singular
non-autonomous ODE dyu(t) = F(u(t)) + G(u(t)) with the boundary condi-
tion limsup,_,q [|u(t)||p/t < oo as t — 0. (Hint: For uniqueness, use a Gronwall
inequality argument. For existence, construct iterates in the space of functions
{tv:v € C°([0,T] — D)}.) Show that u in fact extends to a C'' function on [0, 7]
with ©(0) = 0 and d;u(0) = G(0). Also give an example to show that uniqueness
can break down when the Lipschitz constant of F' exceeds 1. (You can take a very
simple example, for instance with F' linear and G zero.)

1.3. Bootstrap and continuity arguments

If you have built your castles in the air, your work need not be lost;
that is where they should be. Now put the foundations under them.
(Henry David Thoreau, “Walden”)

The Picard existence theorem allows us to construct solutions to ODE such as
Owu(t) = F(u(t)) on various time intervals. Once these solutions have been con-
structed, it is natural to then ask what kind of quantitative estimates and asymp-
totics these solutions satisfy, especially over long periods of time. If the equation is
fortunate enough to be solvable exactly (which can happen for instance if the equa-
tion is completely integrable), then one can read off the desired estimates from the
exact solution, in principle at least. However, in the majority of cases no explicit
solution is available!®. Many times, the best one can do is to write the solution
u(t) in terms of itself, using the strong solution concept. For instance, if the initial
condition is u(tg) = ug, then we have

t
(1.22) u(t) = uo —|—/ F(u(s)) ds.
to

This equation tells us that if we have some information on w (for instance, if we
control some norm |||y of u(s)), we can insert this information into the right-
hand side of the above integral equation (together with some knowledge of the
initial datum wuo and the nonlinearity F'), and conclude some further control of the
solution u (either in the same norm ||||y, or in some new norm).

Thus we can use equations such as (1.22) to obtain control on u - but only if one
starts with some control on w in the first place. Thus it seems difficult to get started
when executing this strategy, since one often starts with only very little control on
u, other than continuity. Nevertheless there is a simple principle, of almost magical
power, that allows one to assume “for free” that u already obeys some quantitative
bound, in order to prove that u obeys another quantitative bound - as long as
the bound one ends up proving is slightly stronger than the bound one used as a
hypothesis (to avoid circularity). This principle - which is a continuous analogue

100f course, the contraction mapping argument used in Theorem 1.7 does in principle give
a description of the solution, at least locally, as the limit of iterates of a certain integral map ®,
and the Cauchy-Kowalevski theorem in principle gives a Taylor series expansion of the solution.
However in practice these expansions are rather complicated, and only useful for analyzing the
short-time behaviour and not long-time behaviour. Even if an explicit solution (e.g. involving
special functions) is available, it may be easier to read off the asymptotics and other features of
the equation from an analytic argument such as a bootstrap argument than from inspection of
the explicit solution.
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FIGURE 6. A schematic depiction of the relationship between the
hypothesis H(t) and the conclusion C(t); compare this with Figure
2. The reasoning is noncircular because at each loop of the iteration
we extend the set of times for which the hypothesis and conclusion
are known to hold. The closure hypothesis prevents the iteration
from getting stuck indefinitely at some intermediate time.

of the principle of mathematical induction - is known as the bootstrap principle or
the continuity method'!. Abstractly, the principle works as follows.

PROPOSITION 1.21 (Abstract bootstrap principle). Let I be a time interval,
and for each t € I suppose we have two statements, a “hypothesis” H(t) and a
“conclusion” C(t). Suppose we can verify the following four assertions:

(a) (Hypothesis implies conclusion) If H(t) is true for some time t € I, then
C(t) is also true for that time t.

(b) (Conclusion is stronger than hypothesis) If C(t) is true for some t € I,
then H(t') is true for all t' € I in a neighbourhood of t.

(¢) (Conclusion is closed) If t1,ta,. ..

is a sequence of times in I which con-

verges to another time t € I, and C(t,) is true for all t,, then C(t) is

true.

(d) (Base case) H(t) is true for at least one time t € I.
Then C(t) is true for all t € I.

REMARK 1.22. When applying the principle, the properties H(¢) and C(t) are
typically chosen so that properties (b), (c), (d) are relatively easy to verify, with
property (a) being the important one (and the “nonlinear” one, usually proven
by exploiting one or more nonlinear feedback loops in the equations under study).
The bootstrap principle shows that in order to prove a property C(¢) obeying (c),
it would suffice to prove the seemingly easier assertion H(t) = C(t), as long as
H is “weaker” than C in the sense of (b) and is true for at least one time.

HThe terminology “bootstrap principle” arises because a solution w obtains its regularity
from its own resources rather than from external assumptions - “pulling itself up by its bootstraps”,
as it were. The terminology “continuity method” is used because the continuity of the solution is
essential to making the method work.
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PROOF. Let Q be the set of times ¢ € I for which C(¢) holds. Properties (d)
and (a) ensure that ) is non-empty. Properties (b) and (a) ensure that € is open.
Property (c) ensures that € is closed. Since the interval I is connected, we thus see
that Q = I, and the claim follows. O

More informally, one can phrase the bootstrap principle as follows:

PrINCIPLE 1.23 (Informal bootstrap principle). If a quantity u can be bounded
i a nontrivial way in terms of itself, then under reasonable conditions, one can
conclude that u is bounded unconditionally.

We give a simple example of the bootstrap principle in action, establishing
global existence for a system in a locally stable potential well from small initial
data.

PRrROPOSITION 1.24. Let D be a finite-dimensional Hilbert space, and let V &
CE.(D — R) be such that such that V(0) = 0, VV(0) = 0, and V2V (0) is strictly
positive definite. Then for all ug,u; € D sufficiently close to 0, there is a unique
classical global solution u € Cﬁ)C(R — D) to the Cauchy problem

(1.23) DPu(t) = =VV(u(t)); u(0)=wup; du(0)=1u;.
Furthermore, this solution stays bounded uniformly in t.

REMARK 1.25. The point here is that the potential well V' is known to be stable
near zero by hypothesis, but could be highly unstable away from zero; see Figure
7. Nevertheless, the bootstrap argument can be used to prevent the solution from
“tunnelling” from the stable region to the unstable region.

ProoOF. Applying the Picard theorem (converting the second-order ODE into
a first-order ODE in the usual manner) we see that there is a maximal interval
of existence I = (T, T ) containing 0, which supports a unique classical solution
u € C} (I — D) to the Cauchy problem (1.23). Also, if T is finite, then we have
limy 7, [|u(t)|lp + ||0;u(t)||p = oo, and similarly if T is finite.

For any time t € I, let E(t) denote the energy

(1.24) B(t) = 5 |0®)l} + V(u(r).
From (1.23) we see that
O E(t) = (Opu(t), 02u(t)) + (Dyu(t), VV (u(t))) =0
and thus we have the conservation law
B(t) = B(0) = gl + V(o).

If ug,u; are sufficiently close to 0, we can thus make E(¢t) = E(0) as small as
desired.

The problem is that we cannot quite conclude from the smallness of F that u
is itself small, because V' could turn quite negative away from the origin. However,
such a scenario can only occur when u is large. Thus we need to assume that u is
small in order to prove that u is small. This may seem circular, but fortunately the
bootstrap principle allows one to justify this argument.

Let € > 0 be a parameter to be chosen later, and let H(t) denote the statement

10D + lu(®)ID < (2¢)?
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E

V(u)

F1GURE 7. The potential well V' in Proposition 1.24. As long as
|Osu(t)]|2, + [|u(t)]|% is known to be bounded by (2¢)?, the Hamil-
tonian becomes coercive and energy conservation will trap a parti-
cle in the region ||0;u(t)||%, + ||u(t)||% < &2 provided that the initial
energy is sufficiently small. The bootstrap hypothesis can be re-
moved because the motion of the particle is continuous. Without
that bootstrap hypothesis, it is conceivable that a particle could
discontinuously “tunnel” through the potential well and escape,
without violating conservation of energy.

and let C(t) denote the statement
10D + lu(®)|5 < €.

Since u is continuously twice differentiable, and blows up at any finite endpoint of
I, we can easily verify properties (b) and (c) of the bootstrap principle, and if ug
and u; are sufficiently close to 0 (depending on €) we can also verify (d) at time
t = 0. Now we verify (a), showing that the hypothesis H(¢) can be “bootstrapped”
into the stronger conclusion C(t). If H(¢) is true, then ||u(t)||p = O(¢). We then
see from the hypotheses on V and Taylor expansion that

V(u(t) = cllu(®)| + O(?)
for some ¢ > 0. Inserting this into (1.24), we conclude
1
510D + clu@®)llp < E(0) + O(?).

This is enough to imply the conclusion C(t) as long as ¢ is sufficiently small, and
E(0) is also sufficiently small. This closes the bootstrap, and allows us to conclude
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FIGURE 8. A depiction of the situation in Exercise 1.21. Note the
impenetrable barrier in the middle of the v domain.

that C(¢) is true for all ¢ € I. In particular, I must be infinite, since we know
that [|0:u(t)||% + |lu(t)||3, would blow up at any finite endpoint of I, and we are
done. O

One can think of the bootstrap argument here as placing an “impenetrable
barrier”

e <o) + lu(®)Ip < (2¢)°

in phase space. Property (a) asserts that the system cannot venture into this
barrier. Properties (b), (c¢) ensure that this system cannot “jump” from one side
of the barrier to the other instantaneously. Property (d) ensures that the system
starts out on the “good” side of the barrier. We can then conclude that the system
stays in the good side for all time; see Figure 7. Note also the division of labour
in proving these properties. The properties (b), (¢) are proven using the local
existence theory (i.e. Theorem 1.17). The property (d) comes from the hypotheses
on the initial datum. The property (a) requires some structural information on the
equation, in this case the existence of a conserved energy F(t) with enough locally
“coercive” properties to contain the system within the desired barrier. This pattern
of argument is very common in the analysis of nonlinear ODE and PDE, and we
shall see several more examples of this later in this monograph.

EXERCISE 1.20. Show by example that Proposition 1.21 fails if any one of its
four hypotheses are removed.

EXERCISE 1.21. Let I be a time interval, and u € C (I — R™) be a non-
negative function obeying the inequality

(1.25) u(t) < A+ eF(u(t))
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for some A, > 0 and some function F' : RT™ — R which is locally bounded.
Suppose also that u(tg) < 2A for some ty € I. If ¢ is sufficiently small depending
on A and F, show that in fact u(t) < 2A for all t € I. Show that the conclusion
can fail if u is not continuous or ¢ is not small. Note however that no assumption
is made on the growth of F' at infinity. Informally speaking, this means that if
one ever obtains an estimate of the form u < A + eF(u), then one can drop the
eF(u) term (at the cost of increasing the main term A by a factor of 2) provided
that ¢ is suitably small, some initial condition is verified, and some continuity is
available. This is particularly useful for showing that a nonlinear solution obeys
almost the same estimates as a linear solution if the nonlinear effect is sufficiently
weak. Compare this with Principle 1.23.

EXERCISE 1.22. Let I be a time interval, and let u € C (I — R™) obey the

inequality
u(t) < A+ eF(u(t)) + Bu(t)®

for some A, B,e > 0 and 0 < § < 1, and some locally bounded function F' : RT —
R™. Suppose also that u(tg) < A’ for some ty € I and A’ > 0. Show that if ¢ is
sufficiently small depending on A, A’, B, 6, F, then we have u(t) <o A+ B/~ for
all t € I. Thus we can tolerate an additional u-dependent term on the right-hand
side of (1.25) as long as it grows slower than linearly in u.

EXERCISE 1.23 (Compactness solutions). Let tg € R be a time, let ug € D,
and let F' : D — D be a function which is continuous (and hence bounded) in a
neighbourhood of ug. Show that there exists an open time interval I containing
to, and a classical solution u € C1(I — D) to the Cauchy problem (1.7). (Hint:
approximate F' by a sequence of Lipschitz functions F;, and apply Theorem 1.17
to obtain solutions u,, to the problem dyu,, = F,,(u,,) on some maximal interval
(T— 1, Ty m). Use a bootstrap argument and Gronwall’s inequality to show that
for some fixed open interval I (independent of m) containing tg, the solutions u,,
will stay uniformly bounded and uniformly Lipschitz (hence equicontinuous) in this
interval, and that this interval is contained inside all of the (T_ ,,,T ). Then
apply the Arzela-Ascoli theorem to extract a uniformly convergent subsequence of
the u,, on I, and see what happens to the integral equations um,(t) = um(to) +
fti F(um(s)) ds in the limit, using Lemma 1.3 if necessary.) This is a simple
example of a compactness method to construct solutions to equations such as (1.13),
for which uniqueness is not available.

EXERCISE 1.24 (Persistence of constraints, IT). Let u : [tg, 1] — D be a classical
solution to the ODE dyu(t) = F(u(t)) for some continuous F' : D — D, and let
Hy,...,H, € CL (D — R) have the property that

loc
(F(v),dH, () > 0

whenever 1 < j < n and v € D is such that H;(v) = 0 and H,(v) > 0 for all
1 < ¢ < n. Show that if the statement

Hi(u(t)) >0foralll <i<mn

is true at time ¢t = tg, then it is true for all times ¢ € [to,¢1]. Compare this result
with Exercise 1.13.

EXERCISE 1.25 (Forced blowup). Let & > 1, and let u : [0,7%) — R be a
classical solution to the equation dFu(t) = F(u(t)), where F' : R — R is continuous.
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Suppose that u(0) > 0 and & u(0) > 0 for all 1 < j < k, and suppose that one has
the lower bound such that F(v) = vP for all v > u(0) and some p > 1. Conclude
the upper bound T <, x u(0)1~P)/% on the time of existence. (Hint: first establish

~.

that u(t) > u(0) and &/ u(t) > 0 for all 1 < j < k and 0 < t < T%, for instance by
using Exercise 1.24. Then bootstrap these bounds to obtain some estimate on the
doubling time of u, in other words to obtain an upper bound on the first time ¢ for
which u(t) reaches 2u(0).) This shows that equations of the form 9Fu(t) = F(u(t))

can blow up if the initial datum is sufficiently large and positive.

EXERCISE 1.26. Use the continuity method to give another proof of Gronwall’s
inequality (Theorem 1.10). (Hint: for technical reasons it may be easier to first
prove that u(t) < (1+¢)A exp(fti B(s) ds) for each € > 0, as continuity arguments
generally require “an epsilon of room”.) This alternate proof of Gronwall’s inequal-
ity is more robust, as it can handle additional nonlinear terms on the right-hand
side provided that they are suitably small.

1.4. Noether’s theorem

Now symmetry and consistency are convertible terms - thus Poetry
and Truth are one. (Edgar Allen Poe, “Eureka: A Prose Poem”)

A remarkable feature of many important differential equations, especially those
arising from mathematical physics, is that their dynamics, while complex, still con-
tinue to maintain a certain amount of unexpected structure. One of the most
important examples of such structures are conservation laws - certain scalar quan-
tities of the system that remain constant throughout the evolution of the system:;
another important example are symmetries of the equation - that there often exists
a rich and explicit group of transformations which necessarily take one solution
of the equation to another. A remarkable result of Emmy Noether shows that
these two structures are in fact very closely related, provided that the differential
equation is Hamiltonian; as we shall see, many interesting nonlinear dispersive and
wave equations will be of this type. Noether’s theorem is one of the fundamental
theorems of Hamiltonian mechanics, and has proven to be extremely fruitful in the
analysis of such PDE. Of course, the field of Hamiltonian mechanics offers many
more beautiful mathematical results than just Noether’s theorem; it is of great in-
terest to see how much else of this theory (which is still largely confined to ODE)
can be extended to the PDE setting. See [Kuk3] for some further discussion.

Noether’s theorem can be phrased symplectically, in the context of Hamiltonian
mechanics, or variationally, in the context of Lagrangian mechanics. We shall opt
to focus almost exclusively on the former; the variational perspective has certain
strengths for the nonlinear PDE we shall analyse (most notably in elucidating the
role of the stress-energy tensor, and of the distinguished role played by ground
states) but we will not pursue it in detail here (though see Exercises 1.44, 1.45,
2.60). We shall content ourselves with describing only a very simple special case of
this theorem; for a discussion of Noether’s theorem in full generality, see [Arn)].

Hamiltonian mechanics can be defined on any symplectic manifold, but for
simplicity we shall restrict our attention to symplectic vector spaces.

DEFINITION 1.26. A symplectic vector space (D,w) is a finite-dimensional real
vector space D, equipped with a symplectic form w : D x D — R, which is bilinear
and anti-symmetric, and also non-degenerate (so for each non-zero uw € D there
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exists a v € D such that w(u,v) # 0). Given any H € CL_(D — R), we define the
symplectic gradient V ,H € C2 (D — D) to be the unique function such that

loc
(1.26) (v, dH (1)) = d%H(u +20)|mo = w(V H(u), 0);

this definition is well-defined thanks to the non-degeneracy of w and the finite
dimensionality of D. Given two functions H,E € CL_(D — R), we define the
Poisson bracket {H,E} : D — R by the formula

(1.27) {H,E}(u) := w(V,H(u), Vy,E(u)).

A Hamiltonian function on a phase space (D,w) is any function'? H € C2_(D —

R); to each such Hamiltonian, we associate the corresponding Hamiltonian flow
(1.28) Opu(t) = Vi H(u(t)).

Note that with this definition, Hamiltonian ODE (1.28) are automatically au-
tonomous (time-translation-invariant). However it is possible to consider time-
varying Hamiltonians also: see Exercise 1.42. Note that the Hamiltonian of an
equation is only determined up to a constant, since replacing H by H + C does not
affect the symplectic gradient of H.

ExamMmpPLE 1.27. If

D:=R" XR”:{(qlu"'aqnuplu"'upn):qlu"'aqnuplu"'uanR}

for some n > 1, and w : D x D — R is the bilinear form

w = quj A dp;

j=1

or in other words
n
W12 Guo Py D)y (G5 G Do) = D505 — i
j=1

then (D, w) is symplectic, and for any H, E € C (D — R) we have

OH OH OH 0OH )

VoH = (=—,..., S
(3191 Opn” Oq1 Oqn

and
~OH OE 0H 0FE
{HE}=) S-or = oo
=1 9P5 94; 45 OPj
In particular, the Hamiltonian ODE associated to a Hamiltonian function H €
C2 (D — R) is given by Hamilton’s equations of motion

loc
OH OH

(1.29) g (t) = @(Q(t),p(t)); op;(t) = —a—qj(q(t),p(t)),

where we write

u(t) = (¢(t),p(®));  q(t) = (@1 (1), -, an(®));  p(t) = (pr(D), .., pa(t))-

120ne can weaken this hypothesis of continuous twice differentiability and still define a
Hamiltonian flow, but the theory becomes more delicate and we will not address it here.
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Thus, for instance, if H takes the form
1
1.30 H =—pP+V
(1.30) (4,p) = 5—IpI" +V(q)

where [p|? := p? + ... +p2, m > 0 is a constant, and V € C2_(R" — R), then

loc
Hamilton’s equations become Newton’s laws of motion

Dua(t) = p(t): Aplt) = ~VV(q(t)).

ExampLE 1.28. Let D = C" be endowed with the symplectic form
(1.31) w =

or in other words

W((21y vy 2n)y (210 0y 20)) = Zlm(zjz_;-).

j=1
Then for any H, E € CL.(D — R) we have
OH 0H
wH = 2—,,2—_
\V4 ( zaz_l zazn)
and
"~ OHJE
HE}=4) Im(——
(.5} =43 Im(5= 55
Jj=1
where %—Ij = %—f - i%—lj and %—g = %—f + i%—g. Thus for instance if H is the simple
harmonic oscillator
(1.32) H(z):= 5)\j|z3|
j=1
for some Aq,..., A\, € R, then the equations of motion are

8th (t) = i/\ij (t)

This is in fact the canonical form for any quadratic Hamiltonian; see Exercise
1.41.

Hamiltonian equations enjoy a number of good properties. Since H € CZ (D —
R), the function V,H € C)Y(D — D) is locally Lipschitz, and so the Picard
existence theorem applies; in particular, for any bounded set Q C D, there is a
positive time T > 0 for which we have Lipschitz flow maps S(t) = So(t) € C%1(Q —
D) defined for |t| < T. In the quadratic growth case when V2H is bounded, then
V. H is globally Lipschitz, and one thus has global flow maps S(t) € Cﬁ)cl (D — D)
defined for all times ¢ € R (by Exercise 1.10). These maps obey the group laws
St+t) = St)S#), S(0) = id. Furthemore the S(t) are diffeomorphisms and
symplectomorphisms; see Exercise 1.4 and Exercise 1.32.

Let H,E € C2.(D — R) be two Hamiltonians on a symplectic phase space
(D,w), and let u € CL (I — D) be a classical solution to the Hamiltonian ODE



1.4. NOETHER’S THEOREM 29

(1.28). From the chain rule and (1.26), (1.27), we thus have the Poisson equation®®

d
(1.33) G E() = {H, E}(u(?)).
Let us say that a quantity E is conserved by (1.28) if E(u(t)) is constant for
any (classical) solution v : I — D of (1.28). From (1.33) and the anti-symmetry

{H,E} = —{FE, H} of the Poisson bracket, we conclude

THEOREM 1.29 (Noether’s theorem). Let H and E be two Hamiltonians on a
symplectic phase space (D,w). Then the following are equivalent.

(a) {H,E} =0.
(b) The quantity E is conserved by the Hamiltonian flow of H.
(¢) The quantity H is conserved by the Hamiltonian flow of E.

If any of the above three properties hold, we say that H and E Poisson com-
mute. As stated, Noether’s theorem is symmetric in H and E. However, this
theorem is often interpreted in a somewhat asymmetric way. Assume for sake of
argument that the flow maps Sg(t) of E are globally defined (this is the case, for in-
stance, if F is quadratic growth). We view the flow maps Sg(t) as a one-dimensional
group action on the phase space D. Noether’s theorem then asserts that E is a con-
served quantity for the equation (1.28) if and only if H is symmetric (i.e. invariant)
with respect to the group actions Sg(t); for a generalisation to higher-dimensional
group actions, see Exercise 1.34. Thus this theorem gives a very satisfactory link
between the symmetries of the Hamiltonian H to the conserved quantities of the
flow (1.28). The larger the group of symmetries, the more conserved quantities one
obtains',

For instance, since H clearly Poisson commutes with itself, we see that H
itself is a conserved quantity, thus H(u(tg)) = H(ug) for any classical solution
u € CL (I — D) to the Cauchy problem

(1.34) Opu(t) = Vo H(u(t)); u(to) = uo.

As another example, if (D,w) is the complex phase space given in Example 1.28,
and the Hamiltonian is invariant under phase rotations, thus

H(e®z,...,e"%2,)=H(z1,...,2,) forall z1,...,2, € C,0 € R

then the total charge E?:l |z;]? is conserved by the flow. Indeed, the phase rotation
is (up to a factor of two) nothing more than the Hamiltonian flow associated to the
total charge.

Another class of important examples concerns the phase space (R? x R4)N of
N particles in R?, parameterised by N position variables qi,...,qy € R% and N

L3This equation is unrelated to the PDE Awu = p, which is sometimes also referred to as
Poisson’s equation.

14P’rovidod7 of course, that the symmetries themselves come from Hamiltonian flows. Certain
symmetries, notably scaling symmetries, are thus difficult to place in this framework, as they
typically violate Louville’s theorem and thus cannot be Hamiltonian flows, though they do tend
to generate almost conserved quantities, such as that arising in the virial identity. Also, discrete
symmetries such as time reversal symmetry or permutation symmetry also are not in the range
of applicability for Noether’s theorem.
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TABLE 1. Some common symmetry groups and their associated
conservation laws (or approximate conservation laws, in the case of
the virial identity). Not all of these follow directly from Noether’s
theorem as stated, and are best viewed instead using the “La-
grangian” approach to this theorem. In some cases, the interpre-
tation of the conserved quantity depends on the equation; for in-
stance spatial translation corresponds to momentum for wave and
Schrédinger equations, but corresponds instead to mass for KdV
type equations.

Symmetry Conserved quantity
time translation energy / Hamiltonian
spatial translation momentum / mass
spatial rotation angular momentum
Galilean transformation (renormalised) centre-of-mass
Lorentz transformation (renormalised) centre-of-energy
scaling (virial identity)
base space diffeomorphism | stress-energy
phase rotation mass / probability / charge
gauge transform charge
momentum variables p1,...,py € RY, with the symplectic form
N N d
W = ZdQJ A dpj = Z quj,i A dpj,i-
j=1 j=114=1
If a Hamiltonian H(q1,...,qN,p1,.-.,pN) is invariant under spatial translations,

thus
H(gg —z,...,qn —x,p1,.-.,pN) = H(q1,...,qNn,P1,---,DN)
for all ,p1,...,pN,q1s---,qn € RY, then Noether’s theorem implies that the total
momentum p = Y =15 18 conserved by the flow. If the Hamiltonian takes the
form
N

1
(135) H(ql7" 4N, P11, - - 7pN) = Zim”pilz +V(Q17 7qN)

j=1

for some (translation invariant) potential V € C2_((R%)¥ — R), then the total
momentum takes the familiar form

N dq_
= 1)
p=YmG

Similarly, if the Hamiltonian is invariant under angular rotations U : R? — R4,
thus
H(UQ17"'7UqN7Up17"'7UpN) :H(q17"'7qN7p17"'7pN)

forall py,...,pN,q1,...,qv € R?and U € SO(d), then Noether’s theorem (or more
precisely the generalisation in Exercise 1.34) implies that the angular momentum

L= Zivzl gj \pj € /\2 R? is also preserved by the flow.
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FIGURE 9. The complex scalar ODE 2 = i|z|?z is a Hamiltonian
ODE with the conserved Hamiltonian H(z) := 1|z|*. This conser-
vation law coerces the solution z to stay inside a bounded domain,
and hence blowup does not occur. This is in contrast with the
similar-looking ODE 2 = +|z|?z, which blows up in finite time
from any non-zero initial datum. Note also the rotation symmetry
of this equation, which by Noether’s theorem implies conservation
of |z|2.

REMARK 1.30. Noether’s theorem connects exact (Hamiltonian) symmetries
with exact conservation laws. There are a number of generalisations (both rig-
orous and informal) to this theorem. In particular, we expect approxzimate or
non-Hamiltonian symmetries to be related to approrimate conservation laws. One
important instance of this heuristic involves conformal Killing vector fields, which
can be viewed as approximate symmetries of the underlying geometry; see Section
2.5.

EXERCISE 1.27. Let D be a real Hilbert space, and let J € End(D) be a linear
map such that J? = —id. Show that the bilinear form w : D x D — R defined
by w(u,v) := (u, Jv) is a symplectic form, and that V,H = —JVH (where V is
the gradient with respect to the Hilbert space structure). This is the constant-
coeflicient version of a more general fact, that a symplectic form can be combined
with an almost complex structure J to produce a Riemannian metric; this fact is
fundamental to the theory of symplectic topology, which is far beyond the scope of
this text (though see Section 4.3).

EXERCISE 1.28 (Linear Darboux theorem). Show that any symplectic space
(D,w) is equivalent, after a linear change of variables, to the standard symplectic
space in Example 1.27; in particular symplectic spaces are always even-dimensional.
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(Hint: induct on the dimension of D. If the dimension is non-zero, use the non-
degeneracy of w to locate two linearly independent vectors w,v € D such that
w(u,v) # 0. Then restrict to the symplectic complement {w € D : w(u,w) =
w(v,w) =0} and use the induction hypothesis.) Note that this change of variables
will usually not be unique. Conclude in particular that every symplectic phase
space has an even number of dimensions.

EXERCISE 1.29. Show that if H € C_(D — R) is a Hamiltonian which has a
non-degenerate local minimum at some ug € D (thus VH (ug) = 0 and V2H (ug) is
strictly positive definite), then one has global solutions to the associated Hamilton-
ian equation as soon as the initial datum g is sufficiently close to uy. Note that
this generalises Proposition 1.24; indeed, one can proceed by a modification of the
proof of that proposition. Similarly, show that if H is a Hamiltonian which is glob-
ally coercive in the sense that lim, . |H(v)| = oo, then one has global solutions
to the associated Hamiltonian equation for arbitrary initial data.

EXERCISE 1.30. Show that if one applies the time reversal change of variable
t — —t to a Hamiltonian equation, one obtains another Hamiltonian equation;
what is the new Hamiltonian?

EXERCISE 1.31. Let I be a time interval, and let (D, w), (D’,w’) be symplec-
tic vector spaces. Let u € CL (I — D) solve a Hamiltonian equation d;u(t) =
Vo H(u(t)) for some Hamiltonian H € C2_(D — R), and let v/ € CL (I — D’)
solve a Hamiltonian equation d,u'(t) = V- H'(v/(t)) for some Hamiltonian H' €
C: (D' — R). Show that the combined system (u,u’) € CL (I — D x D') solves a
Hamiltonian equation on D x D', with an appropriate symplectic form w @ w’ and
a Hamiltonian H ¢ H'. This shows that a system of many non-interacting particles
is automatically Hamiltonian if each component particle evolves in a Hamiltonian

manner.

EXERCISE 1.32 (Preservation of symplectic form). Let (D,w) be a symplectic
space, let H € C2_(D — R) be a Hamiltonian, and let u € CZ_ (R x R x R — D)
be such that for each x,y € R, the function ¢ — wu(¢,z,y) solves the Hamiltonian
equation Oyu(t, z,y) = Vo, H(u(t,z,y)). Show that for each z,y € R, the quantity
w(0zu(t, z,y), Oyu(t, z,y)) is conserved in time. Conclude in the quadratic growth
case (with V2ZH bounded) that the solution maps S(t) are symplectomorphisms
(they preserve the symplectic form w). There is a local converse, namely that
any smooth one-parameter group of symplectomorphisms must locally arise from a
Hamiltonian, but we will not detail this here.

EXERCISE 1.33 (Liouville’s theorem). Let (D,w) be a symplectic space, and
let dm be a Haar measure on D. (One can define a canonical Haar measure,
namely Louville measure, by setting m := w3™(P)/2) Let H € C (D — R) be a
Hamiltonian, and let {2 be any open bounded set in D, thus we have a solution map
S(t) € CL. (2 — D) for any sufficiently small ¢. Show that S(¢)(2) has the same
m-measure as . (Hint: use Exercise 1.32.) More generally, show that the previous
claim is true if we replace dm by the (non-normalised) Gibbs measure dug :=
e PHdm for any 8 € R. This constructs for us a small family of invariant measures
for the Hamiltonian flow; a major (and rather difficult) problem in the field is
to construct similar invariant measures for Hamiltonian PDE, and to investigate
to what extent these are the only invariant measures available. See for instance

[Kuk3], [Bou4].
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EXERCISE 1.34 (Moment maps). Let G be a finite-dimensional Lie group acting
(on the left) on a symplectic phase space (D,w), let g be the Lie algebra and let
g* be the dual Lie algebra. We identify each Lie algebra element x € g with a
vector field X, on D in the obvious manner. Suppose we have a moment map
® € C2 (D — g*), in other words a map with the property that

Xz(u) =V (x,®(u)) for all u € D,z € g.

(For instance, if G is the additive real line R, then the group action is simply
the Hamiltonian flow maps S(¢) associated to the Hamiltonian ®.) Show that if
H € C} (D — R) is a Hamiltonian which is G-invariant (thus H(gu) = H(u) for
allu € D, g € G), then ® is conserved by the Hamiltonian flow of H. Show that the
converse is also true if G is connected. Use this generalisation of Noether’s theorem
to verify the claims concerning conservation of momentum and angular momentum

made above.

EXERCISE 1.35. If Hy, Ho,H3 € C2 (D — R) are three Hamiltonians, verify
the Jacobi identity {Hy,{Ha, H3}}+{Ha2,{Hs, H1}} +{Hs,{H1, H2}} = 0 and the
Leibnitz rule

(1.36) {Hl,HgHg}Z{Hl,Hg}H3+H2{H1,H3}

EXERCISE 1.36 (Poisson bracket vs. Lie bracket). If H € CL (D — R), let Dy

denote the differential operator defined by Dy E := {H, E} for E € C;°.(D — R).
Thus for instance, (1.33) asserts that % E(u) = Dy E(u) for all E € C2 (D — R)
and all solutions u to (1.28). Show that for any Hamiltonians Hy, Hy € CZ (D —
R), that [Dy,, Dy,] = D¢p, u,}, where [A, B] := AB— BA denotes the Lie bracket
of A and B. This is the classical relationship between the Poisson and Lie brackets;
see Exercise 2.15 for some discussion of the quantum relationship between these

brackets also.

EXERCISE 1.37. A function E € CL (D — R) is said to be an integral of motion
of an ODE dyu(t) = F(u(t)) if there is a function G : CP (D — D*) assigning a
linear functional G(u) € End(D — R) to each u € D, such that we have the identity
ty
E(u(t1)) = E(u(to)) = | G(u)(Gru(t) — F(u(t))) dt
to
for all time intervals [to,?1] and all functions u € CL_([to,t1] — D) (which may
or may not solve the ODE). Show that a Hamiltonian function E is an integral
of motion for a Hamiltonian ODE dyu(t) = V,H(u(t)) if and only if E Poisson

commutes with H.

EXERCISE 1.38. Let H € C2 (D — R) be a Hamiltonian. Show that the space
of all Hamiltonians E which Poisson commute with H form an algebra (thus the
space is a vector space and is also closed under pointwise multiplication), and is
also closed under all change of variable maps E — ®o E for any ® € C2 (R — R).
(In fact, these claims are valid for the space of integrals of motion for any first-order
ODE, not just the Hamiltonian ones.)

EXERCISE 1.39. Let H,E € C2.(D — R) be two quadratic growth Hamil-
tonian functions (so V2H, V2?E are bounded), and let Sy(t) and Sg(s) be the
associated flow maps for ¢, s € R. Show that H, F Poisson commute if and only if
Su(t) and Sg(s) commute for all ¢, s € R. (Hint: use Exercise 1.14.)
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EXERCISE 1.40. Let H € C2 (D — R). Show that the flow maps Sy (t) : D —

loc
D are linear for all times ¢ if and only if H is a quadratic form, plus a constant.

EXERCISE 1.41 (Symplectic normal forms). Let (D,w) be a 2n-dimensional
symplectic vector space, and let H : D — R™ be a positive definite quadratic form
on D. Show that there exists real numbers A\; > ... > A, > 0 and linear coordinate
functions z1,...,2z, € End(D — C) such that w takes the form (1.31) and H
takes the form (1.32). (Hint: choose a real coordinate system on D (identifying it
with R?") so that H is just the standard Euclidean form H(z) = |x|?. Then the
symplectic form is given by w(z, y) = x-Jy for some anti-symmetric non-degenerate
real-valued 2n x 2n matrix J. Analyze the eigenspaces and eigenvalues of J and use
this to construct the complex coordinates z1, ..., 24.) Conclude in particular that
the ellipsoid {z € D : H(z) = 1} contains n periodic orbits for the Hamiltonian
flow with periods 27 /\1,...,27/\, respectively. We refer to A1,..., A, as the
frequencies of the Hamiltonian H. One can devise analogues of this transformation
for more general Hamiltonians (which contain higher order terms in addition to a
quadratic component), leading to the theory of Birkhoff normal forms, which we
will not discuss here.

EXERCISE 1.42. Let (D,w) be a symplectic space, let H € CL (R x D — R),
and consider the time-varying Hamiltonian equation

dpu(t) = Vo H (¢, u(t)).

Show that it is possible to convert this time-varying Hamiltonian equation into a
time-independent equation on a symplectic vector space R? x D, by a trick similar
to that mentioned in Section 1.1. Does this equation preserve the Hamiltonian
H(t,u(t))? If not, is there some substitute quantity which is preserved?

EXERCISE 1.43. Let D = (R% x R%)" be the phase space of N particles in d
dimensions. Suppose that a Hamiltonian equation is invariant under the Galilean
symmetry

(q17"'7qN7p17"'7pN) = (Q1 _Ut7"'7qN _’Utupl _mlU7"'7pN_mNU)
for any v € R?% and some fixed my,...,my > 0, in the sense that whenever the
function

t=(q1(t),- -, qn(t),p1(t), ..., pn (1))

solves the Hamiltonian ODE, then so does the transformed function
t— (g1 —vt,...,qn — vt,p1 — M1V, ..., DN — MNV).

Conclude that the normalised centre of mass
N N
Z mjqj —1 Z Pj
j=1 j=1
is an invariant of the flow. (Hint: convert ¢ into another phase space variable as in

Exercise 1.42, so that Noether’s theorem can be applied.)

EXERCISE 1.44 (Connection between Hamiltonian and Lagrangian mechanics,
I). Let (D,w) be the standard symplectic phase space in Example 1.27, and let
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LeCx(R*"xR™— R); we use q1,...,qn,q1,---,qdn to denote the variables of L.

loc
Define the momentum coordinates py, ..., p, by
oL
(1.37) pj = 7=—(q,4)
s

and assume that the coordinates (qi1,...,qn,q1,---,Gn) and (q1,---,qn,P1,---,Pn)
are diffeomorphic to each other. We then define the Hamiltonian H € C%(D — R)
by

H(q,p) :==q-p—L(q,9)
where ¢ is defined implicitly by (1.37). Show that if I is a bounded interval and
g € C>*(I — R"), then ¢ is a formal critical point for the Lagrangian

S(q) = / Lq(t), drq(t)) dt

with endpoints held fixed, if and only if (¢(¢),p(t)) solves the Hamiltonian ODE
(1.29). (You may wish to first work with the n = 1 case and with the example
(1.30) to get some intuition.)

EXERCISE 1.45 (Connection between Hamiltonian and Lagrangian mechanics,
IT). Let (D,w) be the standard symplectic phase space in Example 1.27, and let
H € C.(D — R) be a Hamiltonian phase function. Let I be a bounded time

interval. Show that if ¢,p € C*°(I — R™) obey the constraint

(1.38) Bug; (1) = %@@,p(t»

j

(which can be viewed as an implicit definition of the momentum p(¢) in terms of the
position ¢(t) and the velocity d:q(t), at least if H is sufficiently non-degenerate),
then ¢ and p obey the Hamiltonian ODE (1.29), if and only if ¢ and p are formal
critical points of the Lagrangian

S(a,p) = / (Bua(t)) - p(t) — H(q(t),p(t)) dt

subject to the constraint (1.38) and also fixing the values of ¢(t) and p(¢) at the
endpoints. Explain why this connection is essentially the inverse of that in the
preceding exercise.

1.5. Monotonicity formulae

If something cannot go on forever, it will stop. (Herbert Stein)

As we have already seen, conservation laws (such as conservation of the Hamil-
tonian) can be very useful for obtaining long-time existence and bounds for solutions
to ODE. A very useful variant of a conservation law is that of a monotonicity for-
mula - a quantity G(u(t),t) depending on the solution u(t), and perhaps on the time
t, which is always monotone increasing in time ¢, or perhaps monotone decreasing
in time ¢. These monotone quantities can be used to obtain long-time control of a
solution in several ways. For instance, if a quantity G(u(t),t) is large at some initial
time ty and is monotone increasing, then clearly it will stay large for all later times
t > to; conversely, if G(u(t),t) is bounded at time tg, is monotone decreasing, and
is manifestly non-negative, then it will stay bounded for all later times ¢ > ty. If G
is monotone increasing, and is itself the time derivative of another quantity K(¢),
then we also learn that K (¢) is convex in time, which can be useful in a number of
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ways. Finally, if one knows that G(u(t),t) is bounded uniformly in time (e.g. by
using conservation laws), and is monotone, then we conclude from the fundamental
theorem of calculus that the derivative 9;G(u(t),t) is absolutely integrable in time,
and thus decays to zero as t — +00, at least in some averaged sense. This type of
long-time decay is especially useful for understanding the asymptotic behaviour of
the solution.

We will be most interested in monotonicity formulae in the setting of PDE.
However, we can present some simple ODE analogues of some of the more common
monotonicity formulae here, which may help motivate the otherwise miraculous-
seeming formulae which we will encounter in later chapters.

Unlike conservation laws, which can be systematically generated from symme-
tries via Noether’s theorem, we do not have a fully automated way for producing
monotone or convex quantities other than trial and error (for instance by starting
with a conserved quantity such as energy or momentum and perturbing it some-
how to be monotone instead of conserved), although certain tactics (e.g. exploiting
conformal Killing fields, see Section 2.5) have proven to be generally quite fruit-
ful. Thus we shall content ourselves in this section by presenting some illustrative
examples of monotonicity formulae for ODE, each of which has an extension to a
PDE such as the nonlinear Schrédinger equation.

EXAMPLE 1.31 (Virial identity). Let V € C2_(R? — R) be a twice contin-

uously differentiable potential, and consider a classical solution =z : I — RY to
Newton’s equations of motion

(1.39) Ofx(t) = —VV (x(t)).
Then we observe the virial identity
07 (|a(8)]*) = 204(a(t) - par(t))
= 2|0,x(t)]* + 22(t) - Ofx(t)
= 2[0px(t)|* — 2x(t) - VV (2(t)).
This has a number of consequences. If V' is radially decreasing, so that -VV (z) <0

for all # € R?, then we thus conclude that |z(¢)|? is convex. If instead we have a
bound of the form

x-VV(z) < -CV(x)
for some C > 2, then we can obtain the lower bound

0; (|=(t)]*) = 2CE

where E is the conserved energy
1
(1.40) E=E{t) = §|8tac(t)|2 + V(x(t)).

Thus |z(t)|? is now strictly convex when the energy is positive. At a heuristic
level, we thus see that positive energy tends to repel solutions from the origin,
whereas negative energy tends to focus solutions towards the origin. For another
application, see Exercise 1.48. For the linear and nonlinear Schrédinger analogues
of these estimates, see (2.38), (3.72).
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EXAMPLE 1.32 (Morawetz identity). We continue the previous example. A
variant of the virial identity is the Morawetz identity
OFla()] = 0u( gy Dua(0)
_ 0@ (=) - o(t)® | x(t)
=)l |l=(8)[? ()]
_ @) a(t) - VV(2(t)
()] ()]
whenever x(t) # 0, where 7, (v) := v — %(ﬁ, v) is the projection of a vector v to
the orthogonal complement of . Now suppose that V is radially decreasing and
non-negative, then the above identity shows that the quantity % - O¢x(t), which

measures the radial component of the velocity, is monotone increasing (and that
|z(t)] is convex). This is intuitively plausible; particles that move towards the origin
must eventually move away from the origin, but not vice versa, if the potential is
repulsive. On the other hand, we have

2O gao)) < oy (0)] < VIE

where the energy E is defined in (1.40). From the fundamental theorem of calculus,
we thus conclude that

(1.41) /'“ ol 6”” Ul dt+/ —o(t) VVt) 4 < 5y5E,
T ()]

provided that z does not pass through the origin in the time interval I. (This
latter hypothesis can be removed by limiting arguments; see Exercise 1.46.) If
I = R, this estimate is asserting in particular a certain decay for the angular
component 7, (0;2(t)) of the velocity; that particles following this law of motion
must eventually move in mostly radial directions. For the linear and nonlinear
Schrodinger analogues of these estimates, see (2.40), (3.37).

ExaMPLE 1.33 (Local smoothing). Again continuing the previous example, one
can obtain a smoother analogue of the Morawetz inequality by replacing the non-
differentiable function |z| by the smoother function (z) := (1 + |z|?)*/2. One then
has'®

02 a(0) = O 55 - Oualt)
_ 0@ () - 0x(t)? | 2(t)
{z(t)) (x(t))® {z(t))
_ 0@l | [e@PI0®)l® — (@) - 8x(®))® _ x(t) - VV(a(t))
(x(t))? {z(1))? (@@®)
This time there is no need to exclude the case when z(t) = 0. In particular, if V' is
radially decreasing and non-negative, we conclude that

w0, )P
Mty 0= Ty

150ne can in fact deduce this new identity from the previous one by adding an extra dimension
to the state space R, and replacing = by (z,1); we omit the details.

Nyt
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X(3)

X(2)

/

x(1)

FIGURE 10. A particle passing by the origin, encountering a repul-
sive force, will convert its ingoing momentum to outgoing momen-
tum. Since there is no way to convert outgoing momentum back
to ingoing momentum, we conclude that if the total energy (and
hence momentum) is bounded, then the particle cannot move past
the origin for extended periods of time. Note that this diagram is
slightly different from the one in Figure 1 because the equation is
second-order rather than first-order in time; the position controls
the acceleration rather than the velocity.

and hence by using the fundamental theorem of calculus we obtain the local smooth-
ing estimate

|Ose(t) 2 1/2
| et s

for some absolute constant C' > 0. This result is perhaps a little surprising, since
E'/? only seems to control the speed |9;z(t)|, as opposed to the square of the speed

|0s(t)|2. Intuitively, the reason for this is the localisation factor —i~, combined
(z(2))

with the integration in time. When the particle z(t) is travelling at very high
speeds, then |9;z(t)|? is much larger than |9;x(t)|, but to compensate for this, the

particle only lives near the origin (where the localisation factor —i—s is large)

(z(8))®
for a brief time. In Section 2.4, we shall quantise this estimate to Schrodinger
equations; the ability to upgrade the speed to the square of the speed will become
a smoothing effect of half a derivative, which may help explain the terminology

“local smoothing”.

EXAMPLE 1.34 (Interaction Morawetz). Consider an N-particle system of non-
interacting particles with masses mq,...,my > 0, with the classical solution x :
I — (RYYN given by Newton first law

m;0fx;(t) =0 fori=1,...,N.
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FIGURE 11. When two particles “collide” (i.e. pass through each
other), their mutual ingoing momentum is converted to mutual
outgoing momentum. As there is no mechanism to convert mutual
outgoing momentum back into mutual ingoing momentum, we thus
see that the total number of collisions (weighted by their mass and
relative velocity) is controlled by the total momentum.

It is easily verified that this system has a conserved energy
1
FE = Z Emi|6t:vi(t)|2
i

and one trivially also has a conserved mass M := ) . m;. Let define a collision
to be a triplet (4,7,t) where ¢ is a time and 1 < ¢ < j < N are indices such that
x;(t) = x;(t). Let us make the assumption that only finitely many collisions occur
in the time interval I. If ¢ is not one of the times where a collision occurs, we can
define the interaction momentum

Oy Z;nmwﬁgiﬂ@~@mm—@mx

2 ) )

roughly speaking, this measures how much the particles are receding from each
other. A computation shows that

2 (8)— 0. i t) — i (t 2
O P(t) = Z Z mimj|7r i(0)—; (00 (i(t) — 2(2))] >0

1<i<j<N |zi(t) — 2, (t)] -

when t is not a collision time. Each collision (4,7,t) causes a jump in P(t) by
2mymy;|0y(z;(t) — x;(t))], thus P is monotone increasing. Using the crude bound

(PO <> miy_ mjlow;(t)] < MV2ME

from Cauchy-Schwarz, we thus conclude the interaction Morawetz inequality
> 2mimy| 0y (wi(t) — x;(t)| < 2MV2ME
(4,3,)

where (4, j,t) runs over all collisions. There is a related (though not completely
analogous) inequality for the nonlinear Schrodinger equation; see (3.42).
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EXERCISE 1.46. Let V : RY — R be twice continuously differentiable, radially
decreasing (so in particular VV(0) = 0), and non-negative, and let uy € R?. Show
that there is a unique global solution u : R — RY to (1.39) with initial datum
u(0) = ug. Also, show that if z(t) is not identically zero, then z(t) can equal zero
for at most one time ¢y € R, and in such a case we can refine (1.41) to

=) (0, 2 —z(t) - VV(z(t
/ I “) tx DE 4 +/ ) VV@(t) 4y 1 919,0(t0)| < 2v3E.
R |2(t)]
EXERCISE 1.47. W1th the same hypotheses as Exercise 1.46, show that for each
€ > 0 we have the estimate

/ Gz < p\2,
R (z(t)+e ™

This improves upon Example 1.33, which dealt with the case ¢ = 2. (Hint: use the
monotonicity formulae already established, as well as some new formulae obtained
by considering derivatives of expressions such as (z(t))~'7°(x(¢) - 9,z(t)).) Show
that the estimate fails at the endpoint € = 0, even when V' = 0 (compare this with
(1.41)).

EXERCISE 1.48 (Virial identity). Suppose that z1,...,zy € C2 (R — R?) are
solutions to the system of ODE

. Q:E‘ _ m;m; Ij(t) — xz(t)
j0rx;(t) ;Gul(t) —xi(t)]? |25 (t) — xi(t)]

where the masses mi, ..., my are positive, and G > 0 is an absolute constant; this
models the behaviour of IV particles under Newtonian gravity. Assume that the z;
are all uniformly bounded in time and that |z; — x;| never vanishes for any i # j.
Suppose also that the average kinetic and potential energies

T—>+oo 2T/ Z 5™Malds (1)

_ Gm;m
Vi= lim - / e dt
oo 9T A A IO RENO]

K:

exist. Conclude the virial identity K = —iT. (Hint: look at Example 1.31.) This
identity is of importance in astrophysics, as it allows one to infer the potential
energy (and hence the possible existence of dark matter) from measurements of the
kinetic energy (e.g. via red-shift measurements).

1.6. Linear and semilinear equations

Mathematics would certainly have not come into existence if one
had known from the beginning that there was in nature no exactly
straight line, no actual circle, no absolute magnitude. (Friedrich
Nietzsche, “Human, All Too Human”)

Let us now return to the general Cauchy problem (1.7). We shall assume that
we have a special solution, the vacuum solution u(t) = 0; in other words, we assume
that F(0) = 0. If F is continuously differentiable, we can then perform a Taylor
expansion

F(u) = Lu+ N(u)
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where L € End(D) is a linear operator, and N : D — D vanishes faster than linearly
at 0, thus

N(J[u]p)

=0.
fulp—0  ||ullp

(1.42)
We shall refer to L as the linear component of F', and N as the genuinely nonlinear
component. Thus we can write our quasilinear equation as a semilinear equation'®

(1.43) dpu(t) — Lu(t) = N(u(t)).

If N =0, we say that the equation is linear, otherwise it is nonlinear. In general,
linear equations are much better understood than nonlinear equations, as a vast
array of tools such as linear algebra, spectral theory, Fourier analysis, special func-
tions (explicit solutions), and the principle of superposition can be now invoked to
analyze the equation. A very profitable idea in solving equations such as (1.43) is
to treat the genuine nonlinearity N (u) as negligible, and thus to view the equation
(1.43) as a perturbation of the linear equation

(1.44) dyu(t) — Lu(t) = 0.

This perturbation strategy is reasonable if u is small (so that N(u), which vanishes
to at least second order, will be very small compared to Lu) or if one is only solving
the equation for very short times (so that the nonlinearity does not have much of
a cumulative influence on the solution). However, when considering large solutions
for long periods of time, the perturbation approach usually needs to be abandoned
in favour more “global” or “non-perturbative” techniques such as energy methods
or monotonicity formula methods, although if one establishes a sufficient amount
of decay on the solution in time, then one can often re-instate the perturbation
analysis in the asymptotic limit ¢ — oo, which can be used for instance to obtain a
scattering theory.

In accordance to this perturbation philosophy, let us study (1.43) by first con-
sidering the linear equation (1.44), say with initial datum u(0) = ug € D. (We know
from time translation invariance that the choice of initial time ¢ is not particularly
relevant.) Then there is a unique global solution to (1.44), given by

o0 tn
u(t) = ettug = Z HL"UO;
n=0

the finite dimensionality of D ensures that L is bounded, and hence this sum is
absolutely convergent. We refer to the linear operators e'’ € End(D) as the linear
propagators; observe that we have the group law etFesl = e+l with ¢9F = id.
In particular, if ug is an eigenvector of L, thus Luy = Aug for some A\ € C, then
the unique global solution to (1.44) is given by u(t) = e uy.

It is thus clear that the eigenvalues of L will play an important role in the
evolution of the equation (1.44). If L has eigenvalues with negative real part, then
the equation is stable or dissipative in the corresponding eigenspaces, displaying
exponential decay in time as t — +oo (but exponential growth as ¢ — —o0).
Conversely, if L has eigenvalues with positive real part, then the equation is unstable

16poy ODE, there is little distinction between a quasilinear equation and a semilinear one.
For PDE, one usually requires in a semilinear equation that the genuinely nonlinear part N(u) of
the equation is lower order (i.e. involves fewer spatial derivatives) than the linear part Lu; some
authors require that N(u) contain no derivatives whatsoever.
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Forcing term

N(u) Genuine nonlinearity
Linear evolutio N
(inhomogeneoys)
D
Initial datum Solution
u
0 Linear evolution u
(homogeneous)
Up = Yin

FiGURE 12. The Duhamel formulation of a semilinear ODE, re-
lating the initial datum wug, the solution u(t), and the nonlinearity
N (u). Again, compare with Figure 2.

or anti-dissipative in the corresponding eigenspaces, exhibiting exponential growth
as t — +o0o0. We will be concerned primarily with the dispersive case, in between
the stable and unstable modes, in which the eigenvalues are all purely imaginary;
in particular, we will usually consider the case when L is skew-adjoint with respect
to a suitable Hilbert space structure on D. In such cases, we see from the spectral
theorem that there exists an orthogonal Fourier basis (e¢)ec= of D, with each eg
being an eigenvector of L with some imaginary eigenvalue ih(§):

Leg = zh(§)eg

The function h : = — R will be referred to as the dispersion relation of L. If we
then define the Fourier coefficients

(1.45) f(&) = (fee)

for any f € D and £ € Z, then the solution to (1.44) can be given on the Fourier
side as

(1.46) u(t)(€) = MO (¢).

Thus each Fourier mode in (1.44) oscillates independently in time, with the time
oscillation frequency given by the dispersion relation £ — h(§). The magnitude

—

lu(t)(&)] is conserved by the flow, so each Fourier coefficient simply moves in a
circle.

In order to perturb the linear equation (1.44) to the nonlinear equation (1.43),
we need the fundamental identity

PROPOSITION 1.35 (Duhamel’s formula). Let I be a time interval, let to be a
time in I, and let L € End(D), u € C*(I — D), f € C°(I — D). Then we have

(1.47) Ou(t) — Lu(t) = f(t) for allt € T
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if and only if

t
(1.48) u(t) = ey (t) —|—/ eI f(s) ds for all t € I,
to
where we adopt the convention that fti =— :0 ift <to.

REMARK 1.36. The case L = 0 is just the fundamental theorem of calculus.
Indeed one can view Duhamel’s formula as the fundamental theorem of calculus,
twisted (i.e. conjugated) by the linear propagator e!’; this helps explain the simi-
larity between Figure 2 and Figure 12.

PrOOF. If we make the ansatz!” u(t) = et*uv(t) for some v : I — D in (1.47),
then (1.47) is equivalent to

du(t) = e f(1),

which by the fundamental theorem of calculus is equivalent to

v(t) = v(to) —|—/ e L f(s) ds.

to

The claim then follows by multiplying both sides by e’ and using the group law. 0O

In view of this proposition, we see that if N : D — D is continuous and w is
assumed to be continuous, then the Cauchy problem

O — Lu = N(u); u(0) = uo,

is equivalent to the integral equation

t

(1.49) u(t) = eFug —|—/ eI N (u(s)) ds.
0

This should be compared with the solution u(t) = e!Lug of the corresponding linear
problem; thus if we think of N as being small, (1.49) is a quantitative formulation
of the assertion that the nonlinear solution resembles the linear solution. One can
view (1.49) as the strong solution concept for u, adapted to the flow el of the
linear operator L.

The equation (1.49) is a variant of (1.8), but is a little “smarter” in that it uses
the more accurate approximation e**uq to the nonlinear solution u, as opposed to
the somewhat cruder approximation ug. As a consequence, the error term in (1.49)
tends to be somewhat smaller than that in (1.8), as it involves just the genuinely
nonlinear component N of the nonlinearity. Just as (1.8) can be iterated using the
contraction mapping theorem to obtain the Picard existence theorem, the variant
(1.49) can also be iterated to obtain a variant of the Picard existence theorem,
which can exploit the special properties of the linear propagator et to give better
bounds on the time of existence. To describe this iteration scheme, let us first work
abstractly, viewing (1.49) as instance of the more general equation

(1.50) U = Ujin + DN (u)
17T his is of course the technique of integrating factors, which is a special case of the method

of wariation of parameters. The choice of ansatz u(t) = e*Fu(t) is inspired by the fact that one
solves the linear equation (1.44) if and only if v is constant.
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Forcing term

Duhamel operator D N(u) inN Genuine nonlinearity |
Gain 1/ 2@
Lose Gy
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FIGURE 13. The iteration scheme for Proposition 1.38. In prac-
tice, the object uyy, arises as the linear evolution of some initial
datum wug, as in Figure 12, though we do not use this in the state-
ment and proof of the Proposition.

tL

where i, (t) := e uyp is the linear solution, and D is the Duhamel operator

t
DF(t) ::/ e=ILF(s) ds.
0

A useful heuristic principle in trying to solve equations of this general abstract type
is

PRINCIPLE 1.37 (Perturbation principle). If one is working on a time interval
[0,T] such that DN (u) < unin, then u should evolve on [0,T] as if it were linear
(in particular, the solution should exist and obey the same type of estimates that
uin does). If one is working instead on a time interval where DN (u) > wjin, one
should expect u to exhibit nonlinear behaviour (which could range from blowup or
excessive growth on one hand, to additional decay on the other, or something in
between such as nontrivial nonlinear oscillation).

This is of course a very vague principle, since terms such as “<”, “>” or
“nonlinear behaviour” are not well defined. In practice, DN (u) will tend to be
small compared to wuyy, if the initial datum wg is suitably small, or if the time ¢ is
close to 0, so for small data or small times one expects linear-type behaviour. For
large data or large times, perturbation theory does not predict linear behaviour,
and one could now have nonlinear effects such as blowup!®. To control solutions
in this regime one generally needs to augment the perturbation theory with other
tools such as conservation laws.

Let us now give a rigorous formulation of the first half of this principle, by using
the following variant of the contraction mapping theorem to construct solutions.

18Note however that it is possible for the nonlinear term to dominate the linear term but
still be able to construct and control solutions. This for instance occurs if there is an “energy
cancellation” that shows that the nonlinear term, while nominally stronger than the linear term,
is somehow “almost orthogonal” to the solution in the sense that it does not significantly increase
certain energies; we shall see several examples of this in the text. Thus the solutions will not
stay close to the linear solution but will still be bounded in various norms. In certain defocusing
dissipative settings it is even possible for the nonlinearity to always act to reduce the energy, thus
giving a better behaved solution than the linear equation.
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PROPOSITION 1.38 (Abstract iteration argument). Let N, S be two Banach
spaces. Suppose we are giwven a linear operator D : N — S with the bound

(1.51) IDF|s < Col Flla

for all F € N and some Cy > 0, and suppose that we are given a nonlinear operator
N :8 — N with N(0) = 0, which obeys the Lipschitz bounds

(1.52) IN(w) - N(w)llw < %%Hu—vns

for all w,v in the ball B. :={u € S : ||lulls < e}, for some € > 0. (In other words,
[Nl (p.—ny < ﬁ) Then for all uyn € By there erists a unique solution
u € B. to the equation (1.50), with the map uuy, — w Lipschitz with constant at
most 2. In particular we have

(1.53) ulls < 2[|winl|s-

This proposition is established by the arguments used to prove the contraction
mapping principle, and is left as an exercise. The idea of using this type of abstract
Duhamel iteration to tackle nonlinear PDE dates back to [Seg].

REMARKS 1.39. Note that we have considerable freedom in selecting the spaces
S and \NV; this freedom becomes very important when considering the low-regularity
local wellposedness theory of PDE. The Picard existence argument in Theorem 1.7
corresponds, roughly speaking, to the choice S = N = C°(I — D), with (1.8)
taking the place of (1.49). There are a number of variations of this iteration scheme;
for instance, instead of measuring the solution u in a single norm &, one sometimes
is in a situation where u is measured both in a “smooth” norm & and a “rough”
norm Sp; the solution may be large in the smooth norm but small in the rough norm.
In such cases it can still be possible to close an iteration argument using estimates
that combine both norms together; this becomes important in the large data theory
and in the persistence of regularity theory. While it is possible to build an abstract
framework for such schemes, the formulation becomes rather complicated, and so
when these types of situations arise (see for instance Proposition 3.11) we shall
simply perform the iteration by hand.

REMARK 1.40. As with Remark 1.5, the proof of the above theorem provides
an explicit iteration scheme to construct the desired solution, starting with the
linear iterate u(®) := wuy, and then constructing successive Duhamel iterates w™ =
Ulin + DN(u("_l)). This scheme often converges better than the one in Remark
1.5, though it is far from the most rapidly convergent scheme (and is usually not
used directly in numerical computations).

We illustrate the iteration method by establishing global existence for linearly
stable nonlinear equations from small data.

PROPOSITION 1.41 (Linear stability implies nonlinear stability). Let D be a
finite-dimensional real Hilbert space, and let L € End(D) be a linear operator which
is linearly stable in the sense that'® there exists ¢ > 0 such that (Lu,u) < —c/||ul|%

9In the finite-dimensional case, linear stability is equivalent to the spectrum of L being
contained entirely in the interior of the left half-plane. In the infinite-dimensional case, the
relationship between stability and spectrum is more delicate, especially if L fails to be normal or
self-adjoint. Indeed, for PDE, nonlinear stability is often significantly more difficult to establish
than linear stability.
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N(u(®)
/o>

FIGURE 14. Proposition 1.41 from the vector field perspective of
Figure 1. If w is sufficiently small, then the dissipative effect of
the linear term Lu will dominate the effect of the nonlinearity
N (u), regardless of the orientation of N(u), causing u to decay
exponentially towards the origin.

for allu € D. Let N € CE (D — D) be a function which vanishes to more than
first order at the origin in the sense of (1.42) (in fact, the C? hypothesis shows
that N will vanish to second order). If ug € D is sufficiently close to the origin,
there exists a unique classical solution u : [0,4+00) — D to (1.43) with initial datum

u(0) = ug, and furthermore there is an estimate of the form
(1.54) [u(®)llp < 2e~||uollp.

PROOF. The uniqueness of u follows from the Picard uniqueness theorem, so
it suffices to establish existence, as well as the estimate (1.54). A simple Gronwall
argument (see Exercise 1.54) gives the dissipative estimate

(1.55) e uollp < e™"|luollp

for all ug € D and t > 0. Let us now define the spaces S to be the space of all
functions u € C°([0, +00) — D) whose norm

[[ulls == sup e’ [u(t)|p
>0

is finite, and let A/ be the space of all functions F € C°([0,4+00) — D) then

Jully = sup e u(t)
>0
is finite. Thus if we set uyn(t) := e'ug then ||uny||s < ||uol|p- Next, observe from
(1.42) that VN(0) = 0, and so by Taylor expansion and the hypothesis that N is
C?, we have VN (u) = On/(||u||p) for ||ul|p sufficiently small (the implied constant
depends of course on N). From the fundamental theorem of calculus this implies
that

IN(u) = N()[lp <n [lu=vllp([ullp + [[v][p)
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whenever ||ul|p, ||v||p are sufficiently small. In particular, if ||uls,|v|ls < € for
some sufficiently small €, then we have

IV (u(t)) = N((t))llp <n e [lu—v]see™"

and hence (if ¢ is sufficiently small)
1
N ()~ Nl < 2ollu vl
whenever ||ul|s, ||v|ls < e. Also, from the triangle inequality and (1.55) we have
1
IDFls < 27

where D is the Duhamel operator. From Proposition 1.38 we thus see that if
[luol|p < e/2, then can thus construct a solution u to (1.47) with ||ulls < 2[juin|ls <
2||luo||p, and the claim follows. O

REMARK 1.42. If one merely assumes N to be Lipschitz rather than CZ _,
then one can obtain some weaker decay estimates, for instance given any o’ < o
one can obtain an estimate |u(t)|p < 2e=7|luglp if ||uo|p is sufficiently small
depending on N and o,0’. This can be achieved for instance by modifying the
Gronwall inequality argument in Exercise 1.54. We leave the details to the reader
as an exercise. Thus for dissipative equations one often has the luxury of conceding
an exponential factor in the time variable ¢, which is very helpful for keeping the
iteration under control. When we turn to nonlinear dispersive equations, no such
exponential factors are available for us to concede (although in some cases the
dispersion will give us polynomial type decay in ¢, which can be quite useful), and
we must proceed with a bit more care.

An important special case of the general equation (1.43) occurs when the gen-
uinely nonlinear component N is k-linear for some k > 2, in the sense that

N(u) = Ni(u,u,...,u)

where N, : X* — X is a function which is (real-)linear in each of the k variables.
In the k£ = 2 case we call N bilinear or quadratic, in the k = 3 case we call NV
trilinear or cubic, and so forth. The condition k > 2 is essentially forced upon us
by the condition (1.42). In these cases, the hypothesis (1.52) will hold for & small
provided that A is bounded from S to N; see Exercise 1.51.

When the nonlinearity is k-linear and the linear term L is skew-adjoint, one
can view the evolution (1.43) in terms of frequency interactions (using the “Fourier
transform” (1.45)). We illustrate this in the & = 2 case N(u) = Na(u, u); to simplify
the exposition, we will also assume that Ns is not only real linear but is in fact
complex linear. The situation for antilinear nonlinearities and for higher orders
k > 2 requires some simple modifications to the discussion below which are left to
the reader. If we take Fourier transforms of (1.49) (using (1.46)), we obtain

— —

t —_—
u(t)(€) = "™ ag(€) + / IO N fr 2 (s) (€1 )uls)(€) ds
£1,62

where cgl 2

is the structure constant

1 = (Na(eg,  egy), ce)-
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Typically, the structure constants will usually be zero; given any mode &, only a
few pairs of modes £1,&s can interact to excite that mode; a typical constraint
in order for c?’gz to be non-zero is of the form £ = & + & (where one places
some group structure on the space E of frequencies). Making the renormalisation

u(t)(€) = e Oag(t), which is suggested to us by the variation of parameters
method, we obtain an integral system of equations for the functions (ag(t))eez:

t
(1.56) ag(t) = to(&) —l—/o eis(h(fl)+h(52)_h(5))cgl’52(151 (s)ag,(s) ds.

Thus each ag(t) is initially set equal to @o(§), but as time evolves, the {-modes
ag(t) is influenced by the bilinear interactions of the pairs of modes ag, (t), ag,(t)
that can excite the {-mode. The resonance function h(&) + h(&) — h(€) plays a
key role in the analysis. If this quantity is large in magnitude, then the integral in
(1.56) will be highly oscillatory, and thus likely to be rather small; in this case, we
say that the interaction between the modes &1, &9, € is non-resonant. The dominant
contribution to (1.56) typically consists instead of the resonant interactions, in
which the resonance function is zero or small. In order to obtain an iterative
scheme for solving this equation (using for instance Proposition 1.38), especially at
low regularities, one often has to spend some effort to control the resonant portions
of interaction, either by showing that the resonant interactions are fairly rare, or
by extracting some “null structure” from the structure coefficients cgl’&, which
causes them to vanish whenever the resonance function vanishes. We will see some
examples of this in later sections.

EXERCISE 1.49. Prove Proposition 1.38. (Hint: review the proof of Theorem
1.4, Theorem 1.7, and Exercise 1.2.)

EXERCISE 1.50 (Stability). Let the notation and hypotheses be as in Proposi-
tion 1.38. Suppose that win € B. /2, and we have an approximate solution 4 € Be
to the equation (1.50), in the sense that @ = wjn + DN (@) + e for some e € S. Let
u € B be the actual solution to (1.50) given by the above Proposition. Show that
| — ul|ls < 2|le]|ls. Note that this generalises the Lipschitz claim in Proposition
1.38.

EXERCISE 1.51. Let NV, S be Banach spaces as in Proposition 1.38, and suppose
that one is given a k-linear nonlinearity N(u) = Ni(u,...,u), which maps S to N
with the k-linear estimate

IN(u1, .. up)llv < Crlluills - [luklls
for all uy,...,ux € S and some constant C; > 0. Show that the hypothesis (1.52)
holds for u,v € B, with ¢ := Wlocl

EXERCISE 1.52 (Second order Duhamel). Let L € End(D). Show that the
solution to the homogeneous linear second-order ODE

8ttu— Lu=0

with initial datum «(0) = wug, O:u(0) = u; is given by u(t) = Uy(t)ug + Uy (t)uy for
some operators Uy : R x D — D, U; : R x D — D. Show that the unique classical
solution v € C2 (D — R) to the inhomogeneous linear second-order ODE

(%tu—Lu: f
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with initial datum u(to) = uo, dru(to) = u1, where f € C) (D — D) and o € R,
is given by the Duhamel formula

t
u(t) = Uo(t — to)uo + Ur(t — to)us +/ Up(t —s)f(s) ds.
to
(Hint: convert the second-order equation to a first order one, then use Proposition
1.35.)

EXERCISE 1.53 (Duhamel vs. resolvents). Let L,V, Ly € End(D) be such that
L = Lo+ V. Use Duhamel’s formula to show that

t t
etl = etlo —I—/ elt=9) Loy sl g — etho —i—/ elt=9) Ly eslo (g,
0 0
If ) is a scalar such that the resolvent operators R(\) := (L — \)~! and Ro()\) :=
(Lo — \)~! exist, establish the resolvent identity

R(A) = Ro(A) = Ro(M)VR(A) = Ro(A) = R(A\)V Ro(})

and discuss the relationship between the above identities using the Fourier duality
between ¢ and .

EXERCISE 1.54. Let L be as in Proposition 1.41, and let u solve the equation
(1.44). Use Gronwall’s inequality to establish the bound ||u(t)||p < e™7||u(0)|p
for all ¢ > 0. (Hint: establish a monotonicity formula for ||u(¢)||%, and then use the
version of Gronwall’s inequality mentioned in Exercise 1.7.)

EXERCISE 1.55 (Stable manifold). Let D be a finite-dimensional real Hilbert
space, and let L € End(D) be weakly linearly stable in the sense that (Lu,u) < 0
for all w € D. Let N € C2(D — D) have the property that (N(u),u) < 0
for all w € D. Show that for any ug € D, there exists a unique classical solution
u: [0,400) — D to (1.43) with initial datum «(0) = g, which is uniformly bounded

and obeys the estimate

/ L), u(®))] dt < ol

Conclude in particular that if V' is the subspace V := {u € D : (Lu,u) = 0}, that
dist(u(t),V) — 0 as t — +oo.

1.7. Completely integrable systems

Tyger! Tyger! burning bright

In the forests of the night,

What immortal hand or eye

Could frame thy fearful symmetry?
(William Blake, “The Tyger”)

We have already encountered Hamiltonian ODE in Section 1.4, which enjoy
at least one conserved integral of motion, namely the Hamiltonian H itself. This
constrains the Hamiltonian flow to a codimension one subspace of the symplectic
phase space D. Additional conserved integrals of motion can constrain the flow
further. It turns out that the largest number of independent conserved integrals that
one can have in a Hamiltonian system is half the dimension of the phase space (see
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Exercise 1.56). When this occurs, we say that the system is completely integrable?;
the phase space splits completely into the conserved quantities Ey,..., Ex (also
called action variables), together with the dynamic variables (also called angle
variables) induced by the N flows corresponding to E1, ..., En.

EXAMPLE 1.43 (Simple harmonic oscillator). Let D = C™ be the phase space in
Example 1.28, and let H be the Hamiltonian (1.32). Then there are n independent
conserved quantities

by = |Zl|2; N |Zn|2
and n angle variables 61,...,68, € T, defined for most points in phase space by
polar coordinates
i0 O,
21:|Zl|el Yoo ;Zn:|zn|ez :

Then the Hamiltonian flow in these action-angle coordinates becomes linear:
0;E;(t) =0; 0;0;(t) = A;.

Also, observe that the Hamiltonian H is just a linear combination of the basic
conserved quantities F1, ..., E,, which is of course consistent with the fact that H
is itself conserved. More generally, any linear system (1.44) in which L is skew-
adjoint will lead to a completely integrable system.

There are many ways to determine if a system is completely integrable. We
shall discuss only one, the method of Lazx pairs.

DEFINITION 1.44. Consider an ODE
(1.57) Opu(t) = F(u(t)),

where F € I%Cl (D — D) and D is a finite-dimensional phase space. Let H be a

finite-dimensional complex Hilbert space, and let End(H) be the space of linear
maps from H to itself (for instance, if H = C™, then End(H) is essentially the ring
of n x n complex matrices). A Laz pair for the ODE (1.57) is any pair L, P €
CL.(D — End(H)) of functions such that we have the identity

(1.58) OpL(u(t)) = [L(u(t)), P(u(t))]

for all classical solutions u : I — D to the ODE (1.57), or equivalently if
(F(u)-V)L(u) = [L(u), P(u)] for all u € D.

Here [A, B] := AB — BA denotes the usual Lie bracket of the matrices A and B.

REMARK 1.45. Geometrically, (1.58) asserts that the matrix L(u(t)) evolves
via “infinitesimal rotations” that are “orthogonal” to L(u(t)). In many cases, P
will take values in the Lie algebra g of some Lie group G in End(H), and L will
take values either in the Lie algebra g or the Lie group G; note that the equation
(1.58) is consistent with this assumption, since Lie algebras are always closed under
the Lie bracket (see also Exercise 1.15).

20This definition unfortunately does not rigorously extend to the infinite dimensional phase
spaces one encounters in PDE. Indeed, we do not yet have a fully satisfactory definition of what
it means for a PDE to be completely integrable, though we can certainly identify certain very
suggestive “symptoms” of complete integrability of a PDE, such as the presence of infinitely many
conserved quantities, a Lax pair formulation, or the existence of explicit multisoliton solutions.
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A trivial example of a Lax pair is when L : D — M, (C) is constant, and P
is chosen to commute with L; we shall be more interested in non-trivial examples
when L, and more precisely the spectrum (eigenvalues) of L, admit some genuine
variation across the phase space D. A simple example is provided by the one-
dimensional harmonic oscillator

O = iwu
in the phase space D = C, with H = C? and Lax pair
(P = ) i? . _( —iw 0

(1.59) L(u) := ( e i —[uf?) ) P(u) := 0 i
where the spectral parameter X is an arbitrary complex number. Here, L and P take
values in the Lie algebra sus(C) of SU;(C), the group of 2 x 2 unitary matrices.
The higher-dimensional harmonic oscillator in Example 1.28 can also be given a
Lax pair by taking direct sums of the above example; we omit the details.

Now we show how Lax pairs lead to conserved quantities.

PROPOSITION 1.46. Suppose that an ODE (1.57) is endowed with a Lax pair
L:D — End(H), P: D — End(H). Then for any non-negative integer k, the
moment tr(L¥) is preserved by the flow (1.57), as is the spectrum o(L) := {\ € C :
L — X not invertible}.

PROOF. We begin with the moments tr(L*). Let u : I — D solve (1.57). From
the Leibnitz rule and the first trace identity

(1.60) tr(AB) = tr(BA)
we have
Oetr(L(u(t)") = ktr(L(u()* O L(u(t))) = ktr(L(u(t))* [L(u(t), P(u(?)))).

But from the second trace identity
(1.61) tr(A[B, C]) = tr(B[C, A]) = tr(C[A, B])
(which follows easily from the first trace identity), and the obvious fact that LF~1
commutes with L, we obtain d;tr(L(u(t))*) = 0 as desired.

One can conclude conservation of the spectrum o (L) from that of the moments

by using the characteristic polynomial of L. For a more direct approach (which
does not rely as much on the finite dimensionality of L), see Exercise 1.57. (Il

The quantities tr(L), tr(L?), ... may seem like an infinite number of conserved
quantities, but they are of course not all independent. For instance in the example
(1.59), all the quantities tr(L*) are functions of a single conserved quantity |z|2.
This makes the number of conserved quantities equal to the half the (real) dimension
of the phase space C, and so this equation is completely integrable.

One special case of solutions to a completely integrable system arises when the
spectrum o(L) of the Lax operator is unexpectedly simple, for instance if L is a
rank one operator. This often leads to very algebraically structured solutions such
as solitary waves (solitons). For instance, in Example 1.43, the case when L is
rank one corresponds to that of a single excited mode, when only one of the z; is
non-zero, which can be viewed as a rather trivial instance of a solitary wave. The
more general task of reconstructing the solution given the spectral information on
L (and certain supplemental “scattering data” associated to the initial datum wug)
is known as inverse scattering and is a very rich subject involving some beautiful
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analysis, algebra, and geometry. It is well outside the scope of this monograph; we
refer the reader to [HSW] for an introduction.

We now give some non-trivial examples of completely integrable systems. The
first is the periodic Toda lattice

(1.62) Oy = an(bps1 —bn);  Opby = 2(al —al ;)

where n ranges over a cyclic group Z/NZ, and a,, : R — R, b, : R — R are real-
valued functions of time; this can be viewed as a discrete version of the periodic
Korteweg-de Vries (KdV) equation. To place this lattice in Lax pair form, we let H
be an N-dimensional real Hilbert space with orthonormal basis {e,, : n € Z/NZ},
and for any given state u = ((an,bn))nez/nz We define L = L(u) : H — H and
P = P(u) : H— H on basis vectors by

Le, == Apén+1 + bpen + an_1€n_1

Pey :=anepy1 — an_1€p_1.

One can easily verify the Lax pair equation (1.58) by testing it on basis vectors.
Note that L is self-adjoint and P is skew-adjoint, which is of course consistent with
(1.58). The Toda lattice enjoys N independent conserved quantities arising from

L, including the trace
tr(L)= > by

n€Z/NZ

and the second moment

tr(L?) = Z b2 + 2a2;
n€Z/NZ

one may verify by hand that these quantities are indeed preserved by (1.62). The
equation (1.62) is not a Hamiltonian flow using the standard symplectic form on
the state space, but can be transformed into a Hamiltonian flow (with Hamiltonian
2tr(L?)) after a change of variables, see Exercise 1.59. One can create higher order
Toda flows by using higher moments of L as Hamiltonians, but we will not pursue
this here.

Another example of a completely integrable system is the periodic Ablowitz-
Ladik system

(1.63) O Fy =i(1— |Fy?)(Fue1 + Foy1),

where n ranges over a cyclic group Z/NZ, and F,, : R — C are complex-valued
functions of time with |F,,| < 1 for all n (this property is preserved by the flow).
This is a discrete analogue of the cubic defocusing periodic nonlinear Schrodinger
equation. To define a Lax pair (L, P) for this equation, we take H to be a complex
Hilbert space spanned by 2N orthonormal basis vectors {vy,, wy, : n € Z/NZ}. The
Lax operator L = L(F') : H — H is then defined on basis elements by

Lv, = /1 — |F,|2vp41 + Frhwy,
Lwp i1 = —Fpvpg1 + V1 — |Fn2wnq1;



1.7. COMPLETELY INTEGRABLE SYSTEMS 53

note that L is in fact a unitary operator (a discrete analogue of a Dirac operator),
with adjoint L* = L~! given by

L vpt1 := /1 — |Fpl?vn — Frwnia
L*wy, := Foo, + /1 — |Fy2wn1;

The P operator is a little trickier to define. We first define the reflection operator
J:H — H as

Jun = v, Jwy, = —wy
and then the diagonal operator D = £([L, J]? + [L*, J]?) by
Dv,, = 1 + b Vn;  Dwy, = —F 1+ P W,
2 2
and then define P by
LJL+ L*JL*

The verification of (1.58) is rather tedious but straightforward. Note that P is
skew-adjoint, which is consistent with (1.58) and the unitarity of L.

A completely integrable system contains some quite low-dimensional invariant
sets; in many cases (as with the harmonic oscillator), these invariant sets take
the form of torii. A very interesting question concerns the stability of such in-
variant surfaces; if one makes a perturbation to the Hamiltonian (destroying the
complete integrability), does the invariant surface similarly perturb? The answer
can be surprisingly subtle, involving the theory of Kolmogorov-Arnold-Moser torii,
Nekhoroshev stability, and Arnold diffusion, among other things. We will not at-
tempt to describe this theory here, but refer the reader to [Kuk3] for a discussion
of these topics in the context of Hamiltonian PDE.

EXERCISE 1.56 (Lagrangian submanifolds). Call a linear subspace V' of a sym-
plectic phase space (D,w) null if w(v,v’") = 0 for all v,v" € V. Show that if V is
null, then the dimension of V' cannot exceed half the dimension of D. (Hint: look at
the symplectic complement V+ := {u € D : w(v,u) = 0 for all v € V}.) Conclude
that if Eq,..., Ey are functions which Poisson commute with a given Hamilton-
ian H, then for each u € D the gradients V,E1(u), ..., V,Ex(u) span a space of
dimension at most half the dimension of D.

EXERCISE 1.57 (Conservation of spectrum). Let the notation and hypotheses
be as in Proposition 1.46. Suppose that for some time ty € I and some A € L
we have A € o(L), thus there exists a non-zero eigenvector ¢9 € H such that
L(u(to))po — Apo = 0. Now let ¢ : I — H solve the Cauchy problem

9ep(t) = P(u(t)o(t);  ¢(to) = ¢o.
Show that such a solution ¢ exists, and furthermore we have
L(u(t)o(t) — Ag(t) =0

for all ¢ € I. (Hint: use Exercise 1.13). Conclude that the spectrum o (L) is an
invariant of the flow.

EXERCISE 1.58 (Lax pairs vs. Hamiltonian mechanics). uppose that a sym-
plectic phase space (D,w) is endowed with maps L € CL_(D — End(H)) and
R € CL (D — End(End(H))). Suppose we also have the R-matriz identity

loc
{tr(AL), tr(BL)} = tr(BR([L, A]) — AR([L, B]))
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for all A, B € M,,(C), where {, } denotes the Poisson bracket. Conclude the Poisson
commutation relations

{tr(AL), tr(L*)} = —ktr(A[L, RY(L*1)])

and

{tr(L™),tx(L*)} =0
for all m,k > 0 and A € End(H), where R’ : D — End(End(H)) is the transpose
of R, thus tr(AR(B)) = tr(BR(A)) for all A, B € End(H). (Hint: take advantage
of the trace identities (1.60), (1.61) and the Leibnitz rule (1.36)). Conclude that
the Hamiltonian flows given by the Poisson-commuting Hamiltonians tr(L*) each
have a Lax pair (L, P;) with Py, := —kR!(LF1).

EXERCISE 1.59 (Hamiltonian formulation of Toda). Let D = RY x RY be the
phase space in Exercise 1.27, where we shall abuse notation and write the phase
space variables as p,, ¢, where n ranges over the cyclic group Z/NZ. Consider the
Hamiltonian 1

H(qvp) = Z Epi + V(QnJrl - Qn)

n€Z/NZ

where V' : R — R is the Toda potential V(z) := e ® + x — 1. Show that the
associated Hamiltonian flow is equivalent to the Toda equations (1.62) after making
the Flaschka change of variables

ay, = le*(‘In+1*‘In)/2; b, = —lpn-

2 2

Furthermore, show that H = 2tr(L?).

EXERCISE 1.60. Suppose we are given initial data F,(0) for n € Z/NZ with
|F(0)] < 1for all n € Z/NZ. Show that there is a unique global classical solution
to (1.63) with this initial data, and that we have |F,(¢)| < 1 for all n € Z/NZ and
teR.



CHAPTER 2

Constant coefficient linear dispersive equations

God runs electromagnetics by wave theory on Monday, Wednes-
day, and Friday, and the Devil runs them by quantum theory on

Tuesday, Thursday, and Saturday. (Sir William Bragg)

Having concluded our discussion of ODE, we begin the analysis of dispersive®

PDE. In this chapter, we shall begin with the study of constant-coefficient linear
dispersive PDE, which are the simplest example of a dispersive equation. Further-
more, much of the theory of nonlinear PDE, especially for short times or small
data, is obtained by perturbation of the linear theory; thus it is essential to have a
satisfactory theory of the linear equation before proceeding to the nonlinear one.

To simplify the discussion?, our partial differential equations shall always take
as their spatial domain either a Euclidean space R?, or the standard torus T¢ =
(R/27Z)%; functions on the latter domain can of course be viewed as periodic
functions on the former domain, and so we shall give our definitions for R¢ only,
as the generalisation to T will be clear. Also, we shall begin by focusing on PDE
which are first-order in time. A constant-coeflicient linear dispersive PDE then
takes the form

(2.1) Owu(t, ) = Lu(t,z); u(0,z) = up(x)

where the field® v : R x RY — V takes values in a finite-dimensional Hilbert space
V, and L is a skew-adjoint constant coefficient differential operator in space, thus
taking the form

Lu(x) := Z caOgu(x),

la| <k
where k > 1 is an integer (the order of the differential operator), a = (a1,...,aq) €
" ranges over all multi-indices with |a| := a1 + ... 4+ g less than or equal to k,

1Informa11y, “dispersion” will refer to the fact that different frequencies in this equation
will tend to propagate at different velocities, thus dispersing the solution over time. This is in
contrast to transport equations such as (2.2), which move all frequencies with the same velocity
(and is thus a degenerate case of a dispersive equation), or dissipative equations such as the heat
equation d¢u = Aw, in which frequencies do not propagate but instead simply attenuate to zero.
The wave equation (2.9) is partly dispersive - the frequency of a wave determines the direction of
propagation, but not the speed; see Principle 2.1.

2The study of linear dispersive equations in the presence of potentials, obstacles or other
boundary conditions, or on curved manifolds or in variable coefficient situations, is of great impor-
tance in PDE, with applications to spectral theory, geometry, and even number theory; however,
we will not attempt to investigate these topics here.

3We shall say that the field is real if V' is a real vector space, and complex if V is a complex
vector space. We say that the field is scalar if V is one-dimensional, vector if V is viewed as a
vector space, tensor if V is viewed as a tensor space, etc. For instance, a field taking values in C¢
would be a complex vector field. We will not use the term “field” in the algebraic sense in this
text.

55
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0% is the partial derivative

0 0
@ a1 o)
61) _(8:101) (65Ed) ’

and ¢, € End(V) are coefficients that do not depend on z. This operator is clas-
sically only defined on k-times continuously differentiable functions, but we may
extend it to distributions or functions in other function spaces in the usual manner;
thus we can talk about both classical and weak (distributional) solutions to (2.1).
We can also write L = ih(D), where D is the frequency operator

D=1V =00, .. 10,
i i i

and h : R? — End(V) is the polynomial
h(€r,.onba) = > il ea gt gge

la| <k

We assume that L is skew-adjoint, thus

/(Lu(:c),v(:z:)}v dx = —/(u(:c),Lv(:c))V dx

for all test functions wu,wv; this is equivalent to requiring that coefficients of the
polynomial h be self-adjoint, so in the scalar case we require h to be real-valued.
Note that we do not restrict the time variable to an interval I; this is because the
solutions we shall construct to (2.1) will automatically exist globally in time. We
refer to the polynomial h as the dispersion relation of the equation (2.1).

A somewhat degenerate example of an equation of the form (2.1) is the phase
rotation equation

Oru(t, ) = iwu(t,x); u(0,z) = up(x)

where u is a complex field and w € R; this has the explicit solution u(t,z) =
e™tug(x), and the dispersion relation is h(£) = w. Another degenerate example is
the transport equation

(2.2) Ou(t,x) = —v - Vyu(t,x); u(0,2) = uo(zx)
for some constant vector v € R%; this has the explicit solution u(t, x) = ug(z — vt),
and the dispersion relation is h(§) = —v - §&. More interesting examples (many of

which arise from physics) can be constructed if one either raises the order of L, or
makes u vector-valued instead of scalar. Examples of the former include the free
Schrodinger equation

, h
(2.3) i0pu + %Au =0,
where u : R x R? — V is a complex field and A = E?Zl 66—;2 is the Laplacian
j
and Planck’s constant h > 0 and the mass m > 0 are fixed scalars, as well as the
one-dimensional Airy equation

(2.4) Ot + Oprat =0

where © : R X R — R is a real scalar field. The dispersion relations here are
h() = —%|§|2 and h(€) = &3 respectively. Examples of the latter include vacuum
Mazwell’s equations

(2.5) WE=cV,xB;, B=-V,xE; V,-E=V,-B=0
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in three dimensions d = 3, where E, B : R'™3 x R? are real vector® fields and the
speed of light ¢ > 0 is constant; the constraints that £ and B be divergence-free
are not of the dynamical form (2.1), but nevertheless they end up being compatible
with the flow (Exercise 2.16). The Maxwell equations are a special case of the
abelian Yang-Mills equations

(2.6) 0o F* =0;  0aFpy + 0sFya + 0y Fap =0

where F : R4 — A?R't is an real anti-symmetric two-form field, and R*+¢ =
R x R? is endowed® with the standard Minkowski metric g®?, defined using the
spacetime interval dg? = —c2dt? + dz? + dz3 + dz? (with the convention zg = t),
and which is used to raise and lower indices in the usual manner.

Another example from physics is the Dirac equation

me
(2.7) 7 Oqu = -
where 7°,...,7% € End(V) are the gamma matrices, acting on a four-dimensional
complex vector space V', known as spinor space, via the commutation relations
(2.8) 7 + 4Py = —2¢*Fidy

where ¢*? is the Minkowski metric, the mass m > 0 is non-negative, and u :
R'*3 — V is a spinor field; see Exercise 2.1 for one construction of spinor space.

It is also of interest to consider dispersive equations which are second-order in
time. We will not give a systematic description of such equations here, but instead
only mention the two most important examples, namely the wave equation

(2.9) Ou=0; u0,2)=muo(z); u(0,z)=mui(z)

where u : R'""% — V is a field, and O is the d’Alembertian operator
1
O=0%, = ——23,52 + A,
c

and the slightly more general Klein-Gordon equation

m2c?

(2.10) Ou = U w(0,2) = up(x); u(0,z) = ui(x)
where the mass m > 0 is fixed.

Equations which involve ¢ are referred to as relativistic, while equations in-
volving h are quantum. Of course, one can select units of space and time so that
¢ = h =1, and one can also normalise m = 1 without much difficulty; these con-
stants need to be retained however if one wants to analyze the non-relativistic limit
¢ — oo of a relativistic equation, the classical limit h — 0 of a quantum equation,
or the massless limit m — 0 of a massive equation.

4A more geometrically covariant statement would be that £ and B combine to form a rank
two tensor field F,, 3, as in the example of the Yang-Mills equations below. Indeed, F,g should
be interpreted as the curvature of a connection; cf. Section 6.2.

5We shall use R1*¢ to denote Minkowski space with the Minkowski metric, and R x R% to
denote a spacetime without any Minkowski metric. Relativistic equations such as the Maxwell,
Yang-Mills, Dirac, Klein-Gordon, and wave equations live on Minkowski space, and thus interact
well with symmetries of this space such as the Lorentz transformations, whereas non-relativistic
equations such as the Airy and Schrodinger equation have no relation to the Minkowski metric
or with any related structures such as Lorentz transformations, the light cone, or the raising and
lowering conventions associated with the metric.
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The constant-coefficient dispersive equations have a number of symmetries. All
are invariant under time translation u(t,x) — u(t — t9,z) and spatial translation
u(t, ) — u(t,z — xg). Several also enjoy a scaling symmetry (Exercise 2.9). There
is also usually a time reversal symmetry, though the precise nature of the symmetry
varies. For instance, for the Schrodinger equation one takes u(t, z) — u(—t, —x),
for the Airy equation one takes u(t, z) — u(—t, —z), and for the wave and Klein-
Gordon equations one takes u(t, x) — u(—t, z). For tensor equations such as Dirac,
Maxwell, and Yang-Mills, one has to apply the time reversal to the tensor space as
well as to the spacetime domain. The equations in R? typically enjoy a rotation
and reflection invariance, which for scalar equations is simply u(t, z) — wu(t, Ux) for
all orthogonal matrices U € O(d); in particular, this implies (once one has a reason-
able uniqueness theory) that radially symmetric data leads to radially symmetric
solutions. Again, for tensor equations one has to rotate the tensor as well as the
domain. The Schrédinger equation also has a very useful Galilean invariance (Exer-
cise 2.5), while the relativistic equations have a similarly useful Lorentz invariance
(Exercise 2.6). Finally, the Schrodinger equation also enjoys the pseudo-conformal
symmetry (Exercise 2.28), while the wave equation similarly enjoys the conformal
symmetry (Exercise 2.14).

The above equations are all connected to each other in various ways; some of
them are given in the exercises.

EXERCISE 2.1 (Spinor space). Let V = C* be endowed with the sesquilinear
form
{(21, 22, 23, 24), (W1, wa, w3, Ww4) } 1= 21W1 + 22W3 — 23W3 — 24Wg

and let 7Y, ..., 9% € End(V) be given as
1
FYO(Zlv 22,23, 24) = E(zla 22, —Z3, _Z4)
Fyl(zlv 22,23, 24) = (245 23, 22, _Z1>
V2 (21, 22, 23, 24) = (—iza, 123,122, —i21)
73(217 22,23, 24) = (235 —Z4, TX1, ZQ)'

Show that we have the commutation relations (2.8). Furthermore, for all u,v € V|
we have the symmetry {y*u,v} = {u,y*v}, and the 4-vector {u,y*u} is positive
time-like in the sense that

{’U,,’}/O’u,} > 0and — {Uﬁau}{uﬁau} > {’U,, u}2 = 0.

EXERCISE 2.2 (Maxwell vs. Yang-Mills; Dirac vs. Klein-Gordon). Show that
any Cf_zﬁloc solution to Maxwell’s equation (2.5) or the abelian Yang-Mills equa-
tion (2.6), also solves the wave equation (2.9). Conversely, if A = (Aq)ao....d €
C2y 10c(RIT? — R4 solves the wave equation, show that the curvature F,g :=
O0aAp — 03 A, solves the abelian Yang-Mills equation. Also explain why Maxwell’s
equation is a special case of the abelian Yang-Mills equation. In a similar spirit,
show that any continuously twice differentiable solution to Dirac’s equation (2.7)
also solves the Klein-Gordon equation (2.10), and conversely if ¢ € C7 |, (R'? —
V') solves the Klein-Gordon equation then u := y*9,¢ 4+ m¢ solves the Dirac equa-
tion.

EXERCISE 2.3 (Airy vs. Schrodinger). Let u € C2 (R x R — C) solve the

t,x,loc
Schrédinger equation i0;u + 0?u = 0, with all derivatives uniformly bounded. Let
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N > 1 be a large number, and let v : R x R — R be the real scalar field
N Nt
v(t,r) ;= Re <€ZN1+1N3t'UJ(t, ¢)> .
V3N

Show that v is an approximate solution to the Airy equation (2.4), in the sense that
v + 930 = O, (N~3/?).

This suggests that solutions to the Airy equation can behave, in certain circum-
stances, like suitably rescaled and modulated solutions to the Schrodinger equation.
See [BC], [CCT], [Schn] for some nonlinear developments of this idea.

EXERCISE 2.4 (Group velocity of waves). Let h : R — R be a polynomial with
real coefficients, and let L := ¢P(D). Show that if ¢ € Ct‘f‘;c)loc(Rd — C) has all
derivatives bounded, and ¢ > 0, then the complex scalar field u € C£710C(R xR?* —
C) defined by

u(t, ) = @S tith(€o) g (e (g 4+ Vh(&)t))
is an approximate solution to (2.1) in the sense that
Ou = Lu+ Oy(e?).

This suggests that (sufficiently broad) solutions to (2.1) which oscillate in space
with frequency &p, should travel at group velocity —Vh(&y), and oscillate in time
with frequency h(&p); see also Principle 2.1. In the case of the Schrédinger equation
(2.3), conclude (on a heuristic level) de Broglie’s law mv = h&, where v denotes
the group velocity. (Note the phase velocity in this case will be twice the group
velocity, 2v. More generally, an inspection of the phase x - £ + th(&y) shows that
o h(fO)')

the phase velocity is ~Teo] el

EXERCISE 2.5 (Galilean invariance). Let u € C7
plex field, let v € R?, and let @ € Ct27

eloc(R X RT — V) be a com-
R x R? — C) be the field

m,loc(

imx~v/heimt|v\2/2hu(t

a(t,x) :=e , & — vt).

show that @ solves the Schrédinger equation (2.3) if and only if u does.

eoc R4 — V) be a field, let
(R4 — C) be the field

EXERCISE 2.6 (Lorentz invariance). Let u € Ct27
v € R? be such that |[v] < ¢ < oo, and let u, € C?

,x,loc
t—v-xz/c? — ot
uv(tv'r) = u(vix/cax — Xy + L)
V1= [of?/e? V1= Juf?/e?
where z, 1= (z - ﬁ)ﬁ is the projection of z onto the line parallel to v (with the

convention that z, = 0 when v = 0). Thus for instance, if ¢ = 1, v = v1e; for some
—1<wv; <1andz:=(x9,...,24), then

(t—’UlIl X1 —’Ult )
=u ’ y L)
V1—0v? /1 —v?

Show that u, solves the wave equation (2.9) if and only if u does, and similarly
for the Klein-Gordon equation (2.10). (Hint: show that the Minkowski metric is

t—v-x/c? Ty —vt

preserved by the Lorentz transformation (¢, z) — (W, T—Ty+ W))
What is the analogous symmetry for the Dirac, Maxwell, and Yang-Mills equations?

uv(ta Ilaz) :
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EXERCISE 2.7 (Schrédinger vs. Klein-Gordon). Let u € C (R4 — V) be

t,x,loc

a complex field solving the Klein-Gordon equation (2.10). Show that if one applies

the change of variables u = e~ime*/hy then one obtains
) h h o
Zat'U + %AU = Wat v.

This suggests that the Klein-Gordon equation can converge to the Schrodinger
equation in the non-relativistic limit ¢ — oo, though one has to be extremely
careful with this heuristic due to the double time derivative on the right-hand side.
(A more robust approximation is given in the next exercise.)

EXERCISE 2.8 (Schrédinger vs. Dirac). Let u : R x R® — V be a spinor field
solving the Schrodinger equation

h
icy'0u — —Au =0
2m
with all derivatives uniformly bounded. Let v : R x R? — V be the spinor field
V= e—imc2'yot/hu _ h eivncz'yot/l‘i,yjaz u
2ime J

where the j index is summed over 1,2, 3. Show that v is an approximate solution to
the Dirac equation (2.7) (and hence the Klein-Gordon equation) in the sense that

Ty 4 O ()

Thus in the non-relativistic limit ¢ — oo, certain solutions of the Dirac and
Klein-Gordon equations resemble suitably rescaled and modulated solutions of the
Schrodinger equation. See [MINO], [MNO2] for some nonlinear developments of
this idea. By using this correspondence between Schrodinger and Klein-Gordon,
one can also establish in a certain sense that the Lorentz invariance degenerates to
the Galilean invariance in the non-relativistic limit ¢ — co; we omit the details.

Y Oqv =

EXERCISE 2.9 (Scaling symmetry). Show that if P : R — C is a homoge-
neous polynomial of degree k, and L = P(V), then the equation (2.1) is invariant
under the scaling u(t, ) — u(5%, %) for any A > 0. Thus for instance, with the
Schrédinger equation the time variable has “twice the dimension” of the space vari-
able, whereas for the Airy equation the time variable has three times the dimension
of the space variable. For relativistic equations such as the wave equation, space
and time have the same dimension.

EXERCISE 2.10 (Wave vs. Klein-Gordon). Let u € C7
complex field, and define v € C7 R x R — C) by

(RxR?— V) bea

x,loc

x,loc(
V(t, X1y Ty Tag1) = eimczd“/hu(t,xl, cey X))

Show that v solves the d + 1-dimensional wave equation (2.9) if and only if u solves
the d-dimensional Klein-Gordon equation (2.10). This allows one to use the method
of descent (analyzing a lower-dimensional PDE by a higher-dimensional PDE) to
obtain information about the Klein-Gordon equation from information about the
wave equation. As the name implies, the method of descent is largely one-way;
it identifies general solutions to lower-dimensional PDE with special solutions to
higher-dimensional PDE, but does not yield much information on general solutions
to the higher-dimensional PDE.
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EXERCISE 2.11 (Wave vs. Schrodinger). Let u € C? R xR?Y — V) be a

,z,loc(
complex field, and define v € Cﬁ

m,loc(R X RdJrl - V) by

. t—
) — efl(tJrzd*l)u(%, Z1,...
Set h = ¢ = m = 1. Show that v solves the d + 1-dimensional wave equation (2.9) if
and only if u solves the d-dimensional Schrodinger equation (2.3). See also Exercise
3.2.

v(t, 1, Td, Td gl , Td)-

EXERCISE 2.12 (Wave vs. wave). Suppose that the field u € C7, 1 (R X

(RN {0}) — V) solves the d-dimensional wave equation Cu = 0, thus by abuse of
notation we can write u(t,x) = u(t, |x|) and consider u = u(¢,r) now as a function

from R x (0,00) — C. Conclude the radial field v € C7, |,.(R x (RH2\{0}) — V)

xz,loc
defined (again abusing notation) by v(t,7) := £9,u(t, r) solves the d+2-dimensional
wave equation. Thus in the radial case at least, it is possible to construct solutions
to the d + 2-dimensional equation out of the d-dimensional equation.
EXERCISE 2.13 (1 + 1 waves). Show that if the field u € C75, |, (R xR — V)
solves the one-dimensional wave equation 07u — 9%u = 0 with initial data u(0,z) =

wo(x), Bru(0, ) = us (x), then

up(x +¢) +up(x —t) 1 /IH

t = —=
ult @) 2 T3
for all £,z € R. This is a rare example of a PDE which can be solved entirely by
elementary means such as the fundamental theorem of calculus.

EXERCISE 2.14 (Conformal invariance). Let I'y C R!*? be the forward light
cone {(1,€) € R4 : 7 > ¢|¢]}, and let u € C?y10c(T+ — V) be a field. Let

aeC? 'y — V) be the conformal inversion of u, defined by

z,loc(

t x

ilt,2) = (¢~ 2l*) " Pl )

Establish the identity

t x

. 2 oy—d=1_q
DU(LJI) - (t - |‘T| ) 2 Du(tg — |{E|27 2 _ |$|2)

In particular u solves the wave equation (2.9) with ¢ = 1 if and only if % does. (One
can use in fact hyperbolic polar coordinates to recast the wave equation as a wave
equation on hyperbolic space H?, in such a way that conformal inversion amounts
simply to time reversal. Another approach is to observe that Kelvin inversion
(t,x) — ﬁ(f, x) is a conformal transformation of Minkowski space.)
EXERCISE 2.15 (Quantum vs. classical dynamics). Let = (p1,...,pq) denote
the momentum operator p := —ihV; show that when applied to the approximate
solutions to the Schrédinger equation in Exercise 2.4 that we have de Broglie’s

2 2 2
law p~ mv = h¢. Let H := % = DiEetP denote the Hamiltonian (this is

the analogue of the classical Hamiltonian H = % = 2m|v[* in the absence of
a potential). If u € CS,(R x RY) is a classical solution to the Schrodinger
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equation (2.3) and E : S,(R?%) — S,(RY) is any (time-independent) continuous
linear operator, establish the Heisenberg equation
d i

g (Bu(t), u(®)) 2 ey = (3 [H, Blu(t), u(®)) 12 ra)

where [H,E] := HE — EH is the Lie bracket and (f,g)r2ra) = [ga f()g(x).
Compare this with (1.33) and with Exercise 1.36. The precise connection between
the Lie bracket and the Poisson bracket involves the subjects of semiclassical analy-
sts, microlocal analysis, and geometric quantization, which we will not discuss here.

EXERCISE 2.16 (Consistency of Maxwell’s equations). Suppose that F, B €
CXS, (RT3 — R?) solve the “dynamic” component O,F = ¢*V, x B; ;B =
—V. x E of Maxwell’s equations (2.5). Suppose also that the “static” components
of the equation hold at time ¢t = 0, thus V- E(0,z) = V, - B(0,2) = 0. Show that
Maxwell’s equations in fact hold for all time. (Hint: compute the time derivative
of the quantity [5s |V - E(t,z)|* + |V - B(t,z)|* da using integration by parts.)

2.1. The Fourier transform

His life oscillates, as everyone’s does, not merely between two poles,
such as the body and the spirit, the saint and the sinner, but
between thousands, between innumerable poles. (Herman Hesse,
“Steppenwolf”)

The spatial Fourier transform, and the closely related spacetime Fourier trans-
form, is an exceptionally well-suited® tool to analyze constant coefficient linear
dispersive equations such as (2.1). This is ultimately due to the invariance of these
equations under translations in either space or time. A brief summary of the proper-
ties of the Fourier transform that we shall need (as well as other notation appearing
here, such as the Sobolev spaces H:(R%)) can be found in Appendix A.

One hint that the Fourier transform will be useful for solving equations such as
(2.1) comes from the simple observation that given any frequency & € R% and any
P:R? — R, the plane wave e¢'* % Fth(&) solves the equation (2.1) with L = ih(D)
(see Exercise 2.4). From the principle of superposition for linear equations, we thus
see that we can construct solutions to (2.1) as superpositions of plane waves.

In order to obtain an adequate wellposedness theory for dispersive equations,
it is often necessary to restrict attention to solutions which not only have some
smoothness, but also some decay. To get some idea of the problems involved,
consider the complex scalar field u : (—o00,0) x R? — C defined by
im|x|?/2ht

u(t,) =

This field can be verified to be a smooth solution to the Schrédinger equation (2.3)
for all negative times, but becomes singular at time ¢ = 0. The problem is that
while this solution is smooth, it does not decay at all as * — oo. For an even
worse example of bad behaviour of the Schrodinger equation - namely breakdown
of uniqueness even for smooth solutions - see Exercise 2.24.

6In some ways, it is too well suited; there are a number of results in this field which are
so easily proven using the Fourier transform, that non-Fourier-based alternative proofs have not
been adequately explored, and as such one encounters difficulty extending those results to variable-
coefficient, curved space, or nonlinear settings in which the Fourier transform is less useful.
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To avoid these issues, we begin by restricting attention to the Schwartz space
S:(R%). To simplify the discussion, let us now only consider scalar equations, so
that the dispersion relation h : R* — R is now real-valued; the vector-valued case
introduces a number of interesting new technical issues which we will not discuss
here. If u € C} . Ss (R x R?) is a classical solution to (2.1), then by taking Fourier
transforms of (2.1) we conclude

Fpu(t)(§) = ih(E)u(t)(€)

which has the unique solution

(2.11) u(t)(€) = e O5(¢).

Note that as h(¢) is real and g is Schwartz, the function e®(©7g(¢) is then also
Schwartz for any ¢t € R. We may thus apply the Fourier inversion formula and
obtain the solution

(2.12) ta) = [ OTSGe) de;

ith(D)

because of this, we shall let " = ¢ denote the linear propagator

uola) = [ M) d

This propagator is defined initially for Schwartz functions, but can be extended
by standard density arguments to other spaces. For instance, Plancherel’s theorem
allows one to extend e'X to be defined on the Lebesgue space L2(R?), or more
generally to the inhomogeneous Sobolev space’” H2(R?) for any s € R, as well
as the homogeneous Sobolev spaces H?(R?) (see Appendix A). It is clear that
e’ is a unitary operator on these spaces, and in particular on L2(R9) (which by
Plancherel’s identity is equivalent to HO(R%) = HO(R?), except for an inessential
factor of (2m)4/2):

Heth”H;(Rd) = HfHH;(Rd); HethHH;(Rd) = ||f||H;(Rd) Heth||L§(Rd) = HfHLg(Rd)-

One can of course also extend these propagator to tempered distributions by duality.
Propagators are examples of Fourier multipliers and as such, they commute
with all other Fourier multipliers, including constant coefficient differential oper-
ators, translations, and other propagators. In particular they commute with the
fractional differentiation and integration operators (V)* for any s € R.
The Fourier transform can also be defined® on the torus T?. If f € C°(T? —
C) is smooth, the Fourier transform f : Z¢ — C is defined by

) = 1 z)e T dy
) = gy [ e e

tLayg is the unique strong HZ(RY)

solution to the Cauchy problem (2.1). As a rule of thumb, as long as one restricts attention to
strong solutions in a space such as Hj, the linear evolution is completely non-pathological.

7In the notation of the next chapter, the function u(t) = e

80f course, the Fourier transform can in fact be defined on any reasonable abelian group,
and even (with some modifications) on most non-abelian groups; but we will not pursue these
issues here. Also, completely integrable PDE often come with a “scattering transform” which can
be viewed as a nonlinear version of the Fourier transform, but again we will not discuss this here.
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One can show that f(k) is a rapidly decreasing function of k, and the inversion
formula is given by
flo)=">" f(k)e*.
keZd

Much of the preceding discussion extends to the periodic setting, with some minor
changes; we leave the details to the reader. One advantage of the periodic setting is
that the individual Fourier modes e**** are now themselves square-integrable (and
more generally lie in all the Sobolev spaces H3(T4), thus for instance ||€ik'wHH;(Td)
is equal to (k)®). This makes it easier to talk about the evolution of individual
Fourier modes, as compared to the non-periodic case in which the Fourier modes
lie in a continuum.

The spatial Fourier transform f () — f(¢) brings into view the oscillation of a
function in space. In the analysis of dispersive PDE, it is also important to analyze
the oscillation in time, which leads to the introduction of the spacetime Fourier
transform. If u : R x R* — C is a complex scalar field, we can define its spacetime
Fourier transform @ : R x R% — C formally as

a(r,§) = /R /R , u(t, 2)e T dtdr.

To begin with, this definition is only sensible for sufficiently nice functions such as
those which are Schwartz in both space and time, but one can then extend it to
much more general functions and to tempered distributions by density arguments
or duality. Of course, in such case one does not always expect u to be well-behaved,
for instance it could be a measure or even a tempered distribution. Formally at
least, we have the inversion formula

1 .
1) = Gy /R /R (7, €) drde.

The advantage of performing this transform is that it not only diagonalises the
linear operator L in (2.1), but also diagonalises the time derivative 9;. Indeed, if
u is any tempered distributional solution to (2.1) (which will in particular include
classical solutions which grow at most polynomially in space and time) with L =
P(V) = ih(V/i) as before, then on taking the spacetime Fourier transform we
obtain
iTu(r,§) = ih(§)u(r, §)
and thus
(T = h(§))u(r,§) = 0.

The theory of distributions then shows that @(7, £) is supported in the characteristic
hypersurface {(1,€) : 7 = h(£)} of the spacetime frequency space R x R?, and in
fact takes the form

u(r, &) = 0(1 — h(§))a(§)
for some spatial tempered distribution a, where § is the Dirac delta. In the case of
the Schwartz solution (2.12), we have a = g, thus

u(,€) = 0(r — h(§))do(§)-
For comparison, if we consider ug as a function of spacetime via the trivial extension
uo(t, z) := uo(x), then we have

tio(7,€) = 6(7)io(§)-
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Thus in the spacetime frequency space, one can think of the linear solution w
to (2.1) as the time-independent field wug, twisted by the transformation (7,§) —
(7 + h(€). €).

In applications to nonlinear PDE, it is often not feasible to use the spacetime
Fourier transform to the solution u directly, because often w is only defined on a
spacetime slab I x R% instead of the entire spacetime R!'*?. This necessitates some
sort of artificial extension® of the solution u from I to R in order to take advantage
of the features of the spacetime Fourier transform. Nevertheless, the spacetime
Fourier transform (and in particular the Sobolev spaces Xt = erfh(g) adapted
to the characteristic hypersurface) has been proven to be a very useful tool in both
the study of linear and nonlinear dispersive equations; see Section 2.6.

Another approach to analyzing these PDE proceeds by taking the Fourier trans-
form in the time variable only, keeping the spatial variable untouched. This ap-
proach is well suited for settings in which the operator L has variable-coefficients, or
has a domain which is curved or has a boundary, and leads to spectral theory, which
analyzes the behaviour of propagators such as e‘* in terms of resolvents (L — 2)~1,
as well as the closely related spectral measure of L. This perspective has proven
to be immensely useful for the linear autonomous setting, but has had less success
when dealing with non-autonomous or nonlinear systems, and we will not pursue
it here.

We summarise some of the above discussion in Table 1, as well as in the fol-
lowing principle.

PRINCIPLE 2.1 (Propagation of waves). Suppose that a solution u solves a scalar
dispersive equation (2.1) with initial datum ug. If ug has spatial frequency roughly
& (in other words, the Fourier transform tg is concentrated near &), then u(t)
will have spatial frequency roughly & for all times, and u will also oscillate in time
with frequency roughly h(&o). In physical space, u will travel with velocity roughly
—Vh(&). These heuristics are only valid to accuracies consistent with the spatial
and frequency uncertainty of u; the wave is initially coherent, but as time progresses,
the frequency uncertainty (and hence velocity uncertainty) overwhelms the spatial
uncertainty, leading to dispersion. (In particular, the uncertainty principle itself is
a mechanism for dispersion over time.)

Thus for instance, fields of frequency &, will propagate at velocities i€/v under
the Schrodinger evolution, —3¢2 for the Airy evolution, and c£/|¢| for the wave
evolution, subject to limitations given by the uncertainty principle. See Exercise
2.4 for a partial verification of this principle. For the wave equation, thi principle
suggests that waves propagate at the speed of light ¢; we shall expand upon this
finite speed of propagation property in Section 2.5. One can also use techniques from
oscillatory integrals, in particular the method of stationary phase, to make rigorous
formulations of the above principle, but we will prefer to leave it as an informal
heuristic. The situation for systems (as opposed to scalar equations) can be more
complicated; one usually has to decompose h(§) (which is now an operator) into
eigenspaces, and thus decompose the wave of frequency £ into polarised components,
each of which can propagate in a different direction. We will not discuss this here.

90ne could also work with various truncated variants of the Fourier transform, such as
cosine bases or the Laplace transform. However, the advantages of such tailored bases are minor,
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TABLE 1. Some different perspectives to analyzing an evolution
equation, and the coordinates used in that analysis. This list is not
intended to be exhaustive, and there is of course overlap between
the various perspectives.

Approach Sample tools

Spatial variable () Elliptic theory, gauge fixing, coercivity estimates

Causality (t) Gronwall, bootstraps, Duhamel, time subdivision
Physical space (z, t) Integration by parts, substitutions, fund. solution

Spacetime geom. (z®)  Vector fields, null surfaces, conformal maps
Frequency space (¢, t)  Littlewood-Paley theory, multipliers, paraproducts
Spectral theory (z, 7)  Spectral measure, resolvents, eigenfunctions
Spacetime freq. (£, 7) X *? spaces, dispersion relation, null structure

Phase space (z,€, t) Bicharacteristics, pseudodifferential operators, FIOs
Geom. optics (x,&,t,7) Eikonal and Hamilton-Jacobi equations, WKB
Hamiltonian (D, t) Noether’s theorem, nonsqueezing, normal forms
Lagrangian (u) Stress-energy tensor, symmetries, variational methods

EXERCISE 2.17 (Translation operators). Show that for any 2o € RY, the prop-
agator exp(—zo - V) is the operation of translation by z, thus exp(—xz¢ - V) f(z) =
f(xz — xp). Compare this with Taylor’s formula in the case that f is real analytic.

EXERCISE 2.18 (Wave propagators). Using the spatial Fourier transform, show
that if u € C7,.Sz(R x R?) is a field obeying the wave equation (2.9) with ¢ = 1,

then
(D) (€) = cos(tle])ian(€) + %m@

for all t € R and ¢ € R% one can also write this as
sin(tv/—A)

u(t) = cos(tv/—A)ug + ﬁul

loc

or using the spacetime Fourier transform as

1 n
i, €) = a1 - ) (@) + e in (9)

(note that some care is required to ensure that the product of (7 — |¢]) and sgn(7)
actually makes sense). Thus the characteristic hypersurface for the wave equation is
the light cone {(7,€) : |7| = |¢]}. As these formulae make sense for any distributions
ug, u1, we shall refer to the function or distribution u(¢) generated by these formulae
as the solution to the wave equation with this specified data. Show that if (ug,u1) €
H:(RY)x H:1(R?) for some s € R, then we have u € CY H (RxR)NCLH (R x
R%), and in fact we have the bounds

IVu)| gz-1(ay + 10 gz -1 (may Sdos [wollasray + lurll ge-1gay)
and
u®)l s ray Sa.s 6ol s may + uall gz-1gay)

and are usually outweighed by the loss of algebraic structure and established theory incurred by
abandoning the Fourier transform.
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for all times ¢ € R. Thus the solution u stays bounded to top order, but lower
order norms of v can grow linearly in time.

EXERCISE 2.19 (Klein-Gordon propagators). If u € CF,, .S (R x R?) is a clas-
sical solution to the Klein-Gordon equation (2.10) with ¢ = m = 1, then

a(t)(€) = cos(t(€))ao(€) + %m@

for all t € R and ¢ € R% one can also write this as

u(t) = cos(tv1 — A)ug + %ul

1 sgn(T)

a(r,&) = 6(|7| - <§>)(§ﬁo(§) + 2() i1(£))-

Thus the characteristic hypersurface here is the two-sheeted hyperboloid {(7,¢&) :
|7|? — |€]2 = 1}. Again we extend this formula to distributions to define the notion
of a distributional solution to the Klein-Gordon equation. Show that if (ug,u;1) €
H:(RY) x H:~Y(RY), then we have u € CP (R — H*(R%)) N CHR — H: 1(RY)),
and in fact we have the bounds

or

u@)l s ray + 10cu()] g1 (may Saos Nlwoll s ray + luall gz-1 ma)

for all times ¢ € R. Thus the Klein-Gordon equation has slightly better regularity
behaviour in (inhomogeneous) Sobolev spaces than the wave equation.

EXERCISE 2.20 (Geometry of characteristic surfaces). Interpret Exercises 2.3-
2.11 using either the spatial Fourier transform or the spacetime Fourier transform,
viewing each of these exercises as an assertion that one dispersion relation can
be approximated by or transformed into another. Several of the exercises should
correspond to a specific geometric approximation or transformation (e.g. approxi-
mating a cubic by a quadratic or a polynomial by a tangent, or a hyperboloid by
two paraboloids; or by relating a cone to its conic sections). The exercises involving
vector equations such as Dirac’s equation are a little trickier to interpret this way,
as one also needs to analyze the eigenspaces of the dispersion relation h(§).

EXERCISE 2.21 (Duhamel formula). Let I be a time interval. Suppose that
u € ClS,(I x RY) and F € C?S,(I x R?) solve the equation d,u = Lu + F, where
L = ih(D) is skew-adjoint. Establish the Duhamel formula

t
(2.13) u(t) = et Ly (t) +/ eI E(s) ds

to
for all tg,t € I (compare with (1.48)).
EXERCISE 2.22 (Wave Duhamel formula). Let I be a time interval. Suppose
that u € C?S,(I x RY) and F € CPS,(I x R?) are fields such that Cu = F.

Establish the Duhamel formula
(2.14)

u(t) = cos((t—to)vV—A)u(te)+

sin((t — to)vV—2A) (M(to)_/f sin((t — S)M)F(s) ds

VA w VA

forall to,t € I (compare with Exercise 1.52).
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EXERCISE 2.23 (Invariant energy). Show that if u € C, S, (R!'T9) is a clas-
sical solution to the wave equation with ¢ = 1, then the invariant energy C(t) :=
Hu(t)HiI;/Z(Rd) + ||atu(t)”i]:;1/2(Rd) is independent of the choice of time ¢. (Hint: use
the spatial Fourier transform, and either the explicit solution for u or differentiate
in time. One can also use the method sketched below.) Furthermore, it is also
invariant under the Lorentz transformation in Exercise 2.6. (This is rather tricky.

One way is to show that u can be expressed in the form

(t ) = gwexitle 48
(t5 ) ; Rdfi(é.) |§|

for some locally integrable functions f4(£), f— (&), and that for any such represen-

tation we have ) at
_ - 275
00 = a2 [ Vs -

Then apply the Lorentz transform to v and see what that does to fi. The measure

% on the light cone 72 — [£|? = 0 can also be interpreted more invariantly as the

Dirac measure 25(72 — [£]?).)

EXERCISE 2.24 (Illposedness of Schrodinger in CS5 ). Give an example of a

x,loc
smooth solution u € C7¢ | (RxR — C) to the Schrodinger equation id;u+02u = 0
which vanishes on the ﬁpper half-plane ¢ > 0 but is not identically zero. (Hint: Find
a function f(z) which is analytic'? on the first quadrant {Re(z),Im(z) > 0}, which
decays fast enough on the boundary « of this quadrant (which is a contour consist-
ing of the positive real axis and upper imaginary axis) so that f,y f(z)eie=tit=* gz
converges nicely for any x € R and t € R, is equal to zero for t > 0 by Cauchy’s
theorem, but is such that [ f (2)e™=* dz is not identically zero. For the latter fact,
you can use one of the uniqueness theorems for the Fourier transform.) This shows
that one no longer has a satisfactory uniqueness theory once we allow our solutions
to grow arbitrarily large (so that the theory of tempered distributions no longer
applies); thus infinite speed of propagation, combined with extremely large reserves
of “energy” at infinity, can conspire to destroy uniqueness even in the smooth cat-
egory. Show that such an example does not exist if we replace C7% 1, by C75 (so
that all derivatives of u are uniformly bounded).

EXERCISE 2.25. Let u € CP HL(R'*4)NCLL2 (R ?) be an energy class solution
to the wave equation with ¢ = 1. Show that for any bounded time interval I we
have the bound

H / w(t, @) dt 2y S [90)]] 71 oy + 19(0)]| 2 r.

(This can be done either by direct integration by parts in physical space, or by the
spatial Fourier transform.) Thus integrating a solution in time leads to a gain of
regularity in space. This phenomenon is a consequence of the oscillation of u in
time, and fails if one places absolute values inside the time integral on the left-hand
side; see however the Strichartz estimates discussed in Section 2.3, which are also

10The author thanks Jared Wunsch, John Garnett, and Dimitri Shlyakhtenko for discussions
which led to this example. A key point is that the functions involved grow so fast that they are not
tempered distributions (despite being smooth), and thus beyond the reach of the distributional
Fourier transform.
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a kind of smoothing effect formed by averaging in time. (Thanks to Markus Keel
for this problem.)

2.2. Fundamental solution

The wide wings flap but once to lift him up. A single ripple starts
from where he stood. (Theodore Roethke, “The Heron”)

In the previous section, we have given the solution u(t) to the linear disper-
sive equation (2.1) as a spatial Fourier multiplier applied to the initial datum wg,
see (2.11). For simplicity let us take u to be a complex scalar field and wuy to
be Schwartz. Since multiplication on the Fourier transform side intertwines with
convolution on the spatial side, we thus have

u(t,x) = up x Ki(x) = /Rd uo(x — y) K (y) dy

where the fundamental solution (or Riemann function) K, is the (distributional)
inverse Fourier transform of the multiplier e?():

1 _
2.1 Ki(x) = z-E+th(€) ge,
(215) )= | e :

One can also think of K, as the propagator e** applied to the Dirac delta function
d.

The integral in (2.15) is not absolutely convergent, and thus does not make
sense classically. However in most cases one can solve this problem by a limiting
procedure, for instance writing

— 1 i(z-E+th(8)) ,—elé|

(2.16) K (x) ;1_1)1(1J L /Rd e e de.

The integrals on the right-hand side are absolutely convergent, and the limit often
also exists in the sense of (tempered) distributions. For instance, in the case of the

Schridinger equation (2.3), with h(€) = —5%[¢|?, we have

(2miht/m)d/2
for all t # 0, where one takes the standard branch of the complex square root with
branch cut on the negative real axis (see Exercise 2.26). Thus we have the formula

1 im|z—y|?/(2ht)
(2miht/m)i/2 /Rde B o (y) dy

for t # 0 and all Schwartz solutions to the free Schrédinger equation (2.3) with ini-
tial datum (0, z) = ug(z). This simple formula is even more remarkable when one
observes that it is not obvious'! at all that u(t, z) actually does converge to ug ()
in the limit ¢ — 0. It also has the consequence that the Schrodinger evolution is
instantaneously smoothing for localised data; if ug is so localised as to be absolutely
integrable, but is not smooth, then from (2.18) shows that at all other times ¢ # 0,
the solution u(¢) is smooth (but not localised). Thus the Schrédinger evolution can
instantaneously trade localisation for regularity (or vice versa, since the equation is
time reversible). This effect is related to the local smoothing phenomenon, which we

(2.17) Kyi(z) = cithA/2ms ;eimlwﬁ/@ht)

(2.18) u(t,z) =

111ndeed, the problem of establishing pointwise convergence back to ug when ug is only
assumed to lie in a Sobolev space HJ (Rd) is still a partially unsolved problem, and is considered
to be quite difficult. See for instance [Sjo], [Veg].
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discuss later in this chapter. It can also be explained using the heuristic of Heisen-
berg’s law mv = i€ (from Principle 2.1); the high frequencies of u travel very fast
and radiate quickly away from the origin where they are initially localised, leaving
only the low frequencies, which are always smooth, to remain near the origin.

REMARK 2.2. The instantaneous smoothing effect is also closely related to
the infinite speed of propagation for the Schrodinger equation; a solution which is
compactly supported at time ¢t = 0 will instantly cease to be compactly supported
at any later time, again thanks to (2.18). Indeed, one can heuristically argue that
any equation which is both time reversible and enjoys finite speed of propagation
(as well as some sort of uniqueness for the evolution), such as the wave and Klein-
Gordon equations, cannot enjoy any sort of fixed-time smoothing effect (though
other nontrivial fixed-time estimates may well be available).

Next we consider the fundamental solution K(z) for the Airy equation (2.4).
Here we have h(£) = &3, and thus we have

1 .
Ki(x) / (e HE?) d¢.
R

T
A simple rescaling argument then shows
Ki(x) =t V3K (x/t1/?)

where we adopt the convention that (—t)'/3 = —(¢1/3). The function K is essen-
tially the Airy function, and is known to be bounded (see Exercise 2.30). Thus we
see that K; = O(t~'/3). This should be compared with the decay of O(t~'/2) which
arises from the one-dimensional Schrédinger equation. The difference in decay is
explained by the different dispersion relations of the two equations (h(¢) = ¢3 for
Airy, h(€) = $&? for Schrédinger). From Exercise 2.4 or Principle 2.1, the relation-
ship between group velocity and frequency for the Airy equation is v = —3€2, as
opposed to v = & for Schrédinger. Thus high frequencies move even faster in Airy
than in Schrodinger (leading to more smoothing), but low frequencies move more
slowly'? (leading to less decay).

Now we turn to the wave equation with ¢ = 1, for which the situation is more
complicated. First of all, as the equation is second-order in time, there are two

fundamental solutions of importance, namely

9(z) := cos(tv/— x :L cos(2m el s
Kf(a) = cos(tv=R)3(0) = oy [ cosC2mtlel)e’™ e

Kl(z) = sin(ty/—A) 5(z) = 1 / sin(27t|¢])
V-A @2m)? Jra €]
(see Exercise 2.18, 2.22). In principle, this is not a difficulty, as one can easily
verify (e.g. using the Fourier transform) that the two solutions are related by the
formula K = 9,K}. However, in this case the fundamental solutions are only
distributions rather than smooth functions, because one now only has finite speed
of propagation (see Section 2.5) and hence no fixed-time smoothing effects exist.

Nevertheless, the above formulae do give some insight as to the character of these

and
et de

12The reader may wonder at this point whether the vague heuristics from Principle 2.1 can be
placed on a more rigorous footing. This is possible, but requires the tools of microlocal analysis,
and in particular the principle of stationary phase and the wave packet decomposition. We will
not attempt a detailed description of these tools here, but see for instance [Stei2].
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distributions. Indeed one easily sees that K{ and K} are radially symmetric, real,
and verify the scaling rules

Ty kM) = S0 gy

1

]
In the case when d is odd, one can describe K and K} explicitly (see Exercise 2.31),
and then one can then use the method of descent (as in Exercise 2.33) to obtain
a formula for even dimensions d. It will however be more important for us not to
have explicit formulae for these fundamental solutions, but instead to obtain good
estimates on the solutions and on various smoothed out versions of these solutions.
A typical estimate is as follows. Let ¢ € S,(R?) be a Schwartz function, and for
any A > 0 let ¢y := A"¢(Az); thus for large A this resembles an approximation to
the identity. Then we have the pointwise estimates

(2.19) KD # g ()] Sg,a A(AE) 471/
and
(2.20) |K} # oa ()] Sg,a A1) D2

for all t € R and = € R?. These estimates can be proven via the Fourier transform
and the principle of stationary phase; we shall indicate an alternate approach using
commuting vector fields in Exercise 2.65. Roughly speaking, these estimates assert
that K and K} decay like t~(?=1)/2_ but only after integrating K? and K} %
times and % times respectively.

The situation for the Klein-Gordon equation (2.10) is even more complicated;
formulae for the explicit solution are in principle obtainable from the method of
descent (see Exercise 2.33) but they are not particularly simple to work with. It
is convenient to split the frequency domain into the nonrelativistic region, when
h|¢] < mc, and the relativistic region, when fi|¢] > me. The basic rule of thumb
here is that the Klein-Gordon equation behaves like the Schrodinger equation in the
non-relativistic region and like the wave equation in the relativistic region. For some
more precise formulations of this heuristic, see [MN] and the references therein.

One can also construct fundamental solutions for these equations on the torus
T¢ = R?/27Z%. In the case of the wave and Klein-Gordon equations, which have
finite speed of propagation, there is little difference between the two domains (for
short times at least). However, the fundamental solution for dispersive equations
such as the Schrédinger equation become significantly more complicated to con-
trol on torii, with some very delicate number theoretic issues arising; as such, the
concept of a fundamental solution has only limited importance in these settings.

EXERCISE 2.26 (Gaussian integrals). Use contour integration to establish the

identity
oo
/ e—aw2eﬁw dr = Eeﬁ2/4a
o V o

whenever «, 3 are complex numbers with Re(a) > 0, where one takes the standard
branch of the square root. Use this and (2.16) to establish (2.17). (You may wish
to first reduce to the case when d = 1 and % = 1. With a rescaling trick one can
also assume t = 1.)

EXERCISE 2.27 (Schrodinger fundamental solution). Show that up to multipli-
cation by a constant, the fundamental solution (2.17) for the Schrédinger equation
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is the only tempered distribution which is invariant under spatial rotations, Galilean
transforms, time reversal symmetry, and the scaling u(t,z) — )\*"u(%, 5). This
can be used to give an alternate derivation of the fundamental solution (except for
the constant).

EXERCISE 2.28 (Pseudoconformal transformation). Let u € C}, S, (R x RY)

t,loc
be a complex scalar field, and define the field v : R x R — C by
1 1z 2
— =T i)t /2t
v(t,x) : (z't)d/Qu(t’ t)e ,

with the convention

’U(O, (E) = W’ELQ((I])

Establish the identity

1 1 1 1 1 x, .2

(Z'at’l) + §A’U)(t, JI) = t—Q(Zt)—dﬂ((?tu =+ EAU)(¥7 ?)ezm /2t
for t # 0. In particular, show that if u solves the Schrodinger equation (2.3)
with i = m = 1, then v also solves the Schrédinger equation (even at time ¢ = 0).
Thus the pseudoconformal transformation manages the remarkable feat of swapping
the initial datum wug(x) with its Fourier transform dg(x) (up to trivial factors).
Also verify that the psedoconformal transformation w +— v is its own inverse. For
an additional challenge, see if you can link this transformation to the conformal
transformation in Exercise 2.14 using Exercise 2.11.

EXERCISE 2.29 (Van der Corput lemma). Let I C R be a compact interval.
If ¢ € C2(I — R) is either convex or concave, and |0;¢(z)] > X for all z € [
and some A > 0, establish the estimate |f1 @) dx| < % (Hint: write ¢*¢(®) =
%&Cew’(m) and integrate by parts.) From this and induction, conclude that if

k>2and ¢ € CK(I — R) is such that |9¥¢(x)| > A for all z € I and some \ > 0,
then | [, @) dx| <, A=Yk Obtain a similar estimate for integrals of the form
fR e"?@)(x) dx when 1) has bounded variation.

EXERCISE 2.30 (Airy fundamental solution). Let Ky(x) be the fundamental
solution of the Airy function. Establish the bounds Kj(z) = Oy ({z)~%) for any
N >0and z >0, and K;(z) = O((x)~/4) for any 2 < 0. (Hint: when 2 > 1, use
repeated integration by parts. When z is bounded, use van der Corput’s lemma.
When x < —1, split the integral up into pieces and apply van der Corput’s lemma
or integration by parts to each.) Explain why this disparity in decay is consistent
with Principle 2.1.

EXERCISE 2.31 (Wave fundamental solution). Let d > 3 be odd and ¢ = 1,

and consider the fundamental solutions K = cos(ty/—A)d§ and K} = % “;A)é

for the wave equation. Show that these distributions are given by

K (2)p(x) do = cdat(%atﬂd*)/ (g2 P(tw)dw);
R3 Gd—1

1
Kl (2)p(x) de = ca(50,) D2 (tw)dw)
R3 t gd—1
for all test functions ¢, where dw is surface measure on the sphere S%1, and ¢4
is a constant depending only on d. (Hint: since K and K} are radial, it suffices
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to establish this when ¢ is also radial. Now apply Exercise 2.12 and Exercise 2.13.
Alternatively, one can compute the Fourier transforms of the distributions listed
above and verify that they agree with those of K and K!. Yet another approach is
to show that the expressions given above solve the wave equation with the specified
initial data.) What happens in the case d = 17 (Use Exercise 2.13.)

EXERCISE 2.32 (Sharp Huygens’ principle). Let d > 3 be odd, and let u €
CF 10eSe (R R?) be a classical solution to the wave equation (2.9), such that the
initial data ug,u; is supported on a closed set Q C R%. Show that for any time ¢,
u(t) is supported on the set Q; := {x € R%: |z — y| = ct for some y € Q}.

EXERCISE 2.33 (Klein-Gordon fundamental solution). Let d > 1 and ¢ = h = 1,
let K? and K} be the fundamental solutions for the Klein-Gordon equation in d

dimensions, and let K 9 and K ! be the fundamental solutions for the wave equation
in d + 1 dimensions. Establish the distributional identities

7 - 7 imz
Kl (x1,...,2p) —/ Kj(x1,..., %0, Ta41)e" "4 dagi
R

loc

for j = 0,1. (Hint: use Exercise 2.10.) In principle, this gives an explicit description
of the fundamental solution of the Klein-Gordon equation, although it is somewhat
unwieldy to work with in practice.

2.3. Dispersion and Strichartz estimates

Like as the waves make towards the pebbled shore, so do our min-
utes hasten to their end. (William Shakespeare, Sonnet 60)

In order to be able to perturb linear dispersive equations such as (2.1) to
nonlinear dispersive equations, it is crucial that we have some efficient ways to
control the size of solutions to the linear problem in terms of the size of the initial
datum (or of the forcing term, if one exists). Of course, to do this, one has to
quantify the notion of “size” by specifying a suitable function space norm. It turns
out for semilinear equations such as NLS and NLW, the mixed Lebesgue norms
LIL" (I x R%), and more generally the mixed Sobolev norms L{W3s7(I x R?), are
particularly useful3.

To make the discussion more concrete, let us consider the Schrodinger equation
(2.3) in R4 with i = m = 1, so the propagator operator is simply** e4/2. We first
ask what fized-time estimates are available: if we fix a time ¢ # 0, and we know
the initial datum ug lies in some Sobolev space, what do we learn about the size of
the solution u(t) = e™*/2uy? To avoid technicalities let us take the solution to be
Schwartz; the general case can usually be handled by limiting arguments.

Since e**4/2 is unitary, we obtain the L? conservation law

(2.21) ”eitA/QuOHLﬁ(Rd) = |luoll L2 (ray

itA /2

and then (since e commutes with other Fourier multipliers)

||6itA/2UOHH;(Rd) = HuoHH;(Rd);

13 There are also Besov refinements of the Strichartz spaces which convey slightly more precise
information on the distribution of the solution among low, medium, and high frequencies, as well
as Lorentz refinements that extend a little more control over the distribution of large and small
values in physical space, but this is a more technical topic which we will skip lightly over here.

14The factor of 1 /2 in the exponent is not particularly important, and all the estimates in
this section hold if it is omitted; we retain it for compatibility with other sections of the book.
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one can also obtain this from Plancherel’s identity. From the fundamental solution
(2.18) and the triangle inequality we also have the dispersive inequality

(2.22) €2 200 || oo ety Sa t™ Y2 [|uoll 11 (ra)-

This shows that if the initial datum ug has suitable integrability in space, then
the evolution will have a power-type decay in time; the L2 mass of the solution is
conserved, but is dispersed over an increasingly larger region as time progresses (see
Exercise 2.34). We can interpolate this (using the Marcinkeiwicz real interpolation
theorem, see e.g. [Sad]; one can also modify the arguments from Exercise A.5)
with (2.21) to obtain the further estimate

. _dri_1
(2.23) |\€”A/2U0||L5/(Rd) <a 7472 | 1o (ma)

for all 1 < p < 2, where p’ is the dual exponent of p, defined by the formula
% + % = 1. These are the complete range of L? to LI fixed-time estimates available
(see Exercise 2.35). In particular, the Schrodinger flow does not preserve any L?
norm other than the L2 norm. We can insert fractional differentiation operators as
before and conclude

HeitA/2 —d(5

_1
UOHWaf*Pl(Rd) Sat 2)HUOHW£’17(Rd)

for all s € R. By using Sobolev embedding, one can trade some of the regularity
on the left-hand side for integrability, however one cannot hope for any sort of
smoothing effect that achieves more regularity on the left-hand side than on the
left (see Exercise 2.36). This is in contrast with the smoothing effects of dissipative
propagators such as the heat kernels e*”.

These decay estimates are useful in the long-time asymptotic theory of nonlin-
ear Schrodinger equations, especially when the dimension d is large and the initial
datum ug has good integrability properties. However in many situations, the initial
data is only assumed to lie in an L2 Sobolev space such as H:(R?). Fortunately,
by combining the above dispersive estimates with some duality arguments, one can
obtain an extremely useful set of estimates, known as Strichartz estimates, which
can handle this type of data:

THEOREM 2.3 (Strichartz estimates for Schrodinger). [GV], [Yaj], [KTao] Fiz
d>1and h=m =1, and call a pair (q,r) of exponents admissible if 2 < ¢,r < oo,
% + % = g and (q,r,d) # (2,00,2). Then for any admissible exponents (q,r) and

G,7) we have the homogeneous Strichartz estimate

2.24) €722 ug| s pr (R xray Sdigr ol 2 ey
the dual homogeneous Strichartz estimate
(225) I [ 2R dsllaamn Saar 1Py o
and the inhomogeneous (or retarded) Strichartz estimate
(2.26) [ t/<t€i(t_t JARE() sl Lavy (mey Saama ||FHL§/L;’(RXRd)
The non-endpoint version of this theorem (when ¢, § # 2) had been established
in [GV], [Yaj], and of course the original work of Strichartz [Stri] (which in turn

had precursors in [Seg3], [Tomas]). The more delicate endpoint cases are treated
in [KTao]. The estimates are known to fail in a number of ways at the endpoint
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(g,7,d) = (2,00,2), see [Mon], although the homogeneous estimate can be salvaged
if one assumes spherical symmetry [Stef], [Tao2], [MNNO]. The exponents in
the homogeneous estimates are best possible (Exercise 2.42), but some additional
estimates are available in the inhomogeneous case [Kat8], [Fos|.

Because the Schrédinger evolution commutes with Fourier multipliers such as
[V|? or (V)?, it is easy to convert the above statements into ones at regularities
H:(RY) or H(RY). In particular, if u : I x R? — C is the solution to an inhomo-
geneous Schrodinger equation

1
10y + §Au =F; u(0)=u € Hi(RY),

given by Duhamel’s formula (2.13) on some time interval I containing 0, then by
applying (V)® to both sides and using the above theorem, we obtain the estimates

lull zawzr (rxra) Sdaars Iwollaz ey + 1Fl Loy may

for any admissible (¢,r) and (q,7), though one has to take some care with the
endpoint 7 = oo because of issues with defining Sobolev spaces there. Similarly if
we replace the Sobolev spaces HS, W, W27 by their homogeneous counterparts
He, W2 W™, One can also use Sobolev embedding and (if I is bounded) Hélder’s
inequality in time to increase the family of exponents for which Strichartz estimates
are available; see Figure 1 for some examples.

We shall give a proof of this non-endpoint cases of this theorem shortly, but we
first give an abstract lemma, the Christ-Kiselev lemma [CKis] which is very useful
in establishing retarded Strichartz estimates. A proof of the lemma as formulated
here can be found in [SSog] or [Tao2].

LEMMA 2.4 (Christ-Kiselev lemma). Let X,Y be Banach spaces, let I be a time
interval, and let K € C°(I x I — B(X —Y)) be a kernel taking values in the space
of bounded operators from X toY. Suppose that 1 < p < g < 0o is such that

n / K(t,5)f(s) dsllozayy < Al s

for all f € LY(I — X) and some A > 0. Then one also has

n / K(t)1(5) dslp30—vy o Al 2o
s€l:s<t

The principle that motivates this lemma is that if an operator is known to
be bounded from one space to another, then any reasonable “localisation” of that
operator (in this case, to the causal region s < ¢ of time interactions) should also
be bounded. The hypothesis that p < ¢ is unfortunately necessary; see Exercise
2.40.

We can now prove the non-endpoint cases of the Strichartz estimate.

PARTIAL PROOF OF THEOREM 2.3. We shall only prove this theorem in the
“non-endpoint cases” when ¢,q # 2. In these cases we can argue using the TT*
method (as was carried out for the closely related restriction problem in harmonic
analysis in [Tomas]|) as follows. Let (g, ) be admissible. Applying Minkowski’s in-
equality, (2.23) and the Hardy-Littlewood-Sobolev theorem of fractional integration
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1/q

1/r

FIGURE 1. The Strichartz “game board” for Schrédinger equations
in H!(R3). The exponent pairs are A = L°L2, B = LIOL3/1,
D = L{LS, Ay = LPLS, By = L%, C1 = L{Ly, A = LiL3,
D = L? 85 If the initial datum ug lies in H!(R?), and one
derivative of the forcing term F' lies in a space the closed interval
between A’ and D’, then one derivative of the solution u lies in
every space in the closed interval between A and D. Endpoint
Sobolev embedding can then “move left”, place the solution it-
self in any space between A; and C; (though the endpoint Cj
requires a Besov modification to the Strichartz spaces due to fail-
ure of endpoint Sobolev embedding; see [CKSTT11]). If I is
bounded, Hélder in time can also “move up”, lowering the r index
to gain a power of |I|. If one is working with H_ instead of H}
(or is restricting to high frequencies), then non-endpoint Sobolev
embedding is also available, allowing one to enter the pentagonal
region between AD and A;C;. If one restricts to low frequencies,
then Bernstein’s inequality (A.5) can move further to the left than
AC.

(see (A.10)), we conclude that

n / =952 F(5) ds] o1 rocrey < | /R 132 P(8) | gy sl

1
S ME Ly (gay * MG D Tllzem)

Sd,q,r ||F||L‘tl L7 (RxR?)

whenever 2 < r < oo and 2 < ¢ < co are such that %—F% = %, and for any Schwartz
function F in spacetime. Applying Holder’s inequality, we conclude that

i(t—s)A/2
] ] F(s), ) dsit] Saar 1712, 2 ory
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where ( fRd a: ) dx is the usual inner product. But the left-hand side
factorlses as || s e*”A/QF(s) ds||L2(Rd and thus we obtain the dual homogeneous
Strichartz estimate

I 22 ) dslliamn Saar 1Pl 1y e

which is (2.25). By duality we then obtain (2.24). Composing those two estimates,
we conclude

| /Re_iSA/QF(S) dsl| sy ey Sdarir [Fll Lo e muray
and (2.26) then follows from the Christ-Kiselev lemma. O

Strichartz estimates can be viewed in two ways. Locally in time, they describe
a type of smoothing effect, but reflected in a gain of integrability rather than
regularity (if the datum is in L2, the solution u(t) is in L” with r > 2 for most of
the time), and only if one averages in time. (For fixed time, no gain in integrability
is possible; see Exercise 2.35.) Looking globally in time, they describe a decay effect,
that the L norm of a solution «(t) must decay to zero as t — oo, at least in some
Li-averaged sense. Both effects of the Strichartz estimate reflect the dispersive
nature of the Schrodinger equation (i.e. that different frequencies propagate in
different directions); it is easy to verify that no such estimates are available for the
dispersionless transport equation (2.2), except with the trivial pair of exponents

(g,7) = (20,2).

REMARK 2.5. Readers who are familiar with the uncertainty principle (Prin-
ciple A.1) can interpret the Strichartz estimates for the homogeneous Schrodinger
equation as follows. Consider a solution u to the homogeneous Schrédinger equa-
tion with L2 norm O(1), and with frequency ~ N (i.e. the Fourier transform is
supported in the region || ~ N), for each time t. The uncertainty principle shows
that at any given time ¢, the most that the solution u(t) can concentrate in physical
space is in a ball of radius ~ 1/N; the L2 normalisation then shows the solution can
be as large as N%2 on this ball. However, the Strichartz estimates show (roughly
speaking) that such a strong concentration effect can only persist for a set of times
of measure ~ 1/N?; outside of this set, the solution must disperse in physical space
(compare with Proposition A.4). Note that this is also very consistent with Prin-
ciple 2.1, since concentration in a ball of radius 1/N would induce the frequency
uncertainty of ~ N, hence a velocity uncertainty of ~ N, which should disperse
the ball after time ~ 1/N?2.

Similar Strichartz estimates can be established for any linear evolution equation
which enjoys a dispersive estimate, such as the Airy equation. The wave equation
also obeys a dispersive inequality, see (2.19), (2.20), but the presence of the regular-
izing factor ¢, means that one requires some more harmonic analysis (in particular,
some Littlewood-Paley theory and the theory of complex analytic interpolation) in
order to utilise this estimate properly. Nevertheless, it is still possible to establish
suitable Strichartz estimates for the wave equation. Indeed, we have

THEOREM 2.6 (Strichartz estimates for wave equation). Let I be a time interval,
and let v : I x R — C be a Schwartz solution to the wave equation Ou = F with



78 2. CONSTANT COEFFICIENT LINEAR DISPERSIVE EQUATIONS
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FIGURE 2. The Strichartz “game board” for wave equations in
H!(R?). The exponent pairs are A = L°L2 E = L?L®°, A =
LIS, Py = LIL12, A = L2, B = L2LL, A} = LILY. If
the initial data (ug,u1) lies in HL(R3) x L2(R?3), and a suitable
derivative of the forcing term F on a space between A’ and E’
(excluding E’), then a certain derivative of u lies in every space
between A and F (excluding E), and so by Sobolev u itself lies in
every space between A; and E (excluding E). At the endpoint A’,
no derivatives on F' are required. Also by Sobolev embedding, it
would have sufficed to place VF in any space between A} and E
(excluding E). Other moves, similar to those discussed in Figure
1, are available.

¢ = 1, and with initial data u(ty) = ug, Oru(ty) = uy for some ty € I. Then we
have the estimates

lullLors(rxray + 1ullco s (rxmay + 10l cofgz—1 (1 xR

Sarsin (0l 2z ey + 101l i3 oy + 1P i 1 rcmer))
whenever s > 0,2<q,§ < o0 and 2 < 7,7 < 0o obey the scaling condition

1 d d 1 d
(2.27) S t-—=c-—s=

q T 2 ?—i_ﬁ_

and the wave admissibility conditions

1 d-11 d-1 < d—1

q+ 2r ’cj+ 2r' T 4
For a proof of this theorem, see [Kat8], [GV2], [Kap], [LSog], [Sog], [SStru3|,
[KTao]. Again, the exponents are sharp for the homogeneous version of these
estimates (i.e. with F' = 0; see Exercise 2.43) but not the inhomogeneous; see [Har],
[Obe], [Fos]| for some inhomogeneous estimates not covered by the above theorem.
The endpoint case r = oo contains a number of subtleties, see [FW] for some
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discussion. As with the Schrédinger equation, the Strichartz estimates for the wave
equation encode both local smoothing properties of the equation (the estimates
obtained from Strichartz lose fewer derivatives than the fixed-time estimates one
would get from Sobolev embedding), as well as global decay estimates, though
when the wave equation compared against the Schrédinger equation in the same
dimension, the estimates are somewhat inferior; this is due to the weaker dispersion
in the wave equation (different frequencies move in different directions, but not in
different speeds), the finite speed of propagation, and the concentration of solutions
along light cones. This estimate only controls the homogeneous Sobolev norm, but
the lower order term in the inhomogeneous Sobolev norm can often be obtained by
an integration in time argument.

An important special case of the wave equation Strichartz estimates is the
energy estimate

(2.28) IVullco a1 (1 xmay + 10l co gz =1 (1 may

S Vel g1 may + luall a1 ey + 1Fl iz (1 xmey
which can also be proven by other means, for instance via the Fourier transform
(Exercise 2.45), or by using the stress energy tensor (see Exercise 2.59). This
estimate has the useful feature of gaining a full degree of regularity; the forcing
term F' is only assumed to have s — 1 degrees of regularity, but the final solution u
has s degrees of regularity. One also has the useful variant

(2.29) HUHCEH;(IXRd) + HatUHch;*l(fod)

' Ss (LD (luoll s may + luall gz=1may + 1Fl L1 ga=1 (1xmay)-
The other Strichartz estimates gain fewer than one full degree of regularity, but
compensates for this by improving the time and space integrability. One specific
Strichartz estimate of interest (and one which was discovered in the original paper
[Stri]) is the conformal Strichartz estimate for the wave equation

(2 30) ”u”Li(ﬁJrl)/(d*l)(Rde) SdHu(O)HH;/2(Rd) + ”875”(0)”];(;1/2(1:{01)
' + HD“”Lffj*l)/(d”)(rcxrcd)7

valid for d > 2.

Strichartz estimates also exist for the Klein-Gordon equation but are more
difficult to state. See [MSW], [Nak4], [MN]; for short times one can just rely
on the wave equation Strichartz estimates (treating the lower order mass term as a
perturbation), while for long times it is easiest to proceed by treating the relativistic
and non-relativistic regimes separately. Some Strichartz estimates are also known
in periodic settings, but primarily of L{ L% or LYLS type, and are proven using the
spacetime Fourier transform, as one cannot exploit dispersion in these settings (as
one can already see by considering plane wave solutions). See Section 2.6. More
generally, Strichartz estimates are closely related to restriction estimates for the
Fourier transform; see [Taoll] for a survey of the restriction phenomenon, which
has been used to obtain a number of refinements (such as bilinear refinements) to
the Strichartz inequalities.

EXERCISE 2.34 (Asymptotic L2 behaviour of Schrodinger). Let up € S, (RY)
be a non-zero Schwartz function whose Fourier transform () is supported in the
ball [¢] < 1. Show that we have the estimate |e"*®ug(z)| Sy (£) N (@)™ for all
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times ¢, all N > 0, and all  such that |z| > 5|¢|. (Hint: use rotational symmetry to
make x a multiple of the unit vector ey, thus = (21,0, ...,0). Then use the Fourier
representation (2.12) of e®*®ug(x), followed by repeated integration by parts in the
x1 direction.) In the region |x| < 5|t|, obtain the estimate |e"“uq(x)| Su, (£)~%2.
Conclude that [le"®uo|prray ~duop <t>d(%’%) for all 1 < p < oo. (Hint: first
establish this for p = 2, obtain the upper bound for all p, and then use Holder’s
inequality to obtain the lower bound.)

EXERCISE 2.35 (Necessary conditions for fixed-time Schrodinger). Suppose 1 <

p,q < 0o and a € R are such that the fixed-time estimate
€72 2u| pa (ray < Ct*||uol| 12 (ray

for all ug € S;(R?) and t # 0, and some C independent of ¢t and ug. Using
scaling arguments, conclude that a = g(% - %) Using (2.34) (and time translation
invariance), conclude that ¢ > p and ¢ = p’ (and thus 1 < p < 2). In particular the
Schrédinger operators are not bounded on any LP(R?) space except when p = 2.
Indeed, a good rule of thumb is that dispersive evolution operators only preserve
“L2-based” spaces and no others (with the notable exception of the one-dimensional

wave evolution operators, which are not truly dispersive).

EXERCISE 2.36 (Schrodinger Strichartz cannot gain regularity). Using Galilean
invariance (Exercise 2.5), show that no estimate of the form

||eiA/2UO||W;2’q(Rd) < C||U0||W;1’P(Rd)

or
itA
||61t /2u0||LgW;2”"([o,1]de) < OHUOHW;I’P(Rd)

can hold with C' independent of ug, unless sy < s7.

EXERCISE 2.37 (Decay of finite energy Schrodinger solutions). Show that the
admissible space L$°L2 which appears in Theorem 2.3 can be replaced by the
slightly smaller space CPL2. Similarly, if up € H:(R?) and u : R x R® — C
is the solution to the Schrédinger equation, show that limy 1o [[u(t)| z(ms) for
2 < p <6 and that

il u(®)2z + 1) " u(®)z =0
for any € > 0 (see [Tao8] for an application of these estimates to nonlinear
Schrédinger equations).

EXERCISE 2.38 (Pseudoconformal invariance of Strichartz). (Pieter Blue, pri-
vate communication) Show that if ¢, are Schrodinger-admissible exponents, then
the space LIL" (R x R?) is preserved under the pseudoconformal transformation
(Exercise 2.28). Conclude that Theorem 2.3 is invariant under the pseudocon-
formal transformation. (It is also invariant under space and time translations,
homogeneity, scaling, phase rotation, time reflection, spatial rotation and Galilean
transformations.)

EXERCISE 2.39 (Conformal invariance of Strichartz). Show that the conformal
Strichartz estimate (2.30) is invariant under space and time translations, homogene-
ity, scaling, phase rotation, time reflection, spatial rotation, Lorentz transformation
(Exercise 2.6), and conformal inversion (Exercise 2.14).



2.3. DISPERSION AND STRICHARTZ ESTIMATES 81

EXERCISE 2.40. Show that Lemma 2.4 fails at the endpoint p = g, even when
X and Y are scalar. (Hint: take p = ¢ = 2 and consider truncated versions of the

Hilbert transform H f(t) = p.v. % ds.)

S

EXERCISE 2.41. Using Exercise 2.30, establish some Strichartz estimates for
the Airy equation. (As it turns out, when it comes to controlling equations of
Korteweg-de Vries type, these estimates are not as strong as some other estimates
for the Airy equation such as local smoothing and X*° estimates, which we shall
discuss later in this chapter.)

EXERCISE 2.42. Using the scale invariance from Exercise 2.9, show that the
d

condition % + % = § is necessary in order for (2.24). Next, by superimposing
multiple time-translated copies of a single solution together (thus replacing u(t, x)
by Zjvzl u(t — tj,x) for some widely separated times t¢1,...,tx) show that the
condition ¢ > 2 is also necessary. (The double endpoint (gq,r,d) = (2,00,2) is
harder to rule out, and requires a counterexample constructed using Brownian
motion; see [Mon].) Note that similar arguments will establish the necessity of

(2.27), as well as the requirements ¢, G > 2 in Theorem 2.6.

EXERCISE 2.43 (Knapp example). Consider the solution u : R4 — C to the

wave equation with ¢ =1 given by
u(t,x) == et mEettlel ge

where 0 < € < 1 is a small number. Show that u(¢,z) is comparable in magnitude
to €971 whenever |t| < 1/¢2, |21 +t| < 1 and |x2],..., |z, < 1/e. Use this to
conclude that the condition % + d;T L < % in Theorem 2.6 cannot be improved.
One can also obtain essentially the same example by starting with a bump function
initial datum, and applying a Lorentz transform (see Exercise 2.6) with velocity
v := (1 —&2)ey; the strange rectangular region of spacetime obtained above is then
explainable using the familiar phenomena of time dilation and length contraction
in special relativity.

EXERCISE 2.44 (Stein example). Let 1/2 < a < 1, and let g € L2(R3) be the
function
15(2e5,2)\ B(es,1) (%)
|z (log ||}
where e3 is the third unit vector of R? and B(z,r) denotes the ball of radius r
sin (¢

centred at 2. Show that ||g||z2(rs) = Oa(1), but that the solution u(t) := Ve VA_Ag

to the homogeneous wave equation with initial position 0 and initial velocity g obeys
u(tes, t) = oo for all 1 < ¢ < 2. (Hint: use Exercise 2.31.) In particular, Theorem
2.6 fails at the endpoint (g,7) = (2, 00), a fact first observed (with a more indirect
proof) in [KM].

g(w) =

EXERCISE 2.45. Prove the energy estimate (2.28) using (2.14), the Fourier
transform, and Minkowski’s inequality. Note that the implied constant in the <
notation is absolute (not depending on s or d). Then deduce (2.29).

EXERCISE 2.46 (Besov version of Strichartz estimates). For each dyadic num-
ber N, let Py be the Littlewood-Paley multiplier at frequency N, as defined in
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Appendix A. By means of complex interpolation, establish the inequalities

||U||L dLT (IxR%) Sar Z HPNUHL‘?LT(IXRd))1/2
N
whenever 2 < ¢, < oo (so in particular whenever ¢, r are admissible exponents for

Strichartz estimates), as well as the “dual” estimate
1/2
S IPNFI ) S Wi

for the same range of ¢,r. (Note that to apply interpolation properly for the first
inequality, you will need to write u as an appropriate linear operator applied to
the functions uy = Pyu.) By exploiting the fact that Py commutes with the
Schrédinger operator i0; + A, establish the estimate

(Z ||PNeitA/2u0||2L‘,?L;(RXRd))1/2 Sda,r HUOHLg(Rd)
N

for all Schrodinger-admissible ¢,r. Similarly establish analogues of (2.25) and
(2.26).

2.4. Conservation laws for the Schrédinger equation

Knowledge about life is one thing; effective occupation of a place
in life, with its dynamic currents passing through your being, is
another. (William James, “The Varieties of Religious Experience”)

In Hamiltonian ODE, one often encounters conserved quantities E(t) of the flow
such as energy, momentum, mass, and so forth. One has similar conserved quan-
tities in Hamiltonian PDE, but they come with additional structure. Namely, the
typical conserved quantity E(t) that one encounters is not just a scalar quantity, but
is also an integral of some density eq(t, x), thus for instance E(t) = [z. eo(t, z) da.
The conservation of E(t) can then be manifested in a more local form by the point-
wise conservation law'®

(2.31) Oreo(t, x) + 0y ej(t,x) =0

for some vector-valued'® quantity e;, which is thus the current associated to the
density eg. The conservation of E then follows (formally, at least) by integrating
the continuity equation in space and using the divergence theorem (assuming some
suitable spatial decay on the current, of course). Thus in PDE, conservation laws
come in both integral and differential forms. The differential form of the conserva-
tion law is significantly more flexible and powerful than the integral formulation, as
it can be localised to any given region of spacetime by integrating against a suitable
cutoff function (or contracting against a suitable vector field). Of course, when one
does so, one may no longer get a perfectly conserved quantity, but one often obtains
a quantity which is almost conserved (the derivative in time is small or somehow
“lower order”) or perhaps monotone. Thus from a single conservation law one can
generate a variety of useful estimates, which can serve to constrain the direction of

15Roman indices such as 7 and k will be summed over the spatial indices 1, ..., d in the usual
manner; Greek indices such as a and 8 will be summed over 0, ..., d.

161n some cases E and e are themselves vector-valued instead of scalar, in which case e;
will be tensor-valued.
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propagation of a solution, or at least of various components of that solution (e.g.
the high frequency components).

These conservation laws are particularly useful for controlling the long-time
dispersive behaviour, or short-time smoothing behaviour, of nonlinear PDE, but
to illustrate the concepts let us just work first with the linear analogues of these
PDE. To make the discussion concrete, we focus on the Schrédinger equation (2.3)
with A =m =1, thus

1
(2.32) 10w + §Au =0;

to avoid technicalities we consider only smooth solutions u € ﬁ‘focSm(R x R%). In
practice one can usually extend the estimates here to rougher solutions by limiting
arguments or duality.

Before we discuss the differential form of the conservation laws, let us first
recall the integral form of the conservation laws and their connection (via Noether’s
theorem) to various symmetries (cf. Table 1 from Chapter 1); we will justify their
conservation later when considering the differential form of these laws, and also
more informally in Exercise 2.47 below. The symmetry of phase rotation, u(t, z) —
eu(t, x), leads to the scalar conserved quantity

M(t) = /Rd lu(t, z)|* da,

which is variously referred to as the total probability, charge, or mass in the lit-
erature. The symmetry of space translation, u(t,z) — u(t,z — xo), leads to the
vector-valued conserved quantity p(¢), defined in coordinates as

p;(t) = /Rd Im(u(t, )0z, u(t, z)) dz,

which is the total momentum. The symmetry of time translation, u(¢, ) — u(t —
to, x), leads to the conserved quantity

1
E(t) = 3 /Rd |Vu(t,z)|* dz,

known as the total energy or Hamiltonian. The symmetry of Galilean invariance
(Exercise 2.5) leads to the conserved quantity

/ x|u(t, a:)|2 dx — tp(t),
Rd

which is the normalised centre-of-mass. The pseudo-conformal symmetry (Exercise
2.28) does not directly lead to a conserved quantity, as it is a discrete symmetry
rather than a continuous one. However, it can be used to conjugate some of the pre-
ceding symmetries and generate new ones. The pseudo-conformal symmetry leaves
the mass invariant, as that symmetry commutes with phase rotation; it also swaps
momentum conservation with the conservation of normalised centre-of-mass, as the
pseudo-conformal symmetry intertwines spatial transation and Galilean invariance.
The energy conjugates to the pseudo-conformal energy

1 .
(2.33) 5 Il (x + th)u(t)H%i (R4)
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which is also conserved. In particular, we see from the triangle inequality and
conservation of energy that

(2.34) [z|w®)|| 2 re)y < M2|w(0)] L2 ey + tIVu(0)|| L2 (R4

which is an estimate establishing a kind of approximate finite speed of propagation
result for finite energy solutions. See also Exercise 2.49.

Now we analyze the local versions of these conserved quantities. It is convenient
to introduce the pseudo-stress-energy tensor Tqg, defined for o, 3 =0,1,...,n and
on the spacetime R x R? by

TOO = |u|2

TOj = TjO = Im(ﬂ@zj u)

- 1

for all j,k=1,...,d, where d;; is the Kronecker delta (thus it equals 1 when j = k
and zero otherwise). A direct computation using (2.32) then verifies (for smooth
fields u, at least) the local conservation laws

(2.35) 0:Too + aijOj =0 8tTj0 + 8%Tjk =0.

The quantity Tog is known as the mass density, the quantity To; = T)o is known
as both the mass current and the momentum density, and the quantity T, is the
momentum current or stress tensor. For smooth, rapidly decreasing solutions u,
this verifies the conservation of mass and momentum asserted earlier, since

MO = [ Tota) e py)== [ Tylto) do

Conservation of energy also has a local formulation, though not one related to the
pseudo-stress-energy tensor'” T,z (Exercise 2.48).

By multiplying first equation in (2.35) by a smooth function a(z) of at most
polynomial growth, integrating in space, and then integrating by parts, we obtain
the identity

(2.36) O /Rd a(x)|u(t, z))* do = /Rd Oz, a(x)Im(u(t, ©)0z;u(t, x)) da.

This identity can be used to control the local rate of change of mass by quantities
such as the energy (see Exercises 2.50, 2.51).

17See however Exercise 3.30.
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One can also obtain a useful identity by differentiating (2.36) in time again and
using (2.35) to obtain the useful identity

8,52/ a(x)|u(t, z)|? de = (’%/ Oz;a(x)Toj(t, x) do
R R

= —/ 0z,;0(x) 0z, Ty (t, ) dx
R4

(2.37) Ad(amjamka(w))Tjk(t,w) dx
:/ (0, 0p,a(z))Re(0y,udy, u) dx
Rd
- %/R lu(t, 2)|*Aa(z) da.

This identity has some useful consequences for various values of a. For instance,
letting a(z) = 1 we recover mass conservation, and letting a(x) = x; we recover
the conservation of normalised centre of mass. Setting a(x) = |z|?, we obtain the
virial identity

(2.38) af/ o2 lu(t, 2)? da = 2/ Vu(t,2) de = 4B(2);
R4 R4

thus the energy controls the convexity of the quantity [g. [z[*|u(t, z)|* dz; compare
with the classical counterpart in Example 1.31. (Actually, this identity can easily
be seen to be equivalent to the pseudo-conformal conservation law after using mass
and momentum conservation.) Setting'® a(x) = |z|, we obtain

Oy /Rd Im(ﬂ(t,:z:)m -Vu(t,x)) de = /Rd(am]. Oy a(z))Re(0y,udy, u) do

— 1/ lu(t, z)|?A%a(z) dz.
4 Jra

(0z,0s,,a(z))Re (0, udz, u) = |Vul?/|z],

(2.39)

Now observe that

where |Yul? := |Vu|? — ||§—| - Vu|? is the angular component of the gradient. If we
specialise to three dimensions, we also have A%2q = —4r4. If we integrate in time,
we thus obtain the Morawetz identity

(2.40)

/ /R3 |Y7U|x| d:cdt+47r/ lu(t, 0)[? dt

= / Im(a(T, z) — - Vu(T, z)) da —/ I (a@(~T, 2)— - Vu(~T,z)) do
R3 || R3 ||
for any time 7" > 0. Using Lemma A.10, and observing (using the Fourier trans-

form) that ||u(£T)|| ;1/2 Hu( )||H1/2 (R3y» We conclude the Morawetz estimate

ey =

|Y7u (t, ) 2 2
(2.41) //R S d:vdt—i—/R|u(t,0)| dt 5 ()] 175 -

18Strictly speaking, (2.37) does not directly apply here because a is not smooth, but this can
be fixed by a regularisation argument; see Exercise 2.57.
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This estimate can be thought of as a variant of a Strichartz estimate, obtaining
some smoothing and decay near the spatial origin x = 0; it should be compared
with Example 1.32. It has a significant advantage over the Strichartz estimate, in
that it extends with only minor modification to the case of defocusing nonlinear
Schrédinger equations; see Section 3.5, in which we also discuss an interaction
version of the above estimate. One can also extend this three-dimensional estimate
to higher dimensions. For lower dimensions there are some additional subtleties;
see [Nak2].

EXERCISE 2.47. Let us formally consider L2(R? — C) as a symplectic phase

space with symplectic form w(u,v) = —2 [p.Im(u(z)v(z)) dz. Show that the
Schrodinger equation (2.3) with i = m = 1 is then the formal Hamiltonian flow
associated to the (densely defined) Hamiltonian H(u) := 3 [g. [Vul* dz. Also use

this flow to formally connect the symmetries and conserved quantities mentioned
in this section via Noether’s theorem (ignoring irrelevant constants such as factors
of 2). See [Kuk3| for a more rigorous treatment of this infinite-dimensional Hamil-
tonian perspective, and [SSul] for a Lagrangian perspective of the material in this
section.

EXERCISE 2.48. Obtain a local conservation law (2.31) for the energy density
eo = 5|Vul? for the Schrédinger equation.

EXERCISE 2.49 (Local smoothing from localised data). Let u € CY,.Sz(R X

t,loc
R?) be a smooth solution to the Schrodinger equation (2.32) with A =m = 1. By
using mass conservation and the pseudo-conformal conservation law, establish the
bound >

T [{@)u(0) ]| L2 ()

forallt # 0 and R > 0, where Br := {z € R? : |z| < R} is the spatial ball of radius
R. This shows that localisation of initial data leads to a local gain of regularity
(by a full derivative, in this case) at later times, together with some local decay in
time.

(Rr)
IVu(t)||2(Br) Sd

EXERCISE 2.50 (Local near-conservation of mass). Let u € Cff,.S-(R x RY)

be a smooth solution to the Schrédinger equation (2.32) with i = m = 1, and with
energy E = 1[[Vu(0 )HL2 (Ra)- Show that for any R >0 and ¢ # 0 we have

E1/2|t|)

(Hint: apply (2.36) with a(z) = ¢?(z/R), where ¢ is a bump function supported on
the ball of radius 2 which equals 1 on the ball of radius 1, and obtain a differential
inequality for the quantity M(t) := ([ga. ¢*(z/R)|u(t, :1:)|2 dz)'/2.) This estimate
(and the generalisation in Exermse 2.51 below) is especially useful for the energy-
¢ CEY

(/ I<R futt, 2)I* dz)'** < (/ [u(0, z)|? da)*? + Og(

|z|<2R

critical nonlinear Schrédinger equation, as the error term o 7 CE 2l depends only
on the energy of u and not on other quantities such as the mass; see [Gri5], [Bou7],
[Bou9], [Tao9] for some applications of this estimate.

EXERCISE 2.51 (Local near-conservation of mass, IT). [Bou7], [Bou9] Let the
notation and assumptions be as in Exercise 2.50. Prove the more general inequality
([ nr ([ o o
ol<k - ’ Rnl/2

|z|<2n R
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for any integer n > 1; this improves the error term at the cost of enlarging the ball
in the main term. (Hint: We may use time reversal symmetry to take ¢t > 0. Use
conservation of energy and the pigeonhole principle to locate an integer 1 < j <n
such that fot f2fR§\m\§2f+1R |Vu(t,z)|* dedt < Et/n. Then apply the argument used
to establish Exercise 2.50, but with R replaced by 2/ R.) This example shows that
one can sometimes exploit the pigeonhole principle to ameliorate “boundary effects”
caused by cutoff functions; for another instance of this idea, see [CKSTT11]. In
this particular case it turns out that one can use Exercise 2.50 (with R replaced by
2"~1R) to replace the n'/? denominator by the much stronger 2" term, however
there are other situations in which the pigeonhole principle is the only way to obtain
a satisfactory estimate.

EXERCISE 2.52 (Weighted Sobolev spaces). For any integer k& > 0, define the
weighted Sobolev space HF*(R?) be the closure of the Schwartz functions under
the norm

”u”Hk *(RA) T Z [|{x U||Hk i (R4)"
Establish the estimate

”eitAmeH;“vk(Rd) S/md <t>kl|f”H,’;v’“(Rd)

for all Schwartz f, either using the Fourier transform or by using mass conser-
vation laws (and higher order variants of these laws, exploiting the fact that the
Schrodinger equation commutes with derivatives). (Hint: if you are really stuck,
try working out the k = 1 case first.)

EXERCISE 2.53 (Local smoothing for Schrédinger). [Sjo],[Veg],[CS] Let u €
Cr50cSe(R x R?) be a smooth solution to the Schrédinger equation (2.32) with
h =m = 1. Establish the homogeneous local smoothing estimate

| @7 e vut ) + @)t o) dedt e [u(0,) s g

for all ¢ > 0. (Hint: One can take £ to be small. Then adapt the Morawetz
argument in the text with a(z) := (z) —e(z)!7¢.) This shows a local gain of half a
derivative for the homogeneous Schrédinger equation. Give an informal explanation
as to why this estimate is consistent with the Heisenberg law v = £ that arises from
Principle 2.1; compare it also with Example 1.33.

EXERCISE 2.54 (Local smoothing for Schrodinger, IT). Let u € C75,.S-(RxR?)
be a smooth solution to the inhomogeneous Schrodinger equation

10iu+ Au=F.

Establish the dual local smoothing estimate

SupHu(t)HHi/z(RS) <c HU(O)HHi/Z(R% —I—/ / <I>1+5|F(t’17)|2 dxdt
teR R JR3
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for any € > 0. (Hint: use Exercise 2.53 and Duhamel’s formula.) Then establish
the retarded local smoothing estimate

/ / (2) | Vult, ) + ()= u(t, 2)|? dadt

R JR3
< 0,z)|% // e\ Pt ) |? dadt.
S 0.y + [ [ @I da

(Hint: use the same argument'? as in Exercise 2.53. An additional interaction term
between u and F' will appear, and can be controlled using Cauchy-Schwarz.) This
shows a local gain of a full derivative for the in homogeneous Schrédinger equation.

EXERCISE 2.55 (Local smoothing for Airy equation). [Kat2], [KF] Show that
smooth solutions u € Cf5. _S,(R x R — R) to the Airy equation dyu + 3u = 0

t,loc
obey the conservation law

(2.42) Or(u?) = =02 (u?) + 30, (u2)

where u,, := d,u, and use this to conclude the local smoothing estimate

T 3
T
(2.43) / / u? dadt < +2R / u(0,2)? dx
0o Jizl<r R R

for all T'> 0 and R > 0. (Hint: first integrate (2.42) against the constant function
1 to establish L2 conservation, and then integrate instead against a suitable cutoff
function which equals 1 for = > 2R, zero for x < —2R, and increases steadily for

—-R<x<R.)

EXERCISE 2.56 (Sharp local smoothing for Airy equation). [KPV2] With the
notation as in the preceding exercise, prove the sharper estimate

/ Uy (t, o) dt 5/ u(0,z)? dx
R

R

for any x9 € R, so that the factor T;f?’ in (2.43) can be replaced with R. (Hint: use
translation invariance to set xo = 0, and use the Fourier representation of u,(t,0),
followed by Plancherel’s theorem. Unlike (2.43), it seems difficult to establish this
estimate purely using conservation law techniques, thus suggesting some limitations
to that method.) Give an informal explanation as to why (2.43) is consistent
with the dispersion relation v = —3¢2 that arises from Principle 2.1. What is the

analogous estimate for the one-dimensional Schrodinger equation?

EXERCISE 2.57. Justify the derivation of (2.39) from (2.37) (for i0cSz solu-
tions u to the Schrédinger equation) by applying (2.37) with a(x) := /&2 + |z|?
and then taking limits as ¢ — 0. These types of regularisation arguments are quite
common in the theory of linear and nonlinear PDE, and allow one to extend the
validity of many formal computations well beyond the regularities that would be
needed to justify them classically.

19We thank Jared Wunsch for pointing out this simple argument.
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2.5. The wave equation stress-energy tensor

A man must drive his energy, not be driven by it. (William Fred-
erick Book)

Having considered conservation laws for the Schrodinger equation, we turn to
the wave equation

(2.44) 80qu = F,

where we take smooth scalar fields u € Cf}, Sy(R' — C) for simplicity. In
particular u has sufficient regularity and decay at infinity to justify all integration
by parts computations.

While it is possible to view the wave equation as a Hamiltonian system (see
Exercise 2.58), the geometry of Minkowski space suggests that one can also alter-
nately view the wave equation (and the associated conservation laws) in a more
Lorentz-invariant way; thus our perspective here will be slightly different from
that in the preceding section. Indeed, one can view the wave equation in a La-
grangian manner instead, viewing u as a formal critical point of the Lagrangian
functional % Rit+a 0%u0yu dg. This functional is formally invariant under diffeo-
morphic changes of variable; by considering the variation of the functional along
an infinitesimal such change of variable (see Exercise 2.60) one can then construct

a stress-energy tensor T B for this equation, which in this case is
1 S

(2.45) T .= Re(0*udPu) — §g°‘ﬁRe(8Vu8Vu).

In coordinates with the normalisation ¢ = 1, we have

T% = Tgo

1 1
§|8tu|2 + §|V’UJ|2
TV = —Toj = —Re(0ru0,,u)
_ 5
T = Ty = Re(8y,ud,, u) — JT’“(WUF — D).

This tensor is real and symmetric. The quantity T% is known as the energy den-
sity, the quantity T% is the energy current or momentum density, and T’ ¥ is the
momentum current or stress tensor. The similarity with the Schrédinger pseudo-
stress-energy tensor is not accidental; see Exercise 3.30.

The tensor T is clearly symmetric, and a quick computation using (2.44)
yields the divergence equation

(2.46) Do T = Re((pu)F).

Henceforth we consider the homogeneous equation F' = 0, so that T is divergence
free. In coordinates, we thus have

HT® + 9, T% =0; 9TV +0,,T* =0
(compare with (2.35)). This already yields conservation of the total energy
Elu(t)] = E(t) :== / T(t, 2) da
R4
and the total momentum

P (t) = /Rd TY (t, ) du,
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assuming sufficient spatial decay of course on the solution u and its derivatives.
It turns out that these conservation laws can be nicely localised in spacetime
by exploiting the positivity property

(2.47) T vqus >0

whenever v® is a time-like or light-like vector (so v®v,, < 0). Indeed from (2.45) we
have

T%vqvs = (v 0u)? — %(U%Q)(am)(aﬂ)

which is clearly non-negative in the light-like case v®v, = 0, and in the timelike
case one can check positivity by dividing the gradient 0“u into the component
parallel to v and the component Minkowski-orthogonal to v (on which the metric
g is spacelike, hence non-negative); alternatively one can use Lorentz invariance to
reduce to the case?® v = 9,. More generally we have T af vowg > 0 whenever v, w
are time-like or light-like, and both future-oriented (see Exercise 3.41). To exploit
this positivity, we can use Stokes’ theorem to obtain the identity

(2.48) /,: T’ XonpdS = [ TP X, nzdS + /E 93(T*" X ,)dg
1

3o
for an arbitrary smooth vector field X,, where ¥ is an open region in spacetime
bounded below by a spacelike hypersurface ¥y and above by a spacelike hypersur-
face X1, ng is the positive timelike unit normal and dS' is the induced measure from
the metric g (which is positive on the spacelike surfaces ¥g, £1); if ¥ is unbounded
then of course we need to assume suitable decay hypotheses on u or X. For in-
stance, if Xg = {(t,z) : t =0}, 31 = {(¢,2) : t = t1} and X = 0, for some arbitrary
time t; € R we obtain the conservation of energy F(t;) = E(0), while if we instead
take X = 9,, we obtain conservation of momentum p?(t;) = p’(0). Now suppose
that T, > t; > 0, and we take ¢ to be the disk {(¢,z) : t =0, |z| < T} and ¥; to
be the truncated cone?!

Sio={t,x):0<t <ty,|x| =T =t} U{(t,z) : t = t1,|2| < Ty —t1}.
Setting X = J;, we conclude the energy flux identity

(249) / TOQ (tl, {E) dx + FthT* [O, tl] = / TQO (0, {E) dx
IIIST*—tl

|| <T
where Fluxr, [to, 1] is defined for 0 < ¢ty < ¢ < Ty by

Fluxr, [to, t1] := / TaﬁXanﬁdS.
to<t<ty,|z|=T«—t
Intuitively, this identity asserts that the energy at the top of the truncated cone,
plus the energy flux escaping the sides of the cone, is equal to the original energy
at the base of the cone. From (2.47) we see that Fluxr, [0,#1] is non-negative, and
so we have the localised energy monotonicity formula

/ Too(tl,x) dx S / Too(O,I) dx
|z| <T\—t1 |z| <T\

20We of course equate a vector field X* with the associated first-order differential operator
X %0y in the usual manner.

21Strictly speaking, ¥ is not quite spacelike, which causes dS to degenerate to zero and ng
to elongate to infinity. But the area form ngdS remains well defined in the limit; we omit the
standard details.
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In particular, we have obtained the finite speed of propagation property: if u solves
the wave equation, and vanishes on the ball |z| < T, at time ¢ = 0, then it vanishes
on the smaller ball || < T, —t; for all times 0 < t; < T%; this reflects the well-known
fact that solutions to wave equations cannot propagate faster than the speed of light
(which has been normalised to ¢ = 1 here). Also, from the energy flux identity and
energy conservation we have

(2.50) Fluxr, [0, 1] < E(0);

thus if the solution has finite energy, then Fluxy, [0,¢1] is monotone increasing in
t1 and is also bounded. It therefore converges22 to some limit as t; — T,; since
Fluxr, [to, t1] = Fluxr, [0, t1] — Fluxr, [0, t], we conclude in particular the fluz decay
property

lim FIUXT* [to, tl] =0.

to,t1—Tx

This shows that near the tip (T, 0) of the cone, an asymptotically vanishing amount
of energy will escape the sides of the cone. There is however still the possibility of
energy concentration, in which the energy stays inside the cone and concentrates to
the tip as t — T; we shall discuss this possibility further in Section 5.1.

To exploit (2.48) and (2.47) further, it is of interest to understand the diver-
gence? of vector fields of the form T’ Xj. Indeed we see from (2.46) and the
symmetry of 7' that the vector field T*? X g has divergence

1
(2.51) 00 (T X 5) = gTa%M
where T, is the deformation tensor

(2.52) MTap = (9an + (95Xa = Exgaﬁ,

where Lx denotes the Lie derivative. In particular, if the vector field X is a
Killing vector field (i.e. the diffeomorphism induced by X preserves the metric),
then L£xgos = 0 and hence Tl Xp is divergence-free. In particular, we obtain
conservation of the quantity

/Rd T X 5(t, x) da

For instance, the vector fields d; and 0, which correspond to time translation and
spatial translation respectively, yield the conservation of energy and momentum
respectively. If instead we take the rotation vector field z;0,, — xx0,, for some
fixed 1 < j < k < n, which is clearly Killing, we obtain the conservation of angular
momentum

/ x; T%(t, 2) — 2, T (t, ) dz = Re Opu(t, x) (2 0z; — 10z, Ju(t, z) du.
Rd

Rd

22This innocuous statement from basic real analysis - that every monotone bounded sequence
converges - is surprisingly useful in the analysis of PDE, as it allows one to convert a monotonicity
formula (say for a sequence ay ) into a decay estimate (for the Cauchy differences an — am). The
drawback is that the decay is qualitative only; there is no uniform control on the decay of the
an — am, although one can see that these differences cannot be too large for too many disjoint
intervals [n,m].

23We thank Markus Keel and Sergiu Klainerman for sharing some unpublished notes on this
topic, which were very helpful in preparing the material in this section.
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Taking instead the Lorentz vector field x;0; +t0,,, which is also Killing, we obtain
conservation of normalised centre-of-mass

/ ;TP (t,z) — tTY (t,x) do = / z; T(t,2) da — tp;.
R¢ R¢

Thus Lorentz invariance plays the role in the wave equation that Galilean invariance
does for the Schrodinger equation.

Unfortunately, there are no further Killing vector fields for Minkowski space
(other than taking linear combinations of the ones listed above); this is the hyper-
bolic analogue of the well-known fact that the only orientation-preserving isometries
of Euclidean space (i.e. the rigid motions) are the translations and rotations, and
combinations thereof; see Exercise 2.62. However, there is a slightly larger class of
conformal Killing vector fields, where the deformation tensor m,z does not vanish,
but is instead a scalar multiple of gng, thus mog = §2gag for some scalar function
Q. Inserting this and (2.45) into (2.51), and observing that g,3g9*° = (d + 1), we
conclude that for a conformal Killing field we have

Do (TP X 5) = —%QRe(Maw).

Using the equation (2.44), we can rewrite this further as
o d—1
8Q(T ﬁXﬁ) g —TQ(‘?’Y&»YG’UJF),
which rearranges as
d—

(2.53) Do PY = — 2 ! lu|?00Q

where P is the vector field
P =T X4 + %(Qaaqum — (0°Q)|ul?).

This is quite close to being a conservation law; note that P® contains terms which
are quadratic in the first derivatives of u, but the divergence of P® only contains
terms of zeroth order in w.

To give some examples of (2.53), let us first consider the Morawetz vector field
X associated to (t?+|x|?)9; +2tx;0,, (i.e. Xo = —(?+|2[?) and X; = 2tx;); this is
the pullback of the time translation vector field —0; under the conformal inversion
in Exercise 2.14. This vector field is easily verified to be conformal Killing with
) = 4¢t. Since 0(4¢) = 0, we thus see that the vector field

. d—1
P = — (12 + [2|*) T 4 2t2; T + (d — 1)tReud“u — Tgo‘0|u|2
is divergence free. In particular we see that the conformal energy
Qlult], t] := / (t% 4 |z[))T(t, 2) — 2ta; TY (t,z) + (d — 1)tReudyu(t, x)
Rd

(2.54) i

lu(t.x)|? dx

is preserved in time, and in particular is equal to

R

|ul?(0,z) dx.
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This conservation law is the analogue of the conservation of pseudo-conformal en-
ergy (2.33) for the Schrédinger equation (cf. the last part of Exercise 2.28). The
quantity Q[ul[t],] is not obviously non-negative, but it can eventually be rearranged
using the null frame vector fields L := 0; + Ifc_l -V, L:=0; — ‘—i‘ -V, as

1

1[I e Lt (@ = a4 16~ fol) Lu+ (d = Duf? + 22 + o)Vl da
Rd

see for instance [Kla3| (for a related computation, see Exercise A.16). One thus

obtains the decay laws

1(t+ lz) Lu(t) + (d = Du)l| L2 e, [1(E = |2)) Lu(t) + (d = Du)]| 22 @),
[+ 12D Vulll L2 me) S 12V ,u(0)] 2 re)

(compare with (2.34)). On one hand, these estimates are somewhat weak compared
with the decay of t~(¢=1)/2 ordinarily expected for the wave equation; the decay
obtained here is more of the order of 1/t (although near the light cone one does
not obtain any decay in the L direction). On the other hand, the argument here
is extraordinarily robust and in particular extends to very rough manifolds; see
[Kla3] for some further discussion.

Another application of (2.53) arises by taking the scaling vector field x*d,,
which is conformal Killing with € = 2. This shows that the vector field

d—1
(2.55) Txs + TReﬂaau
is divergence free, and thus
.od-—1
/ tT% — 2, T% — ———Reudsu da
Rd 2

is a conserved quantity. This particular conservation law is not of much direct use,
as the top order terms tT% — :CjTOj do not have a definite sign®*. However, if one
localises this law to the cone {|z| < ¢}, then one recovers some positivity (at least
to top order), and one can obtain a useful estimate, especially in the context of
establishing non-concentration for the semilinear wave equation. See Section 5.1.

Another use of Killing vector fields X% (introduced by Klainerman [Kla]) lies
in the fact that they commute with the d’Lambertian [J, in the sense that

O(X“0qu) = X %00 (Ou)
for all smooth w. This can be seen by direct computation (using Exercise 2.62)
or by noting that the d’Lambertian is determined entirely by the metric g, and

is hence preserved by the infinitesimal diffeomorphism associated to X<. We can
iterate this and obtain

O(K; ... Kyu) = K ... KpOu

whenever K7, ..., Kj are one of the Killing first order differential operators d;, 0.,
2jO0z, — TkOy;, Or t0y; + x;0;. In particular, if u is a smooth solution to the wave
equation (2.44), then so does K ... Kpu. In particular we have energy conservation

EIK, ... Kwl(t) = E[K, ... Kyu)(0).
247 general principle is that if the top order terms in an expression are ill-behaved, then no

amount of structure arising from the lower-order terms will rescue this. Thus one should always
attend to the top order terms first.
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given sufficient decay of u and its derivatives, of course.

Let us apply this to a smooth solution with initial data u(0), 9;u(0) supported
in the ball {|z| < 1}; by finite speed of propagation we then see that for future
times ¢ > 0, the solution is supported in the cone {|x| < 1+ ¢}. Then we see that

(2.56) E[Kl .. Kku](t) Sk,u 1

for all £ > 0 and all Killing vector fields K7, ..., K. This can be used to establish
some decay of the solution w. Let us fix a time ¢ > 1 and look at the region
t/2 < |z| < 1+t using polar coordinates = rw for some t/2 < r < 1+ ¢ and
w € S9! We can then conclude from (2.56) (using the Killing vector fields &,
and x;0,; — x10;;) that

/ / |Vi)87’qnvw7tu(t,rw)|2 r¢ldrdw Stmou 1
Sd—1 Jt/2<r<1+t

for all I,m > 0. Note that we may replace r¢~! by ¢~ since r is copmarable to t.
If in particular we define the spherical energies

f0)= Y (LTt o)
0<i<d Y Sa-1

then a simple application of Cauchy-Schwarz and Minkowski’s inequality yields
[ e ar st
t/2<r<1+t
for m = 0, 1. Using the Poincaré inequality

F@F S [11@P dy+ [ 1r )P dy
I I
whenever € I and [ is an interval of length at least 1, we see that

[fr)? Sut™ 1

for all t/2 < r < 1+t. Applying the Sobolev embedding theorem on the sphere (or
by using Poincaré type inequalities) we then obtain the pointwise bound

[Vizut,z)] Su ¢ (d=1)/2

forall t > 1 and t/2 < r < 14 ¢. If we combine this with both the finite speed of
propagation and some Lorentz transforms (see Exercise 2.6) to cover the interior
region r < t/2, we conclude the more global estimate

(2.57) IVeot(t) ]| oo (ray Su ()47 D/2,

This can be used for instance to establish the dispersive bounds in (2.19), (2.20)
(Exercise 2.65). In fact, more precise estimates than (2.57) are available, which
establish more concentration properties near the light cone; see [Sog] for a more
detailed treatment of this method (which is especially useful for establishing global
solutions of semilinear and quasilinear wave equations from small, rapidly decaying
initial data).

EXERCISE 2.58 (Hamiltonian formulation of wave equation). Let us formally
consider H;/Q(Rd — R) x H;1/2(Rd — R) as a symplectic phase space with
symplectic form w((ug,u1), (vo,v1)) = [ga uov1 — u1vg. Show that u is a formal
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solution to the wave equation (2.32) if and only if the curve ¢ — (u(t), dyu(t)) follows
the formal Hamiltonian flow associated to the (densely defined) Hamiltonian

1
H(ug,up) := 3 / , |Vuol? + |ui)? d.
R

EXERCISE 2.59 (Energy estimate). Let u € C7Y,.S.(R'*? — C) be a Schwartz
solution to the inhomogeneous wave equation Ou = F, and let T,g be as above.

By analyzing the energies E(t) := [;. Too(t, z) dz, establish the energy identity

(2.58) 8,5/ Too(t, z) de = — Owu(t,x)F(t, z) dx

R4 R4
and conclude the energy estimate (2.28) with s = 1. Then use the commutativity
of the wave equation with Fourier multipliers to establish this estimate for gen-
eral values of s. This is an example of the energy method; see also the proof of
Proposition 3.3 for another instance of this technique.

EXERCISE 2.60 (Lagrangian derivation of stress-energy tensor). In this exer-
cise we shall work formally, ignoring issues of differentiability or integrability, and
will assume familiarity with (pseudo-)Riemannian geometry. Given any Lorentzian
metric gos on R4 and any scalar field u : R*? — R, define the Lagrangian
functional

Sug)= [ Llwg) dg

where dg = /— det(g)dxdt is the usual measure induced by g, and L(u, g) is a local
quantity which is invariant under diffeomorphic changes of variable. Let X be an
arbitrary vector field on R'*? and let g, be the deformation of the metric g for
s € R along the vector field X, thus

d
(gs)aﬁ|s:O = Jap; d_s(gs)ozﬁ|s:0 - EXgozﬁ = TafB,

where Lx is the Lie derivative, and 7,3 = Vo X+ VX, is the deformation tensor
(here V denotes the Levi-Civita covariant derivative, see Exercise 6.5). Similarly,
let us be the deformation of u along X, thus

Us|s=0 = U; d—sus|5:0 =Lxu=—-X“Ogu.

As L is invariant under diffeomorphic changes of variable, we have diSS (us,gs) = 0.
Use this fact to conclude that if for fixed ¢, u is a critical point of the Lagrangian
S(u, g), then we have the integral conservation law

/ T 705 dg =0,
R1+d

where the stress-energy tensor Ty is defined by

oL 1
Tap = =—— — =gapL.
B8 agag 29 B8
Conclude that T’ is divergence-free. In the special case L(u,g) = g*?daudsu,
with g equal to the Minkowski metric, show that this definition of the stress-energy
tensor co-incides with (2.45). See [SStru3] for further discussion of the Lagrangian

approach to wave equations.
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EXERCISE 2.61. Obtain a pointwise angular momentum conservation law for
the Schrodinger equation.

EXERCISE 2.62 (Classification of Killing fields). Show that if X¢ is a Killing
vector field for Minkowski space R!T¢, then 9,03X, = 0. (Hint: consider various
permutations of the identity domg, = 0.) Conclude that the only Killing vector
fields are the linear combinations of the ones given in the text.

EXERCISE 2.63 (Uniqueness of classical solutions). Show that for any smooth

initial data ug € C;’?IOC(Rd), up € CﬁOC(Rd) there exists a unique smooth solution

u € Cp% 1, (R"™?) to the wave equation (2.44) with initial data u(0,z) = u(z),
0yu(0,z) = ui(x). Note that we are not assuming any boundedness or decay at
infinity. (Hint: use finite speed of propagation, and the existence and uniqueness
theory in the Schwartz class.) This should be contrasted with the breakdown of
uniqueness in the smooth category CS9_  in the case of infinite speed of propagation,

x,loc
see Exercise 2.24.

EXERCISE 2.64 (Morawetz inequality for wave equation). Let u € Cf°S, (R*3)
be a real-valued smooth solution to the wave equation (2.32) with finite energy
E(t) = E < co. By contracting the stress-energy tensor against the radial vector
field X associated I%I - Vg, obtain the identity

o ul? 1
0 (1) = ok — S0t

and then conclude the Morawetz inequality

2
/ [Putt, )" dxdt + / lu(t,0)* dt < E.
R1+3 || R
(Hint: multiply the previous identity by a smooth cutoff in time to a large interval
[-T,T], then integrate by parts, and use the energy bound to control all error
terms. You will have to deal with the singularity at = 0 in some fashion (e.g. by
approximating |z| by (€2 4 |z|?)/2, or by removing a small neighbourhood of the
origin. You may need Hardy’s inequality, Lemma A.2.) Compare this with (2.41).

EXERCISE 2.65. Use (2.57) to prove (2.19), (2.20). (Hint: first use (2.57) and
a scaling argument to establish (2.19), (2.20) when ¢ is itself the derivative of
a compactly supported bump function, then use translation invariance to replace
“compactly supported bump function” with “Schwartz function”. Finally, use some
form of dyadic decomposition (e.g. Littlewood-Paley decomposition) to handle the
general case.)

EXERCISE 2.66. Obtain a conserved stress-energy tensor for the Klein-Gordon
equation, which collapses to the one given for the wave equation above when ¢ = 1
and m = 0, and collapses instead to the pseudo-stress-energy tensor given for the
Schrodinger equation in the limit ¢ — oo and i = m = 1, using the connection in
Exercise 2.7.

EXERCISE 2.67. Obtain conserved stress-energy tensors for the Maxwell and
abelian Yang-Mills equations with ¢ = 1, in such a way that the conserved energies
are § [ps |E[*+|BJ? dz, and § [g. |Foi|*+|Fi;j|? respectively. For the Dirac equation
with m = 0, show that the rank three stress-energy tensor

1
Top = {0a, 7 05u} = 5 9as{0uu, 70" u}
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is divergence-free in all three variables. Is there an analogue of this tensor in the
massive case m % 07

EXERCISE 2.68 (Equipartition of energy). Suppose that u is a C73, .S, solution

t,loc
to the KleiI;—Gordon equation Ou = m?u, thus the energy E = [L.3|Vul*> +
$10wul? + Z-|ul? dx is conserved in time. By considering the time derivative of the
expression fRd u(t, z)Opu(t, ) dr, establish the estimate

// |0wu|? — |Vul? — m?|u|? dedt = O(E/m)

for arbitrary time intervals I. Thus in a time-averaged sense, the energy in E will
be equally split between the kinetic component % fRd |0;ul? dr and the potential
component § [po [Voul? + m?|ul?.

EXERCISE 2.69 (Carleman inequality). Let u € C°(R? — R) be a compactly
supported solution to the Poisson equation Au = F, and define the stress-energy
tensor

1 1 1
T .= 9%ud u — 590‘587116711 = 9%udPu — ZgO‘BA(iﬁ) + §go‘ﬁuF

where g®? now denotes the Euclidean metric on R? instead of a Minkowski metric.
Establish the divergence identity

0, T8 = FoPy

(cf. (2.46)). Now contract this against the vector field €19, for some j =1,...,d
and ¢t # 0 and integrate by parts to obtain the identity

/ 2t|awj (etwju)|2 — _/ ethFamj (etmju)
R4 Rd

and conclude the Carleman-type inequality
. 1 .
102, (€ )| 2 (e < m”em]FHLi(Rd)-

Conclude the following unique continuation property: if u is a scalar or vector field
on R? which is smooth and compactly supported with Au = O(|ul), then u vanishes
identically. (Hint: if u is compactly supported, then ||e"*su|| ;2 can be controlled by
a bounded multiple of [|0,, (e"*/u)|| 2. Now let ¢ — Fo0.) This shows, for instance,
that Schrodinger operators —A+V with smooth bounded potentials V' cannot have
any compactly supported eigenfunctions (bound states); we shall also use it to show
a rigidity property of harmonic maps in Exercise 6.40. For a different proof, see
Exercise B.6.

2.6. X* spaces

I dreamed a thousand new paths... I woke and walked my old one.
(Chinese proverb)
Let us now return to a general scalar constant-coefficient dispersive linear equa-
tion
Oiu = Lu
where L = ih(V/i) for some real-valued polynomial h; again, the vector-valued
case is more complicated and will not be treated here. As discussed in Section
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2.1, the spacetime Fourier transform 4 of solutions to this equation will be sup-
ported on the hypersurface {(7,€) : 7 = h(£)}. If one then localises the solution in
time (for instance by multiplying u by some smooth cutoff function 7(t)), then the
uncertainty principle (or the intertwining of multiplication and convolution by the
Fourier transform) then suggests that the Fourier transform 7u will be concentrated
in the region {(1,€) : 7 = h(¢) + O(1)}.

Now consider a nonlinear perturbation of the above equation, such as

0w = Lu+ N (u).

At first glance one may expect the presence of the nonlinearity to distort the Fourier
support of the solution substantially, so that @ or u now has a substantial portion
which lies far away from the characteristic hypersurface 7 = k(). Certainly one has
a significant distortion if one does not localise in time first (indeed, the nonlinear
solution need not even exist globally in time). However, if one applies a suitably
short time cutoff n, then it turns out that for many types of nonlinearities u,
and for surprisingly rough classes H2(R?) of initial data, the localised Fourier
transform 7u still concentrates near the characteristic hypersurface. The reason
for this is a “dispersive smoothing effect” for the operator 0; — L away from the
hypersurface 7 = h(£), which can be viewed as the analogue of the more familiar
“elliptic regularity” phenomenon for elliptic equations (if Lu = f and L is elliptic,
then u is smoother than f).

There are a number of ways to capture this dispersive smoothing effect, but one
particularly convenient way is via the X **-spaces (also known as Fourier restriction
spaces, Bourgain spaces, or dispersive Sobolev spaces). The full name of these
spaces®® is Xjﬁh(g) (R x R%), thus these spaces take R x R? as their domain and
are adapted to a single characteristic hypersurface 7 = h(§). Roughly speaking,
these spaces are to dispersive equations as Sobolev spaces are to elliptic equations.
In a standard Sobolev space H?(R?), one can differentiate the function using the
elliptic derivative (V) s times and still remain square-integrable; for the space
X*R x RY), one can differentiate s times using the elliptic derivative (V) and
b times using the dispersive derivative 0; — L, and still remain square-integrable.
The precise definition is as follows.

DEFINITION 2.7 (X*? spaces). Let h: R — R be a continuous function, and
let s,b € R. The space Xf_ﬁh(f) (R x R%), abbreviated X**(R x R?) or simply X*®

is then defined to be the closure of the Schwartz functions S; (R x R%) under the
norm

”u”in’h’(&)(Rde) = &) (r — h(&))*a(r, f)”Lng(Rde)-

These spaces in their modern form were introduced by Bourgain [Bou], al-
though they appear in the context of one-dimensional wave equations in earlier
work of Beals [Bea] and Rauch-Reed [RR], and implicitly in the work of Klainer-
man and Machedon [KM]. A good survey of these spaces and their applications
can be found in [Gin]. Multilinear estimates for these spaces were systematically
studied in [Tao4].

25The terminology H*¢ = H_’S_fh(g)(

spaces resemble product Sobolev spaces.

R'*9) is also occasionally used in the literature, as these
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FIGURE 3. A solution to a linear dispersive equation (such as
the Airy equation Oyu + Oyzzu = 0) will have its spacetime
Fourier transform concentrated perfectly on the characteristic sur-
face 7 = h(§). Solutions to nonlinear perturbations of that disper-
sive equation (such as the KAV equation Oiu + Oppett = 6ud,u)
will typically, after localisation in time, have spacetime Fourier
transform supported near the characteristic surface; thus the non-
linearity does not significantly alter the spacetime Fourier “path”
of the solution, at least for short times. The X*® spaces are an
efficient tool to capture this clustering near the characteristic sur-
face.

In the case b = 0, the choice of dispersion relation 7 = h() is irrelevant,
and the X*° space is simply the space L?H?, as can be seen by an application
of Plancherel’s theorem in time. In the case h = 0, the X*? space becomes the
product space HPH?, and for general h it is a conjugate of this space (Exercise
2.70). The spatial domain R? can be replaced with other abelian groups such as
the torus T with minimal modification (just as Sobolev spaces and similarly be
defined for the torus), indeed we have

HuHXfﬁh(k)(RXTd) = [[{k)* (7 — h(&))"a(r, k)l L2z (rxze)

where @ is the spatially periodic, temporally non-periodic Fourier transform

~ . 1 —i(tt+k-&
(T, k) := W/R/I‘d u(t, z)e " ETHRO dadt.

Most of the results stated here for the non-periodic setting will extend without any
difficulty to the periodic setting; we leave the verification of these details to the
reader.

The spaces Xf_ﬁh(f) are well adapted to the solutions u(t) = e*fu(0) of the
linear dispersive equation 0yu = Lu, where L := th(D) = ih(V /i), as the following
lemma shows:
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LEMMA 2.8 (Free solutions lie in X*°). Let f € H3(R?) for some s € R, and
let L = ih(V /i) for some polynomial h : R* — R. Then for any Schwartz time
cutoff n € Sz(R), we have

In(@e™Sllxes, . murn Sno 1l

PROOF. A computation shows that the spacetime Fourier transform of n(t)e!l f

at (7,&) is simply (7 — h(&))f(£). Since 7 is rapidly decreasing, the claim follows.
([

We now discuss the basic properties of the X*? spaces. We first observe the
easily verified fact that the X*? spaces are Banach spaces. We have the trivial
nesting

s’ b’ s,b

Xrlne © Xr=no

whenever s’ < s and &’ < b. From Parseval’s identity and Cauchy-Schwarz we have
the duality relationship

s,b * —s,—b
(XeZne)” = Xelner

Also, these spaces interpolate nicely in the s and b indices, as can be seen using the
Stein complex interpolation theorem (see e.g. [Stei2]). These two facts can save
some effort when proving certain estimates regarding the X spaces, particularly
the multilinear estimates.

Now we study the invariance and stability properties of these spaces. The X
spaces are invariant under translations in space and time, but they are usually not
invariant under frequency modulations (e.g. multiplication by a spatial phase e*¢
or a temporal phase €?7). The behaviour under complex conjugation is given by

the identity
@lxee = lellxes,
and thus one has conjugation invariance when h is odd, but not necessarily other-
wise.
When b > 1/2, one can view the X*® spaces as being very close to free solutions
(i.e. solutions to the equation 0;u = Lu). This is formalised in the following lemma:

LEMMA 2.9. Let L = iP(V /i) for some polynomial P : R¢ — R, let s € R,
and let Y be a Banach space of functions on R x R® with the property that

le*me ™ flly < I f s mey
for all f € H:(R?) and 70 € R. Then we have the embedding
lJully Se ||U||ijh(5)(Rde)'

Conversely, free solutions will lie in X*® once suitably truncated in time; see
Lemma 2.11.

ProOF. By Fourier inversion we have

1 o
t - - ~ itT jix-§ dedr.
uta) = ey [ [ im e dgar
If we write 7 = h(&) + 70, and set

= L o T e
fTo(‘r) T (27T)d ~/Rd (h(§)+ 075) d§
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we have )
L _ ~ ith(§) jix-€
e @) = Gy /R (h(©) + 70, ) O dg

and thus have the representation

1 ,
u(t) = o /Re”TUethT dry.

Taking Y norms and using Minkowski’s inequality and the hypothesis on Y, we
obtain

lully < /R I froll 22 ety o,

and hence by Cauchy-Schwarz and the hypothesis b > 1/2
Jully ([ ()
R

Il fro ”%1;(1101) d70)1/2-

Using Plancherel’s theorem, the right-hand side rearranges to equal Cy||u|| xs.5, and
the claim follows.

Observe that the same argument applies when P is merely a continuous function
rather than a polynomial, though in this case L will be a Fourier multiplier rather
than a differential operator. Applying this to Y = CYH?, we obtain the immediate
corollary

COROLLARY 2.10. Let b > 1/2, s € R, and h : R® — R be continuous. Then
for any u € inh(g) (R x RY) we have

HUHC?H;(Rde) b ”u”in’h’(g)(Rde)'

Furthermore, the X*? spaces enjoy the same Sobolev embeddings that free
solutions to the equation u; = Lu do. For instance, by combining Lemma 2.9 with
(2.24) (and observing that the spaces L{L" are invariant under multiplication by
phases such as ™), one concludes that

||U||L;?L;(Rde) Sa,rb HUHX‘::W(Rde)
for all Schrodinger-admissible (g, 7).
It turns out that the X*° spaces are only well suited to analyzing nonlinear
dispersive equations when one localises in time. Fortunately, these spaces are easy
to localise:

LEMMA 2.11 (X*? is stable wrt time localisation). Letn € S;(R) be a Schwartz
function in time. Then we have

<
|\77(t)u||xji>h(§)(Rde) ~n:b ||“||ijhy(§)(Rde)

for any s,b € R, any h: R? — R, and any field u € S; (R x RY). Furthermore,
if —1/2 <V <b<1/2, then for any 0 < T < 1 and o > 0 we have

1
||n(t/T)u||Xf_i7;(5)(R><Rd) Sﬂ]»b,b’ Tb b ”u”in’h(&)(RXRd)'

The second estimate in this lemma is useful in the large data theory, as it allows
one to keep certain X*® norms of a solution small by localizing to a sufficiently
small time interval.
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PROOF. Let us first understand how the X*? spaces behave with respect to
temporal frequency modulation u(t,x) — e®™u(t, z). From the crude estimate

(T =10 = h(&))" Sp ()N (7 — h(€))
and elementary Fourier analysis, we conclude that
it b
le’ Tounxizh(&)(RXRd) Se <TO>| ‘”u”X:i)h(&)(RXRd)'
If we now use Fourier expansion in time to write n(t) = [ 7(70)e"™ dry and use
Minkowski’s inequality, we conclude

Hn(t)unxfﬁh o(RXRT) b (/R [71(70) | (70)"" dTO)HU||Xfi7h(5>(RXRd)'

(

Since n is Schwartz, 7 is rapidly decreasing, and the first claim follows.
Now we prove the second claim. By conjugating by (V) we may take s = 0.
By composition it suffices to treat the cases 0 < o' < b or ¥’ < b < 0; by duality
we may then take 0 < b’ < b. By interpolation with the trivial case b’ = b we may
take b’ = 0, thus we are now reduced to establishing
[n(t/T)ullL2L2 mxr) Snb TbHuHXth

(5)(R><Rd)

for 0 < b < 1/2. By partitioning frequency space we can divide into two cases, one
where @ is supported on the region (7—h(§)) > 1/T, and one where (t—h(&)) < 1/T.
In the former case we will have

b
”unxffh,(g)(RXRd) <T HUHXSS}L(&)(RXRd)

and the claim then follows from the boundedness of 7. In the latter case, we use a
variant of Corollary 2.10, noting for any time ¢ that

—

[u@l 2w S ®E©)ll 22 ®e)

S a(7, &) drllz2ra)
(T—h(¢))<1/T

<, Tb—1/2|\(/<r = h(©)?a(r, &) dr)"?| L2 e

_ mb—1/2
=T HuHinh(g)(RXRd)
thanks to Plancherel, the triangle inequality, Cauchy-Schwarz, and the localisation

of @. Integrating this against n(t/T), the claim follows. O

The X*? spaces react well to Fourier multipliers, in much the same way that
ordinary Sobolev spaces H*® do. If D* is a Fourier multiplier of order k, in the sense
that

DEf(&) = m(&)f(€)

for all Schwartz functions f € S, (R%) and some measurable multiplier m : R — C
obeying the growth condition |m(¢)| < (€)¥, then D can be extended to spacetime
functions by acting on each time separately, thus (Du)(t) = D(u(t)), or in terms of
the spacetime Fourier transform

ls\k/u(T, &) =m(&u(r,§)
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and then one easily verifies that D maps X h(g) continuously to X°_ h(g) for any
s,b € R and any h:
DFul yomrn < || o
1D*ull e Sl s,
This is analogous to the well-known estimate ||D¥u|g-—x < |lullgs for Sobolev
spaces. In the case when k is a non-negative integer, we have the converse

s < s 5 S”
(2.59) lull oz, S Mellxe-re +1Vaullx—re s

which is proven by repeating the above arguments. Similarly, if h : R¢ — R is a
polynomial and L := ih(V /i), then we have

—_—~—

(at - L)U(Tu 5) = Z(T - h(g))ﬂ’(Tu 5)
and hence
6 — L s,b— < s, .
1@~ Dyl oor S e,
It is natural to ask whether there is a converse inequality, in the spirit of (2.59).
This is indeed the case:

PROPOSITION 2.12 (X*? energy estimate). Let h : R® — R be a polynomial,
let L :=1ih(V /i), and let u € CF}, Sz (R x R?) be a smooth solution to the equation

uy = Lu+ F. Then for any s € R and b > 1/2, and any compactly supported
smooth time cutoff n(t), we have

”n(t)u”)(ji’h(&)(Rde) ,Sn.,b ”u(O)HH;(Rd) + ”FHin’;(lE)(Rde)-

PROOF. To abbreviate the notation we shall write X bh(g)(R x RY) simply as
X% Let [~R, R] be a time interval containing the support of 1. By truncating F
smoothly in time, using a compactly supported cutoff that equals 1 on [—R, R] we
may assume (using Lemma 2.11) that F is supported on [—2R, 2R] and is Schwartz
in spacetime. Also, by applying (V)* to both u and F if necessary, we may take
s=0.

Let us first suppose that u vanishes at time —2R, thus u(—2R) = 0. By
Duhamel’s formula (2.13) (with ¢x = —2R) we thus have

n(t)ult) = n(t) / I (s) ds = n(t) /R it — $) L0400y (t — )9 F(s) ds

— 00

where 7] is a smooth compactly supported function which equals 1 on [-3R, 3R)].
By Lemma 2.11, it would thus suffice to show that

I /Rﬁ(t = 8)Lj0,400) (t = 8)e"TIEE(s) ds|l xou Sqp ||IFl|x00-1.

A routine computation shows that the spacetime Fourier transform of fR 7t —
)10, 400) (t — 8)e* "L E(s) ds at (7,€) is equal to

( /R ()1 0400y (e~ ) (7, €).

The expression inside the parentheses can be shown (via integration by parts) to
be at most O ({1 — £)~'). The claim then follows.
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Now we handle the general case. We split u(t) = (u(t) — et+2B Ly (—2R)) +
etle?Bly(—2R). For the first term, the preceding argument applies, and we have

In(®)(u(t) = “F2PFu(=2R)) | xo0.0@mxme) Snp [|Fllx00-

Thus it will suffice to control the remaining term. Applying Lemma 2.8, it thus
suffices to show that

1™ u(=2R) L2 Sap u(0)]z2 + [1F [l x00-1.

From Duhamel’s formula and the support of F' we have

2By (—2R) = u(0) —|—/ 71(8)L(—o0,0)(8)e " F(s) ds
R

where 7) is as before. Thus by the triangle inequality it suffices to show that

|| /R ()L —oo0)(8)e—*EF(s) ds|l g2 Snp | Flxons.

Applying Parseval’s identity, the left-hand side can be written as

n / / L oer0 ()M d) (1, €) dr] 12

An integration by parts yields the bound

/ (5)1 (so.0) (8)* T ds| <, (7 — h(€)) !
R

and hence by Cauchy-Schwarz and the hypothesis b > 1/2 we have

| / / ooy (8)H T d) F(7, ) dr| <y | / rh(€)20D | E(r,€) dr)/2,

and the claim follows. O

As observed earlier, X*® spaces enjoy all the Strichartz estimates that free
solutions do. However, in some cases, particularly in periodic settings, it is not
always easy to obtain Strichartz estimates, as dispersive inequalities are typically
not available in periodic settings. (When the domain is compact, L3® decay is
inconsistent with L2 conservation.) However, if one is interested in Lt z O Lgm
type inequalities, one can sometimes establish the Strichartz estimate by a direct
Fourier-analytic approach. A typical result, which is of application to the periodic
Schrédinger equation®® is as follows.

PROPOSITION 2.13 (Periodic Schrédinger estimate). [Bou] We have
lullpars mxr) S ||U||ng£§(RxT)-
for any u € S (R x T).
26Depending on the choice of normalisation used for the Schrodinger equation, the dispersion
relation 7 = h(k) may differ from 7 = k2 by an absolute constant, but this makes no difference

to this Strichartz estimate. Note however that for bilinear estimates one needs to distinguish the
X% space associated to 7 = k? from the conjugate X% space, associated with 7 = —k2.
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PrOOF. We use an argument of Nikolay Tzvetkov. Split u =) ,, uns, where
M ranges over integer powers of 2, and wujs is the portion of u localised to the
spacetime frequency region 2 < (1 — k%) < 2M+1 From Plancherel’s theorem we
have

3/4 2 2
%:M / ||UM||L§L§(RxT) S HUHX;’SS(RXT)

Squaring both sides of the desired inequality and using the triangle inequality, we
reduce to proving that

S Musruarlrzre mxry S ZMBMHUM”%ng(RXT)'
M<M/ M
Setting M’ = 2™ M, it thus suffices by the triangle inequality to prove that
Z ||UMU2mM||L§L§(RxT) S27° Z M3/4||“M||%§L§(RxT)
M M

for all m > 0 and some absolute constant € > 0; by Cauchy-Schwarz it thus suffices
to establish that

lunruamarll p2rz mxry S 27 M2 Jung|l 22 (mocry (27 M) B ugmar || 212 (mxe) -

Let us now normalise uy; and ugmps to have L?L2 norm one. We use Plancherel
and reduce to showing

> / e (71, k1 )igm a (72, ko) di| 22 (mxczy S 20357 M/
ki+ko=k T1+7T2=T

On the other hand, from the normalisation and Fubini’s theorem we have

¢ Z / |t (11, k1) [tigm ar (72, o) dTl)l/QHLzlg(sz) =1
k1+ko=k T1+T2=T

so by Cauchy-Schwarz and the support of %y, tigm s it will suffice to show that

/ 1dn < 2(3/4725m)M3/2
k1 +ko=k Tl+72:T;T1:k%+O(M);7'2:k§+O(2mM)

for all &, 7.

Fix k,7. Observe that for the integral to be non-empty, we must have 7 =
k? + k3 + O(2™M), in which case the integral is O(M). Thus it suffices to show
that

Z 1 5 2(3/4_28)mM1/2.
k1+ko=k;t=k?+k3+0(2m M)

But if 7 = k2 + k3 +O(2™M) and ki + ka2 = k, then (k; —k2)? = 21— k+O(2™ M),
and hence k; — ks is constrained to at most two intervals of length O(27/2M1/2).
The claim then follows with ¢ = 1/8. O

In Section 4.1 we shall encounter some bilinear and trilinear X estimates in
a spirit similar to the above (see also the exercises below).

EXERCISE 2.70 (X*° vs. product Sobolev spaces). Let u € S(R x R?) be a
complex field and let » : R — R be a polynomial. Let U(t) := exp(ith(V/i))
be the linear propagators for the equation u; = Lu, where L = ih(V/i). Let
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v : R x R? — C be the function v(t) := U(—t)u(t), thus v is constant in time if
and only if u solves the equation u; = Lu. Show that

””ijjh RxRd) — HUHHEH;(RXRG‘)

@©f
for all s,b € R.

EXERCISE 2.71 (Endpoint X *° spaces). Show that Lemma 2.9, Corollary 2.10,
Lemma 2.11, and Proposition 2.12 all break down at the endpoint b = 1/2. (But
see the next exercise.)

EXERCISE 2.72 (Endpoint X spaces, II). Let h : Z? — R, and let s,b be
real numbers. Define the space YTS’:bh(k) (R x T9) to be the closure of the Schwartz
functions under the norm

[l
Establish the embeddings

Y2 oy (RXT) “ [[{k)* (T — h(k»bﬂnlgL;(szd)-

[l

<
Ys,:b};(inga(Rde) e HuHinh(k)(R’XTd)

:
and
||U||C$H;(Rde) N ||U||YS~0(Rde)

for all Schwartz functions « and all € > 0; show that the former embedding breaks
down at € = 0. With the notation of Proposition 2.12, establish the energy estimate

Hn(t)u”)/j*:‘)h(s)(Rde) + ”n(t)u”)(ji}/z(?&)(l:{de)

< .

St (IO sy + 1Py oy + 1Pl ety

In the periodic theory, these estimates allow one to use the endpoint space X *1/2
(which is otherwise very badly behaved, as the preceding exercise showed) by aug-

menting it with the additional space Y *°.

EXERCISE 2.73 (X spaces for the wave equation). Let us work in Minkowski

space R with ¢ = 1. Define the norm |[u|s 4 := [Jul| xs.o (Ri+a) BY
I71=le]
ulls.p = K€Y (I7] =€) all L2 (ma+ay.

Also define the slightly stronger norm X' by
[l xso o= llullsp + |10ulls—1,p-
Develop analogues of Corollary 2.10 and Lemma 2.11. Establish that
[Bulls—16-1 Ssp.a [lllxs
for all u € S; ,(R'*9), and conversely that one has the energy estimate
In@)ullasr Ssbm ([0 zzma)y + 10w(0) ]| 21 gy + 1DFufls-1,6-1)

for all compactly supported bump functions 7, all u € S; ,(R!T%), all s € R, and

all b > 1/2. Typically, in applications one would place the solution w in the space

X*® and the nonlinearity Ou in X fT _\ill;I_l' What is the counterpart of Lemma 2.97
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EXERCISE 2.74. Let u € S; (R x T?) solve the inhomogeneous Schrodinger
equation i0;u + Au = F. Show that

In(ullcoLamxr2) + In)ullLs  wxr2) So llw(0)zr2) + 1Fll o2 g opey

for all compactly supported cutoff functions n. (Hint: use Proposition 2.13 and the
Christ-Kiselev lemma, Lemma 2.4.)

EXERCISE 2.75 (Bilinear refinement to Strichartz). [Bou9], [CKSTT11] Let
u,v € St (R x R?) be fields whose spacetime Fourier transforms i,  are supported
on the sets || < M and || > N respectively for some N, M > 1. If d = 1, let us
impose the additional hypothesis NV > 2M. Show that

M(d=1)/2

HUUHLng(Rde) ~b W”unxfi’mz(Rde)HUHX‘T’:&P(Rde)'

(Hint: use Lemma 2.9 twice to reduce u and v to free solutions of the Schrédinger
equation, and compute using Plancherel explicitly. In the case d =2 and N < 2M,
one can use Strichartz estimates.)

EXERCISE 2.76 (Divisor bound). Show that a positive integer d has at most
Oc(n®) divisors for any € > 0. (Hint: first show that if d is the power of a prime
p, then d has at most O.(n®) divisors, and in fact has at most n® divisors if p is
sufficiently large depending on . For the general case, factorise d into the product
of prime powers.)

EXERCISE 2.77 (Periodic Airy Lf , estimate). [Bou] Using Exercise 2.76 and
the identity

(k1 + ko + k3)® — kY — k3 — kS = 3(ky + ko) (ka2 + ks) (ks + k1),

show that for any integers k,¢ that the number of integer solutions to the system
kl —+ kg —+ kg = k, k% + k% —+ kg =1 Wlth kl,kQ,kg = O(N) iS at most OE(NE) fOI‘
any N > 1 and € > 0. Use this to obtain the estimate

ikz+ik3 2\1/2
| Z ape™ T t||L§Lg(TxT) Se (Z<k>€ak) /
kEZ keZ
for any complex numbers aj and any € > 0, and use this in turn to conclude the
Strichartz estimate

In(t)ullLors mxT) Seb ||U||Xii7k3(RXT)

for any € > 0 and b > 1/2 and any field u. It would be of interest to know if this
estimate holds for ¢ = 0, or with the exponent p = 6 replaced by a larger exponent
such as p = 8.

EXERCISE 2.78 (Periodic Airy LS estimate, IT). [Bou] Show that for any in-
tegers k,t that the number of integer solutions to the system ki + ko — k3 = k,
k}+k3 — k% =t with kq, ko, ks = O(N) is at most O.(N¢) for any N > 1 and & > 0.
(Hint: use the first equation to eliminate k3 from the second, and then obtain an
identity of the form (k1 + a)(k2 4+ b) = ¢ for some a, b, ¢ given explicitly in terms of
k,t.) By arguing as in the preceding exercise, show that

[n)ullLss mxT) Sep HuHXfsz(RXT)
for any ¢ > 0 and b > 1/2 and any field u. It is known that the € cannot be set
to zero in this case, though perhaps if the exponent p = 6 were lowered slightly
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then this could be possible. See also [CKSTT3|, [CKSTT12] for some trilinear
refinements of this estimate in which the € loss can be eliminated.



CHAPTER 3

Semilinear dispersive equations

Come what come may,
Time and the hour runs through the roughest day.
(William Shakespeare, “Macbeth”)

In this chapter we turn at last to the main subject of this monograph, namely
nonlinear dispersive equations. Specifically, we now study the local and global
low-regularity wellposedness of the following two Cauchy problems: the nonlinear
Schrédinger equation (NLS)*

1
iug + =Au = plulPtu
(3.1) tT 5 plul
u(to, x) = uo(x) € H;(Rd)

and the nonlinear wave equation (NLW)

Ou = plulP~
(3.2) u(to, r) = ug(z) € HE(R?)
dwu(to, z) = ui(x) € HHRY).

In this chapter we have normalised ¢ = h = m = 1, so that 0 = —9? + A. We
will often also take advantage of time translation invariance to normalise ty = 0.
In both cases, the scalar field v : R'*? — C (or u : I x RY — C, if one only
seeks local solutions) is the desired solution, and the initial data ug (and uq, in the
case of NLW) is specified and lies in a given Sobolev space H:(R?) (or H:1(R?)).
The exponent 1 < p < oo denotes the power of the nonlinearity and is also given;
the sign p € {—1,0,4+1} denotes whether the nonlinearity is defocusing, absent, or
focusing respectively?; we will see some reasons for this terminology later in this
chapter. The cases when p is an odd integer, and in particular the cubic case p = 3
and the quintic case p = 5, are particularly important in mathematical physics,
and have the advantage that the nonlinearity z — |z|P~!z is smooth, indeed it is a
polynomial in z and Z. We shall refer to these instances of NLS and NLW as the
algebraic NLS and NLW respectively. The periodic analogues of these problems,
when the domain is the torus T¢ instead of Euclidean space R is also of interest,
though our main focus here shall be on the non-periodic case.

!The factor of % can be easily eliminated by rescaling time by a factor of 2, and so can be
safely ignored. We retain it in order to make the dispersion relation (or de Broglie law) between
velocity and frequency as simple as possible, namely v = &.

2The defocusing and focusing nonlinearities are sometimes called repulsive and attractive

nonlinearities in the literature.
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For the NLW it is convenient to adopt the notation u[t] := (u(t), Opu(t)), thus
for instance u[tg] = (ug,u1). Thus u[t] describes the total state (both position and
velocity) of the solution u at time .

The power-type nonlinearity function F(u) := p|u[P~*u can be replaced by
other nonlinearities, and in many cases one obtains results similar to those stated
here. But the specific choice of power-type nonlinearity has a number of nice
properties that make it well-suited for exposition, in particular enjoying symmetries
such as the scaling and phase rotation symmetry F(zu) = |z|P F(u) for any complex
z, which will in turn lead to corresponding symmetries for NLS and NLW. It is
also naturally associated to a Hamiltonian potential V(u) := p—_1Hu|u|p+1 via the
observation J
d—EV(u + ev)|c=0 = Re(F(u)D)
for any u,v € C; this will lead to a Hamiltonian formulation for NLS and NLW
(Exercise 3.1).

We will be particularly interested in the low regularity problem: whether one
still has existence and uniqueness of solutions even when the initial datum only
lies in a very low Sobolev space. There are a number of reasons why one would
want to go beyond high-regularity (classical) solutions and consider low-regularity
ones®. Firstly, a good low-regularity theory gives more control on the nature of
singularities of a solution, if they do indeed form; generally speaking, if one has
a local wellposedness theory in H, then that implies that a singularity can only
form by making the H2 norm go to infinity (or to concentrate at a point, if the
norm H3 is critical with respect to scaling). Secondly, many of the key structural
features of an equation - such as the conserved Hamiltonian, the symplectic form,
the scale invariance, or other conserved or monotone quantities - are typically as-
sociated to rather low regularities such as L2, HY? or H! and in order to fully
exploit these features it is often important to have a good local theory at those reg-
ularities. Thirdly, the technical challenge of working at low regularities (especially
near or at the critical regularity) enforces a significant discipline on one’s approach
to the problem - requiring one to exploit the structural properties of the equation
as efficiently and as geometrically as possible - and has in fact led to the develop-
ment of powerful and robust new techniques and insights, which have provided new
applications even for smooth solutions (for instance, in clarifying the dynamics of
energy transfer between low and high frequencies). Finally, the task of extending a
local existence result to a global existence result can (somewhat paradoxically) be
easier if one is working at low regularities than high regularities, particularly if one
is working at the scale-invariant regularity, or a regularity associated to a conserved
quantity.

The nonlinear Schrodinger and wave models (3.1), (3.2) are among the simplest
nonlinear perturbations of the free (linear) Schrodinger and wave equations®. Both
equations are semilinear (the nonlinearity is lower order than the linear terms),

3A1tornativcly, one can continue to work exclusively with classical solutions so that there is
no difficulty justifying various formal computations, but demand that all estimates depend only
on low-regularity norms of the solution. In practice, the two approaches are essentially equivalent;
in most cases one can use limiting arguments to recover the former from the latter.

41ndeod7 the NLS (together with the KdV equation) frequently arises in physics as the first
nonlinear approximation of a dispersive system, by performing a Taylor expansion of the nonlin-
earity and discarding all but the first term. See for instance [SSul].
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and furthermore the nonlinear term contains no derivatives or non-local terms.
Furthermore, these nonlinear equations retain many of the symmetries and struc-
ture of their linear counterparts; for instance, the NLS is a Hamiltonian equation
with conservation of mass (charge), momentum, energy, enjoys scaling, Galilean,
translation, and (partial) pseudoconformal symmetries, and enjoys several mono-
tonicity formulae, including some of virial and Morawetz type. The NLW is also
Hamiltonian with a conserved stress-energy tensor, with all its attendant conse-
quences such as Morawetz inequalities and finite speed of propagation, and also
enjoys scaling, Lorentz, translation and (partial) conformal symmetries. On the
other hand, these equations are not completely integrable (with the notable excep-
tion of the one-dimensional cubic (p = 3) NLS, as well as a variant of the NLW
known as the sine-Gordon equation), and so do not admit many explicit solutions
(beyond some standard solutions such as the ground state solitons). The large
number of parameters present in these equations (the dimension n, the power p,
the sign u, the regularity s, and whether one wishes to consider periodic or non-
periodic solutions) means that these equations exhibit a wide range of phenomena
and behaviour, and in many ways are quite representative of the much larger class
of nonlinear dispersive and wave equations which are studied in the literature. Thus
while our understanding of these equations is somewhat better than for most other
nonlinear dispersive models (particularly for subcritical and critical regularities, for
small data, and for the defocusing regularity), they are still so rich in structure and
problems that there is still plenty to be understood.

Broadly speaking, there are two major classes of techniques one can use to ana-
lyze these equations. On the one hand, one has perturbative methods, which approx-
imate the nonlinear equations (3.1), (3.2) by more tractable and well-understood
equations such as® the free (and linear) Schrodinger or wave equations. The er-
ror between the actual equation and the approximate equation is usually treated
by some sort of iteration argument (usually based on Duhamel’s formula) or by
a Gronwall inequality argument (usually based on energy estimates). Another re-
lated example of a perturbative method arises when constructing exact solutions
to NLS and NLW by first starting with an approximate solution (that solves the
equation up to a small error) and then constructing some sort of iterative scheme
or Gronwall inequality argument to convert the approximate solution to an exact
one.

As the name implies, perturbative methods only work when the solution is
very close to its approximation; typically, this requires the initial datum to be
small (or a small perturbation of a special initial datum), or the time interval to
be small (or perhaps some spacetime integral of the solution to be well controlled
on this time interval). When dealing with large solutions over long times, per-
turbative techniques no longer work by themselves, and one must combine them
with non-perturbative methods. Examples of such methods include conservation
laws, monotonicity formulae, and algebraic transformations of the equation. Such
methods are initially only justified for smooth solutions, but can often be extended
to rough solutions by means of the perturbative theory. Thus, global control of a
solution is often obtained via a collaboration between the perturbative techniques

5In some cases one will use a more complicated equation as the approximating equation. For
instance, if one is analyzing the NLS or NLW near a special solution such as a soliton solution,
one often uses the linearised equation around that soliton as the approximating equation.
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and non-perturbative techniques; typically, the perturbative theory guarantees a
well-behaved solution provided that certain integrals of the solution stay bounded,
and the non-perturbative theory guarantees control of these integrals provided that
the solution remains well-behaved (see e.g. Figure 7.). This basic division of labour
already works remarkably well in many situations, although in some recent results
(most notably in those employing the induction on energy strategy, see Chapter 5)
one has had to apply a more advanced scheme.

We conclude this introduction by describing some special (and very explicit)
solutions to both (3.1) and (3.2), in order to build some initial intuition about
these equations, though we emphasise that for generic initial data we do not expect
any similarly explicit formula for the solution. Let us begin by using the classical
method of separation of variables, using solutions of ODE to construct special
solutions to PDE. For any ¢ € R, the plane wave /¢ is an eigenfunction of the
Laplacian &, and also has magnitude one, which leads one to consider the ansatz

(3.3) u(t, z) = e Cu(t).

Simple calculation then shows that in order to solve the NLS (3.1), v must obey
the ODE
[3

2
o = i+ ol

and to solve the NLW (3.2), v must obey the ODE
(3.4) 0fv = —(Ig]* + ulvP~H)v.

In the case of NLS, the ODE for v can be explicitly solved, leading to the plane
wave solutions

(3'5) u(t,x) — aeig»mei|g|2t/2eiu\a|z771t

for any o € C and ¢ € Z%. Note how the time oscillation of eilél*t/2 arising from
the linear evolution is augmented by the additional time oscillation e#ll”™'t.
the defocusing case 4 = +1, both time oscillations are anti-clockwise, so one can
view the defocusing nonlinearity as amplifying the dispersive effect of the linear
equation; in the focusing case the focusing nonlinearity is instead trying to cancel
the dispersive effect. If the amplitude « is small compared the frequency £ then
the dispersive effect is stronger, but when the amplitude is large then the focusing
effect takes over. This already illustrates one useful heuristic: the focusing and
defocusing equations behave similarly when the initial data is small or when the
frequency is very large®.

As for the NLW (3.2), one can obtain a similar class of (complex) explicit
solutions

In

u(t,x) := eté T i€l +ulal? )2t

provided that |£|2+p|a|P~! > 0. This latter condition is automatic in the defocusing
case 4 = +1 or the linear case u = 0, but requires either the frequency & to be
large or the amplitude « to be small in the focusing case p = —1. This is again
consistent with the heuristic mentioned earlier. When the initial data is large and

6Actually7 this heuristic is only valid in “subcritical” situations, in which the high frequencies
scale more favourably than the low frequencies. In critical cases, the high and low frequencies are
equally sensitive to the distinction between focusing and defocusing; the supercritical cases are
very poorly understood, but it is believed that the high frequency behaviour is radically different
in the focusing and defocusing cases.
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positive compared to the frequency, then the ODE (3.4) can blow up (this can be
seen for instance using Exercise 1.25, in the case when v is real); one explicit family
of blowup solutions in the focusing case p = —1 (with £ = 0) is given by

(3.6) u(t, z) = cy(to — t)~2/ 1)

%)1/(1”1) and ty € R is an arbitrary parameter. In
contrast, in the defocusing or linear cases 1 = +1,0 no blowup solution of the form
(3.3) is possible, because (3.4) enjoys a coercive Hamiltonian”

for t < ty, where ¢, = (

1 1
H(v,000) = 3100l + eI + L ot
and thus (by Exercise 1.29) the solutions (3.3) will stay globally bounded for all
time. Similarly in the focusing case if the initial data is very small compared to the
frequency. Thus we see that the large data focusing behaviour is quite bad when
compared to the defocusing or linear cases.

The solutions of the form (3.3) have no decay in space and so will not lie in
Sobolev spaces such as HS(R%), although if the frequency ¢ lies in the integer lattice
Z? then we can view these solutions as lying in the periodic Sobolev spaces H?(T?)
for any s. In the (focusing) non-periodic case it is possible to create a different class
of solutions by choosing an ansatz which oscillates in time rather than in space:

(3.7) u(t, ) = Q(x)e,
where w € R. This leads to the ground state equation
(3.8) AQ +alQIPT'Q = 6Q

where (a, 8) := (—2u,27) for NLS and (o, 3) := (—u, 72) for NLW. In the defocus-
ing case we can take a, 3 > 0 (choosing 7 to be positive). From Appendix B we
then recall that if 1 < p < oo is energy-subcritical in the sense that % — p%l <1,

then there exists a smooth, positive, rapidly decreasing solution Q € S,(R?) to the
equation (3.8). This leads to the standard ground state soliton solution to either
NLS or NLW associated to the temporal frequency 7 > 0; it lies in every spatial
Sobolev space H?(R?), and has a very simple behaviour in time. In the next section
we will apply the symmetries of NLW and NLS to generate further ground state
solitons. These solitons are only available in the focusing case; In Section 3.5 we
shall establish Morawetz inequalities which show that nothing remotely resembling
a soliton can occur in the defocusing equation.

EXERCISE 3.1. Obtain the analogue of Exercise 2.47 for the NLS, and Exercise
2.58 for the NLW, by adding the nonlinear potential energy term V(u) to the
Hamiltonian.

EXERCISE 3.2. Let u € C’f_’z_’loc(R x R? — V) be a classical solution to a

d-dimensional NLS. Show that the field v € C? | (R x R4 — V) defined by

xz,loc

e*i(t+xd+1)u(t — Td+l
2

is a classical solution to the corresponding d + 1-dimensional NLW (cf. Exercise

2.11). This correspondence may help explain why many of the algebraic expressions

v(t,T1, ..., Td, Tay1) = y X1y ey Xd)

"The case w =& = 0 is degenerate coercive, but this case can be treated by hand, leading to
solutions of linear growth in time.
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defined below for the NLW have a counterpart for NLS, but with d replaced by
d + 1. This correspondence is less useful for the H? wellposedness theory, because
the functions v constructed above will not have finite H norm. One should also

caution that this correspondence does not link periodic NLS solutions with periodic
NLW solutions.

EXERCISE 3.3. By taking formal limits of the Lax pair formulation of the
periodic Ablowitz-Ladik system as discussed in Section 1.7, discover a Lax pair
formalism for the one-dimensional cubic defocusing Schrodinger equation (in either
the periodic or nonperiodic settings).

3.1. On scaling and other symmetries

It has long been an aziom of mine that the little things are infin-
itely the most important. (Sir Arthur Conan Doyle, “A Case of
Identity”)

We now describe the concrete symmetries of NLS and NLW; to avoid technical-
ities let us just work with classical solutions for now (we will discuss more general
notions of solution in the next section). The NLS (3.1) enjoys the scaling symmetry

t
(3.9) u(t,z) — A_Q/(p_l)u(p, ;), uo(x) — /\_2/(p_1)u0(§)
for any dilation factor A > 0 (thus time has twice the dimensionality of space), and
the Galilean invariance

(3.10) u(t, z) — e”'”e_itlv‘2/2u(t,x —wt);  ug(x) — e Vug(z)

for any velocity v € R (cf. Exercise 2.5). It also enjoys the more mundane sym-
metries of time translation invariance, space translation invariance, spatial rotation
symmetry, phase rotation symmetry u — e*®u, as well as time reversal symmetry

u(t,z) — u(—t,z);  up(x) — ug(x).

In the pseudo-conformal case p = pr2 =1+ %, one also use Exercise 2.28 to verify
the pseudo-conformal symmetry
1 1z,
(= Detleltr2t
(3.11) u(t, z) — (it)d/2u( 3 Je
for times t # 0. This symmetry is awkward to use directly (at least when ¢y = 0)
because of the singularity at ¢ = 0; one typically uses the time translation and time
reversal symmetries to move the singularity elsewhere (e.g. to the time ¢ = —1).
Similarly, the NLW (3.2) enjoys the scaling symmetry
t x
t DA P R
ult, ) — u(s3)
(3.12) up(z) — ,\*2/<P*1>u0(§);
i (@) = A0 ()
for any dilation factor A > 0 (thus time and space have equal dimension), and (if
the solution exists globally in time) the Lorentz invariance

t—v-x T, — vt

N S T

(3.13) u(t, z) — u(

)
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for all sub-luminal velocities v € R? with |v| < 1 (cf. Exercise 2.6); note that the
effect of this invariance on the initial data ug, u; is rather complicated and requires
solving the equation (3.2). The NLW also enjoys spacetime translation invariance,
spatial rotation symmetry, phase rotation symmetry, conjugation symmetry, and
time reversal symmetry. In the conformal case p=p 12 =1+ ﬁ, one also has
the conformal symmetry :
2 12y —(d—1)/2 t z
u(t,x)'—>(t |£L'| ) u(t2_|x|27t2_|x|2)
inside the light cone |¢| < |z|, thanks to Exercise 2.14.

Unlike the Galilean invariance (3.10), the Lorentz invariance (3.13) has the
effect of time dilation - solutions which would ordinarily exhibit some special be-
haviour (e.g. blowup) at a time T will instead do so at a much later time, typically

of the order of T'/4/1 — |v|2. To compensate for this one can compose the Lorentz

transformation with the scaling transformation with A := 1/4/1 — |v|?, leading to
the normalised Lorentz invariance

(3.14)  w(t,z)— (1= [pHY PVt —v-2,/1— [02(@ — ) + 2, — 01).

Symmetries have many uses. Through Noether’s theorem, they indicate what
conservation laws are available (though certain symmetries, particularly discrete
ones, do not necessarily yield a conservation law). They can give guidance as to
what type of techniques to use to deal with a problem; for instance, if one is trying to
establish wellposedness in a data class which is invariant under a certain symmetry,
this suggests the use of estimates and other techniques which are also invariant
under that symmetry; alternatively, one can “spend” the symmetry by normalising
the solution, for instance in making the solution centred or concentrated at the
origin (or some other specified location) in space, time, or frequency. If the data
class is subcritical with respect to scaling, one can use the scaling symmetry to
trade between time of existence and size of initial data; thus if one establishes a
local wellposedness at a fixed time (say up to time 7" = 1) for data with small
norm, then one can often also establish local wellposedness at a small time for
large data; typically the time of existence will be proportional to some negative
power of the norm of the data. Conversely, if the data class is supercritical with
respect to scaling (or more generally is lower than the invariant norm associated
to another symmetry), then it is likely that there is a significant obstruction to
obtaining a wellposedness theory below that regularity, and one also expects the
wellposedness theory at that regularity to be rather delicate. The reason for this
is that if the regularity is below the invariant regularity, then one can use the
symmetry to convert bad behaviour arising from large initial data at some time
t > 0 to bad behaviour arising from small initial data at some time less than or
equal to t, where “large” and “small” are measured with respect to the regularity
H:(R). Since large initial data would be expected to display bad behaviour very
quickly, one then expects to give examples of arbitrary small initial data which
displays bad behaviour arbitrarily quickly. This can often be used to contradict
certain types of wellposedness that one could hypothesise for this regularity. See
also Principle 3.1 below.

Let us give some sample applications of the symmetry laws. The first is a
blowup result for the pseudoconformal focusing NLS (so p = —1 and p = p L2 =
1+32). Recall that this equation has a soliton solution of the form u(t, z) = €' Q(x)
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for any 7 > 0, where the ground state () is a nonnegative Schwartz solution to the
equation

AQ +2Q' 4 = 27Q.
Applying the pseudoconformal transformation (3.11), we obtain the solution

1
(it)d/2

This solves the NLS equation for all times ¢ # 0, and in fact lies in every Sobolev
space H3(R?) for such times, but blows up in a rather dramatic way as t — 0.
Thus the pseudoconformal focusing NLS can lead to blowup even from very smooth
decaying initial data, though we will later see that this is due to the initial datum
being “large” in an L2(R%) sense. This blowup occurs despite the solution being
bounded in L2, and despite the conservation of the L2 norm. Thus for PDE, a
positive definite conservation law is not always sufficient to prevent blowup from
occuring, in marked contrast to the situation for ODE; note that the solution (3.15)
demonstrates rather vividly the lack of compactness of bounded subsets of L2(R%).

Now consider a general NLS. Applying the pseudoconformal transformation in
Exercise 2.28, one no longer expects to recover the original equation; instead, the
transformed field v(t, 2) will now obey the equation

(3.15) e_iT/tei|I|2/2tQ(x/t).

(3.16) 10w + Av = t%(p_pLi)u|v|p_lv

for t # 0, where prz := 1+ % is the pseudoconformal power. We will analyze this
equation (3.16) in more detail later, but for now let us just extract a special class
of solutions to (3.16) (and hence to NLS), by considering solutions v which are
independent of the spatial variable and thus simply solve the ODE

(3.17) 10y :tg(pprg)MvV’*lv.
This ODE can be solved explicitly as

iplafP!

t?)
q

v(t,z) = aexp(—
for any o € C and with ¢ := %(p —prz2)+1, though in the critical-range case ¢ = 0
(so p =1+ 2) we have instead the solution
v(t, ) = aexp(—i|aP "' log|t]).

We can of course invert the pseudoconformal transformation and obtain explicit
solutions to the original NLS for ¢ # 0, namely

1 ile? gl
3.18 t = _——t —
(3.18) u(t, ) (it)d/?o‘eXp( o g )
when ¢ # 0 and

— Z|17|2 . —1
(3.19) u(t,z) = (it)d/Qaexp( 57 + iplaP™ " log [t])

when ¢ = 0. Of course when 1 = 0 we recover the explicit solution u(t,z) =
2
(it);ma exp(l‘;t‘ ) to the linear Schrodinger equation (essentially the fundamental
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solution® for that equation). Comparison of these solutions yields the following
heuristic: as ¢ — 4o0, the nonlinear Schrodinger equation should resemble the
linear Schrodinger equation when in the short-range case ¢ >0 (sop > 1+ %), but
not in the long-range® case ¢ < 0 or critical-range case ¢ = 0 (though the divergence
between the two equations should consist primarily of a phase shift, which should
be somehow “logarithmic” in the critical-range case). We will see some justification
of this heuristic later in this chapter, though our understanding here is far from
complete.

Now we observe some applications of the Galilean invariance law (3.10). Let
us begin with a periodic NLS (with d,p and p = +£1 arbitrary). In this periodic
setting we have the plane wave solutions

(3.20) U e(t,T) = el T eilél’t/2 yinlal?

for any ¢ € 2rZ¢ and o € C; one can view this as the Galilean transform of the
constant-in-space solutions aethlel? ', Suppose one fixes the frequency parameter
& to be large, and considers two distinct solutions ¢, o/ ¢ of the above type with
|a] ~|a/|. At time zero we have

1t 0) | s () [tarr (O | s ) ~ lealJ€1%
110 (0) = s, (0) | s (ay ~ |ov — o] €]*
while at any later time ¢ we have
et (8) | 75 () [t () | 123 oy ~ lexl 1€
1t (8) = tar ¢ ()]s ~ Jave1ol" e — o giaele 1" gl

Thus the I norms of the solutions uq,¢ and uq/ ¢ do not change much in time, but
the HJ separation of these solutions can change due to a phase decoherence effect.
Indeed we see that if |a| # |o/|, then there exists a time ¢ ~ |a|! =P for which the two
phases become completely decohered, and [[ua.¢(t) — war g (t) || gz () ~ ||, If s

is negative, then by taking « to be large and |¢| to be comparable to (|a|/e)~/%, we
can construct for any d,& > 0, a pair of solutions uq ¢, uqr ¢ to NLS of H3(T?) norm
O(e) and H:(T4) norm separation O(§) at time zero, such that at some later time
t = O(e) the H(T9) norm separation has grown to be as large as O(g). This shows
that for negative s, a pair of solutions can separate in H(T?) norm arbitrarily
quickly; more precisely, the solution map ug — wu is not uniformly continuous from
H to CPHE([0,T] x T9) even for arbitrarily small T and for arbitrarily small
balls in H3(T%). This is a negative result that rules out certain types of strong
wellposedness results for the periodic NLS for negative Sobolev regularities.

8Indeed, one could view (3.18), (3.19) as the “nonlinear fundamental solution” for NLS.
However these solutions are nowhere near as useful as the fundamental solution is for the linear
equation, since we no longer have the principle of superposition in the nonlinear case and so we
cannot build general solutions by superimposing translates of the fundamental solution. Never-
theless, these explicit solutions provide some useful intuition as to the asymptotic behaviour of
the equation for general data.

9The terminology here signifies the long-term strength of the nonlinearity and can be justified
heuristically as follows. One can view the nonlinearity in NLS as a potential term with time-
dependent potential p|u|P~1. Assuming that the nonlinear evolution decays at the same rate as
the linear one, dispersive estimates suggest that |u| should decay like t=4/2. Thus we expect in the
short-range case we expect the potential to be integrable in time, which suggests by Gronwall’s
inequality that the long-term effect of the nonlinearity is bounded.
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One can run a similar argument for nonperiodic focusing NLS, by starting with
the ground state solution " Q(z), rescaling it by A and then applying a Galilean
transform to obtain the moving soliton solution

(321) uv,,\(t, ,T) — )\—2/(17—l)ei(zvv+it|v\2/2+it‘r/)\2Q((x _ ’Ut)/)\)

for any v € R% and A > 0; one can use these solutions to show that the solution map
to NLS (if it exists at all) is not uniformly continuous in H? for certain low s; see
Exercise 3.5. A similar result is also known for the defocusing case, replacing the
soliton solutions with another family of solutions that can be viewed as truncated
versions of the plane wave solutions (3.5); see Section 3.8.

Among all the symmetries, the scale invariance (3.9), (3.12) is particularly im-
portant, as it predicts a relationship between time of existence and regularlty of
initial data. Associated to this invariance is the critical reqularity s. := % - 1
Note that the scaling (3.9) preserves the homogeneous Sobolev norm |[uo|| .. (ra)-
and similarly (3.12) preserves |[uo| s-c (ra) + |U1l grsc—1(gay- The relationship be-
tween scaling and the inhomogeneous counterparts to these Sobolev norms is a
little more complicated, of course. We refer to regularities s > s. above the critical
norm as subcritical, and regularities s < s, below the critical norm as supercrit-
ical. The reason for this inversion of notation is that higher regularity data has
better behaviour, and thus we expect subcritical solutions to have less pathologi-
cal behaviour than critical solutions, which in turn should be better behaved than
supercritical solutions. The other scalings also have their own associated regulari-
ties; the Galilean symmetry and pseudoconformal symmetry preserve the L2(R9)
norm, whereas the Lorentz symmetry and conformal symmetries are heuristically
associated to the H'/2(R%) x H~1/2(R%) norm (see Exercise 2.23).

In general, the relationship between the regularity H? of the initial data, the
scale-invariant regularity H®¢ of the equation, the frequencies of the solution, and
the evolution of the solution tends to follow the following informal principles'®

PRINCIPLE 3.1 (Scaling heuristic). Let u be a solution to either the NLS (3.1)
or NLW (3.2), with initial position ug in HS (and initial velocity uy in H*™!, in
the case of the NLW).

(a) In the subcritical case s > s., we expect the high frequencies of the solution
to evolve linearly for all time (unless a stronger obstruction than scaling
exists). The low frequencies of the solution will evolve linearly for short
times, but nonlinearly for long times.

(b) In the critical case s = s., we expect the high frequencies to evolve linearly
for all time if their H® norm is small, but to quickly develop nonlinear be-
haviour when the norm is large. (Again, we are assuming that no stronger
obstruction to linear behaviour than scaling exists.) The low frequencies of
the solution will evolve linearly for all time if their H® norm is small, but

10This principle should be taken with a grain of salt. On the one hand, it gives a good
prediction for those equations in which the scaling symmetry is in some sense “dominant”, and
for which the worst types of initial data are given by bump functions. On the other hand, there are
other situations in which other features of the equation (such as Galilean or Lorentz symmetries,
or resonances) dominate, in which case instability can occur even when the scaling heuristic
predicts good behaviour. Conversely, some features of the equation, such as conservation laws or
monotonicity formulae, can provide more stability than the scaling heuristic predicts.
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will eventually develop nonlinear behaviour (after a long period of time)
when the norm is large.

(c) In the supercritical case s < s., the high frequencies are very unstable and
will develop nonlinear behaviour very quickly. The low frequencies are in
principle more stable and linear, though in practice they can be quickly
disrupted by the unstable behaviour in the high frequencies. (This rela-
tively good behaviour of the low frequencies is sometimes enough to obtain
a weak solution to the equation, however, by using viscosity methods to
suppress the high frequencies; see Exercise 3.56.)

Let us now briefly give a heuristic discussion that lends some support to Prin-
ciple 3.1. Let N > 0 be a frequency; frequencies N > 1 correspond to high
frequencies, while frequencies N < 1 correspond to low frequencies. A model ex-
ample of an initial datum wug of frequency ~ N is a function which is supported on
a ball B of radius 1/N, does not oscillate too much on this ball, and reaches an
amplitude A on this ball. (For the NLW, one would also need to similarly specify
an initial velocity.) We will assume that this “rescaled bump function” example is
the “worst” type of initial data in the given class (i.e. bounded or small functions
in H? or H*~1); this assumption corresponds to the caveat given in the above prin-
ciple that no stronger obstructions to linear behaviour exist than the scaling one.
The L2 norm of such a datum is roughly ~ AN~%/2 and more generally (from
the Fourier representation of the H? norm) we expect the H? norm of this datum
to be ~ AN*~%/2; thus if ug is bounded in H? then A = O(N%/?~%), and if ug
is small in H? then A < N%?~5. Now, both the NLS (3.1) and the NLW (3.2)
contain a linear term Awu and a nonlinear term p|u[P~'u. On the ball B (at least
for times close to 0), the linear term has magnitude ~ N2A, while the nonlinear
term has amplitude ~ AP. If N2A > AP, we thus expect the linear term to dom-
inate, and the solution should behave linearly (cf. Principle 1.37). If AP > N2A,
we expect the nonlinear term to dominate and so one eventually expects nonlinear
(and unstable) behaviour. The time in which this nonlinear behaviour becomes
apparent can be predicted by comparing v against its time derivative diu or its
second time derivative O?u. For instance, suppose we have an NLS in which the
nonlinear behaviour dominates, thus d;u will be dominated by the nonlinear term
p|u|P~tu, which has amplitude ~ AP. Since u itself has amplitude ~ A, we expect
the nonlinear behaviour to significantly affect the initial datum after time ~ A/AP.
Using these heuristics, one can give informal justification for all three components
(a), (b), (c) if Principle 3.1; see Exercise 3.4.

A particular interesting case is when the scale-invariant regularity coincides
with one of the other special regularities, such as the H! norm (associated to
the energy or Hamiltonian), the Hml/ * norm (associated to the momentum in NLS
and to the symplectic structure, Lorentz invariance, and conformal invariance in
NLW), and the L2 norm (associated to the Galilean invariance, pseudoconformal
invariance, and mass in NLS, and being the limiting regularity in NLW to even
make sense of (3.2) distributionally); see Table 1. Thus we isolate as special cases
the H!-critical (or energy-critical) case s, = 1 (thus d > 3 and p = 1 + ),
the Ha/?-critical case s, = 1/2 (thus d > 2 and p = 1+ 525) and the L2-critical
case sc = 0 (thus d > 1 and p = 1+ 2). One can also discuss the H!-subcritical
case s, < 1 and the H;—supercritical case S. > 1, etc. Another relevant regularity
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TABLE 1. The critical exponents for small dimension. The cases
when a critical exponent corresponds to an algebraic equation (i.e.
p is equal to 3 or 5) are of particular interest.

Dimension | L2-critical Ha/*-critical H%-critical
1 5 00 -
2 3 5 00
3 7/3 3 5
4 2 7/3 3
5 9/5 2 7/3
6 5/3 9/5 2
in the case of NLW is the Lorentz regularity s; := % — p+1 =%+ i, which is

the regularity which is heuristically associated to the normalised Lorentz invariance
(3.14), and is halfway between the scale-invariant regularity s. and the conformal
regularity %

EXERCISE 3.4. Use the heuristic analysis of bump function initial data, as
described in this section, to give some informal justification to Principle 3.1. (Be
prepared to make a large number of hand-waving assumptions. The important thing
here is to develop the numerology of exponents; rigorous support for these heuristics
will be have to wait until later in this chapter.) In the subcritical case, develop a
heuristic relationship between the H? norm of the initial data and the predicted
time T in which the linear behaviour dominates. (One should get T ~ ||u0|\i{s(sfsc)
for NLS and T ~ (||uol| s + ||w1|gra-1)*/ %) for the NLW.)

EXERCISE 3.5. [BKPSV] Let d,p be arbitrary, let 4 = +1, and let s < 0 or
5§ < S = %— p—zl. Using the solutions (3.21), show that for any €,0 > 0 there exists
a pair of classical solutions u, u’ to (3.1) with H2(R?) norm O(g) and H:(R?) norm
separation O(§) at time zero, such that at some later time ¢t = O(¢) the H:(RY)
norm separation has grown to be as large as O(eg). This shows that there is no

uniform wellposedness at this regularity, at least for the focusing regularity.

3.2. What is a solution?

For every complex problem, there is a solution that is simple, neat,
and wrong. (H.L. Mencken, “The Divine Afflatus”)

Before we begin the analysis of our model problems (3.1), (3.2), let us pause
to address a rather fundamental question, namely what it actually means for a
field u to be a solution of either of these two Cauchy problems. This question may
sound philosophical in nature, but the properties associated to making a solution
concept “strong” are well worth establishing rigorously, as they become important
in establishing many of the further properties of the equation, such as the global
existence and asymptotics of (classical) solutions.

The question of defining exactly what a solution is is more subtle than it may
first appear, especially at low regularities. The reason for this is that in order
for a solution to a PDE to actually be useful for applications, it is not merely
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enough that it exist and solve the equation in some weak sense'! (e.g. in the sense
of distributions), though this is certainly a minimal requirement; one also often
desires additional properties on the solution, which do not automatically follow
from the fact that the equation is solved weakly. We informally describe some of
the most important of these properties'? as follows.

e Existence: Is the solution guaranteed to exist (locally, at least) for all
initial data in a certain class (e.g. HZ)?

e Uniqueness: Is the solution the unique object in a certain solution class
(e.g. COHZ(I x R%)) which solves the equation in a suitable sense (e.g.
in a distributional sense)? Is this solution concept compatible with other
notions of solution (i.e. if two solutions to the same equation exist in two
different senses, are they equal to each other)?

e Continuous dependence on the data: Do small perturbations of the initial
datum (in some norm) lead to small perturbations in the solution (in
some other norm)? In other words, is the solution map continuous? One
can also ask for stronger continuity properties such as uniform continuity,
Lipschitz continuity, or analyticity.

e Bounds: If the initial datum is in some class, say H3, can one control
the solution in some other class, e.g. CYH3(I x R%)? In particular, does
one have persistence of regularity: is the solution always as smooth as the
initial datum (as measured in an H} sense)?

e Lifespan estimates: Is there a lower bound on the lifespan of the solution
in terms of the initial data (or in terms of some norm of the initial data,
such as an H2(R?) norm)? Equivalently, is there a blowup criterion that
gives necessary conditions for the lifespan to shrink to zero? In some cases
one has global existence, which case the lifespan is infinite.

e Approximability by smooth solutions: if the solution is rough, can it be
written as the limit (in some topology) of smoother solutions? If the
initial datum is approximated by a sequence of smooth initial data, do
the corresponding solutions necessarily converge to the original solution,
and in what sense?

e Stability: If one perturbs the equation (thus considering fields which only
solve the original equation approzimately), to what extent can these near-
solutions be approximated by the ezact solution with the same (or a
nearby) initial datum?

HThis is in marked contrast with the theory of linear differential equations, in which dis-
tributional solutions are very tractable, and can mostly be manipulated as if they were classical
solutions, in large part because they can be expressed as the weak limit of classical solutions. Since
weak convergence is often not preserved under basic nonlinear operations such as multiplication of
two functions, one generally requires in nonlinear applications that a solution be a strong limit of
classical solutions, which usually leads to the requirement that one work with wellposed solutions;
see below.

12por elliptic PDE, another important property that one often desires is that the solution
is a minimiser, or at least a critical point, of the Lagrangian associated to the PDE, with respect
to various classes of perturbation. One could insist on something similar for nonlinear wave and
Schrodinger equations, but this has not proven to be as fruitful a property for these equations
as in the elliptic case, in large part because of the highly non-convex nature of the Lagrangians
involved. However, the Lagrangian formulation is (formally) linked to important properties such
as conservation laws and monotonicity formulae, which are very desirable properties for a solution
to obey.
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e Structures: Do the conservation laws of the equation, which can be rigor-
ously justified for classical (i.e. smooth and decaying) solutions, continue
to hold for the solution class being studied? Similarly for monotonicity
formulae, symmetries of the equation, etc.

Thus, instead of having a single unified concept of a solution class, one has
instead a multi-dimensional continuum of such classes, ranging from very weak
solution classes (in which the equation solves the equation in a weak sense, or
is perhaps a weak limit of smoother solutions or near-solutions, but not much
else), to very strong solution classes, in which one has many or all of the desirable
properties listed above. Generally speaking, it is fairly easy to show existence of
solution in a weak solution class by various limiting arguments (e.g. iteration or
weak compactness arguments), but non-trivial effort is then required to upgrade
those solutions to lie in stronger solution classes.

In this section we shall discuss five notions of solution, which in decreasing order
of strength are classical solution, wellposed H; solution, strong H; solution, weak
H? solution, and distributional solution respectively. In fact, in this monograph we
shall largely work with wellposed and classical solutions, in order to avoid a number
of subtleties involving the weaker notions of solution.

To fix the discussion let us just work with the NLS equation (3.1), and fix
our initial data class to be a Sobolev space HZ(R?). The strongest notion of a
solution is that of a classical solution. These can (broadly speaking) be defined as
solutions which have so much differentiability and decay that there is no difficulty
interpreting the problem (3.1) in a classical sense (i.e. without requiring the theory
of weak derivatives). Furthermore, one has enough regularity and decay available!?
to justify all the various formal manipulations associated to the equation, such as
conservation laws, monotonicity formulae, and so forth. The amount of regularity
required to do all this can be quite large; for instance, in order to justify conser-
vation of the Hamiltonian for NLS safely, one requires as much as three orders of
differentiability on the solution, as well as some additional uniformity and decay
conditions. Because of this, one occasionally runs into issues generating a classi-
cal solution theory when the nonlinearity p|u[P~1u is not very smooth (which can
happen when p is close to 1); in such cases one may need to regularise the non-
linearity before discussing classical solutions. However this issue does not arise for
the algebraic equations, in which p is an odd integer.

It is also easy to establish uniqueness for classical solutions (essentially because
the proof of Theorem 1.14 carries over without difficulty). Here are two typical
such results, one for NLS and one for NLW.

PROPOSITION 3.2 (Uniqueness for classical NLS solutions). Let I be a time
interval containing to, and let u,u’ € Cﬁw (I x R — C) be two classical solutions
to (3.1) with the same initial datum ug for some fived p and p. Assume also that we
have the mild decay hypothesis u,u’ € L{°LI(I x RY) for ¢ = 2,00. Then u = u'.

PrROOF. By time translation symmetry we can take tg = 0. By time reversal
symmetry we may assume that I lies in the upper time axis [0, 4+00). Let us write
v =wu+wv. Then v € C,(I x R* — C), v(0) = 0, and v obeys the difference

13This is a somewhat vague definition, but in practice we will always apply limiting arguments
to generalise classical solutions to a wider class of wellposed solutions, and so the exact notion of
a classical solution will not be important as long as it is dense in the class of wellposed solutions.
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equation

100 + Av = p(|u+v[P (w4 v) — [uP " ).
Since v and |u+v[P~ ! (u+v)—|u[P~u lie in L L2(IxRY), we may invoke Duhamel’s
formula (2.13) and conclude

t
v(t) = —iu/ e A2 |y 4 0P (u + v) — |ulP" ) (s) ds
0

i(t—s)A

for all t € I. By Minkowski’s inequality, and the unitarity of e , we conclude

t
o)l L2 me) S/O 1+ vlP~H (a4 v) = [ulP " ) (5) [ 22 ey ds.

Since u and v are in LLX(I x R?), and the function z + |z|P~1z is locally
Lipschitz, we have the bound

H(lu + U|p71(u + U) - |u|p71u)(S)HL§(Rd) SP(”u”ZztooL;o(ijd) + HU”ZztooLgo(Ide))
x [[v(s)ll L2 (ra)-

Applying Gronwall’s inequality (Theorem 1.10) we conclude that [|v(t)[|z2re) =0
for all t € I, and hence u = u’ as desired. O

Note that Exercise 2.24 shows that some sort of decay condition is necessary
in order to establish uniqueness, even when no nonlinearity is present. For NLW
one also has uniqueness of classical solutions, and moreover one can even localise
the uniqueness by exploiting finite speed of propagation:

PROPOSITION 3.3 (Uniqueness and finite speed of propagation for classical
NLW solutions). Let tg = 0. Let I be a time interval containing 0, and let u,u’ €
CF proe(I X R? — C) be two C? solutions to (3.2) such that the initial data u[0] =
(u(0),0;u(0)) and u'[0] = (u'(0),0,u'(0)) agree on the ball {x € R*: |x — zo| < R}.
Then we have u(t,z) = u'(t,z) for allt € I and v € R* with |v — x| < R — |t].

PrOOF. By spatial translation invariance we may take xg = 0; by time reversal
symmetry we may restrict attention to times 0 < ¢ < R. By shrinking [ if necessary
we may take I to be compact. Write v’ = u 4 v, then v € C}? (I x R* — C), v[0]

vanishes on the ball {z € R?: |z| < R}, and v solves the difference equation
Ov=F

where F := p(ju+ 0[P~ (u+v) — |u[P~tu). Now let us define the local energy E(t)
for 0 <t <R by

E(t) = / <Rt Too(t,!E) dx

where To := 3|0;v[* + 4|V,v|* is the linear energy density, thus E(0) = 0. A
computation (which is justified when v is CZ,) shows that

0:Too + 0;To; = —Re(FatU)

where Tp; := —Re(9;v0,v) is the energy current. From Stokes’ theorem (and the
fact that v is CZ,) we conclude

DE(t) = — / Re(Foyv)(t, z) dz + / Tosn; — Too dS
|z|<R—t |z|=R—t
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where dS is the surface element and n; := z;/|x| is the outward normal. From
Cauchy-Schwarz we see that |To;n;| < Too, thus we have
OHE(t) < / |F(t, z)||0:v]|(t, ) da.
|| <Rt

Now since u and v will be bounded on the compact region {(t,z) € I x R%: 0 <
t < R;lz| < R—t}, we see that F' = O, ,(|v(t,x)]). Applying Cauchy-Schwarz we
have

DE() Sun (/ o lo(t, z) 2 d:v)l/2(/ 00t )2 d)'/2.

|| <R—t

By definition of energy we have (f|m|<R—t |0wv(t, z)|? dx)Y/? < E(t)'/2. Writing
v(t,x) = fot O (s, x) ds and using Minkowski’s inequality and the fact that v(0, z) =

0 when |z| < R, we also see that

v ZZ?2 CCl/Q t 51/2 S.
([, oo a2 < [

0
Dividing out by E(t)'/2?, we conclude that

t
OE(t)'/? gum/ E(s)Y? ds
0

which after integration in ¢ (and recalling that E(0) = 0) yields

t
E(t)Y? <y t/o E(s)Y/? ds.

Applying Gronwall’s inequality (Theorem 1.10) we conclude E(t) = 0 for all 0 <
t < R, and the claim easily follows. (I

The classical theory is generally sufficient for very smooth initial data (and very
smooth nonlinearities u +— g|u|P~1u), but for rougher data one and nonlinearities
must adopt a different approach. Because the differential formulation of the prob-
lem (3.1) requires so much differentiability, it is often better to work instead with
the integral formulation of the equation,

t
(3.22) u@:whwww—w/e””Mmmwwww»w;

to

for NLS and
sin((t — to)vV—A4)
VA

(Jul"~ u()) dt’

u(t) = cos((t — to)V—A)ug + Uy
/t sin((t — to)vV—A)
" VB
for NLW; these equations can make sense even when w is a tempered distribution
which lies locally in LYLP. We refer to such solutions as distributional solutions
to the equation. When u has sufficient smoothness and regularity, these solutions
coincide with classical solutions, but are more general in the case when w is rough.
Typically, the initial datum wu will also lie in a Sobolev space such as H2(R?).
Recall (from the Fourier transform) that if ug € H(R?), then e?**/2yy € COHS (R x
RY)NLEHE(R x RY). Inspired by this, we distinguish two subclasses of distribu-
tional solution:

(3.23)
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o A strong H? solution to (3.22) on a time interval I is a distributional
solution which also lies in C7,, H(I x R%).

e A weak H? solution to (3.22) on a time interval I is a distributional
solution which also lies in LS H3(I x RY).

t,loc
Similarly, we can define a strong HS x HS~! solution to (3.23) to be a distribu-
tional solution which also lies in C7,, . H3 N O}, Hs™", while a weak solution lies
in Ly, H; with one (weak) time derivative in L;’jOCH;_l.

These definitions correspond to the notions of strong and weak solutions for
ODE discussed in Section 1.1, though unfortunately in the PDE setting it is usually
not known whether these notions are equivalent to each other. Generally speaking,
the category of strong H? solutions is the broadest category of solution in which we
can hope to have a good existence and uniqueness theory; for weak H; solutions
one typically can hope to have existence but not uniqueness. In some cases it is
possible to use the formula (3.22) to show that all weak solutions are automatically
strong (as in Lemma 1.3) but this generally only happens when s is large (and one
also needs the nonlinearity to be fairly smooth); see for instance Exercise 3.12. As a
rule of thumb, perturbative methods such as Duhamel iteration tend to yield strong
solutions, whereas weak compactness methods such as viscosity methods tend to
only generate weak solutions (see Exercise 3.56).

With strong H? solutions, u(t) and e*(!~%)2/2y4 varies continuously in ¢ and
so one can make sense of (3.22) for all times ¢ € I (as opposed to almost every
time ¢, or in a weak distributional sense). In particular a strong H? solution obeys
the initial condition u(t9) = up in the usual classical sense. Also, the notion of a
strong solution is stable under time translation or time reversal, and one can glue
together two strong solutions with overlapping intervals of existence; see Exercises
3.10, 3.11.

Of course, with such a low level of regularity it is not obvious at all how to
use the equation (3.22) to justify other desirable properties of a solution, such as
conservation laws or uniqueness, even when the solution is known to be a strong
H? solution. To do this one often needs to strengthen the notion of a strong H?
solution even further, by adding some additional properties of the solution map
ug — u. One particularly successful such strengthening is the notion of a wellposed
solution.

DEFINITION 3.4 (Wellposedness). We say that the problem (3.1) is locally well-
posed in H(R?) if for any ufy € H3(R?) there exists a time 7' > 0 and an open ball
B in H:(R?) containing uj, and a subset X of CYH:([~T,T] x R%), such that for
each ug € B there exists a strong unique solution v € X to the integral equation
(3.22), and furthermore the map wg — wu is continuous from B (with the H? topol-
ogy) to X (with the CYH3 ([T, T] x R%)). We refer to this strong solution u as the
H:-wellposed solution to the Cauchy problem (3.1) with the specified initial datum
ug. If we can take X = CYH?([-T,T] x R%) then we say that the wellposedness
is unconditional; if we can take T arbitrarily large!? we say the wellposedness is
global rather than local. If the time 7' depends only on the H? norm of the initial

MThis is strictly weaker than as asking for 7' = 400, which would be a uniformly global
wellposedness assertion which would imply, among other things, that the HS norm of u(t) stays
bounded as ¢t — oo (i.e. u lies in CY H3(R x R%) rather than just C?,locH; (R x R%)). Obtaining
such uniformly global bounds is possible for certain defocusing equations, and is a subset of the

scattering theory developed in Section 3.6.
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datum we say the wellposedness is in the subcritical sense, otherwise it is in the
critical sense. We say that the wellposedness is uniform if the solution map ug —
is uniformly continuous from B to X; similarly we define the notion of Lipschitz
wellposedness, C* wellposedness for k = 1,2, ..., and analytic wellposedness.

REMARK 3.5. One can of course adapt this definition to other equations. For
the nonlinear wave equation (3.2), the initial data class is HS(RY) x H: 1(RY)
instead of H?, and the solution should lie in CPH? N CLH:™! instead of CYHS,
but otherwise the definition is the same. One can also easily replace the Sobolev
space H? with other variants such as the homogeneous Sobolev space H;, though
it is advisable to stick to spaces which are preserved by the linear evolution, since
otherwise there is very little chance that there will be any sort of wellposedness for
the nonlinear evolution. (This is a major reason why we work with the L2-based
Sobolev spaces H? in the first place.)

REMARK 3.6. In practice, the space X will be quite explicit; it is typically the
space of all fields in CY H2 ([T, T] x R?) which obey an additional integrability or
regularity condition (i.e. they lie in some additional function space). In some cases
one also imposes a smallness condition in X, though such conditions can usually
be removed by additional arguments (for instance, by shrinking the time interval
to ensure the smallness condition holds, and then using continuity arguments to re-
extend the time interval). The space X is useful for understanding the development
of singularities; typically, a solution needs to leave the space X in order for a
singularity to develop.

Wellposed solutions are highly compatible with classical solutions. If the initial
datum is smooth, then the wellposed solution and classical solution usually coincide;
this usually follows from the uniqueness theory, as well as persistence of reqularity
results (which we shall discuss in the next section). If the initial datum is rough,
then by approximating this datum by smooth data and taking advantage of the
continuity properties of the solution one can usually represent the wellposed solution
as the strong limit of classical solutions'® in the C? H? topology (and often in other
topologies also). Note that this shows that the wellposed solution is canonical - it
is the unique limit of the classical solutions generated by any sequence of smooth
data converging to the initial datum, and so two wellposed classes of solutions
corresponding to different regularities (or different spaces X) will automatically
coincide on their common domain of initial data. Furthermore, wellposed solutions
are often able to enjoy the conservation laws and other formal identities which
would normally be reserved for classical solutions, by taking appropriate limits. In
some cases one needs to regularise the nonlinearity in addition to the initial datum;
in such situations the continuity of the solution map is not quite sufficient, and
one needs to supplement it with some stability properties of the solution, so that
near-solutions to the equation can be well approximated by genuine solutions. Such
stability properties are of independent interest, both for theoretical reasons (such
as understanding the asymptotic behaviour of solutions), and for physical reasons
(because they help justify the heuristic assumptions that one used to arrive at that
model). We shall see some examples of these properties in Section 3.7.

15In some cases one has to regularise the nonlinearity j|u|P~'u by smoothing it out at zero
or tempering its growth at infinity, in order to obtain good classical solutions; we will ignore these
technicalities.
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Another common trick is to use the method of a priori estimates to obtain
control on wellposed solutions. Suppose one wants to show that all wellposed
solutions in a certain class and of a certain size are bounded in some norm Y
by some constant M. Since one can approximate wellposed solutions by classical
solutions, it typically suffices (using tools such as Fatou’s lemma) to obtain the
desired bound for classical solutions only. The Y norm then typically depends
continuously on the time interval I, and so by using a continuity argument in time
one can assume as a bootstrap hypothesis that the solution is bounded in Y by
a larger constant such as 2M. This reduces matters to establishing an a prior:
estimate; the desired conclusion is the same, namely that the Y norm is bounded
by M, but now we can make the a priori assumptions that the solution is smooth,
and is already bounded in Y by 2M. These hypotheses can be immensely useful;
the former hypothesis allows one to make all formal computations rigorous, and the
latter hypothesis is often crucial in order to obtain control of nonlinear terms. Also,
the method of a priori estimates can also exploit various delicate cancellations (such
as energy cancellations) arising from the structure of the equation, which are not
picked up in some other methods such as iteration methods (because the iterates
do not solve the exact equation and so do not exhibit these cancellations).

One common way to construct wellposed solutions is to use iterative methods,
such as Proposition 1.38. Such methods tend to yield a fairly strong type of well-
posedness, and can reduce the task of constructing solutions to that of verifying a
single multilinear or nonlinear estimate. However, when the regularity of the data
is extremely low, or equation behaves in an extremely nonlinear fashion, then such
methods can break down; indeed there are examples known where solutions still
exist, but one does not have the strong type of wellposedness implied by a iterative
argument (see for instance the discussion on the Benjamin-Ono equation in Sec-
tion 4.4, or of the wave map equation in Chapter 6). In such situations one needs
to either augment the iterative argument (using for instance some sort of gauge
transformation), or else use a completely different approach. One such approach
is the wiscosity method (also known as the penalisation, weak compactness, or reg-
ularisation method). In this approach, one approximates the equation (3.1) by a
smoother equation, in which the nonlinearity is smoothed out and bounded, and an
additional dissipation term is added to ensure global existence (forward in time, at
least). This gives a sequence of approximate solutions, which one can demonstrate
to be uniformly bounded in some norm (e.g. the energy norm); the establishment
of such a priori control on the regularised solutions is usually the most difficult
task. One can then use weak compactness to extract a weak limit of these approx-
imate solutions (see for instance Exercise 3.56). This procedure typically produces
a weak solution to the original equation without much difficulty, but it is often
significantly harder to upgrade this solution to a strong solution or to establish
wellposedness properties such as uniqueness, continuous dependence on the data,
or persistence of regularity; also, the conservation laws are often not preserved by
weak limits (though one can often obtain monotonicity of the conserved quantity,
at least, by tools such as Fatou’s lemma), and it often requires a non-trivial amount

of additional effort to establish such laws!S.

16, give an example, the notorious global regularity problem for the Navier-Stokes equations
remains open, despite the construction of global weak solutions by Leray over seventy years ago,
in 1934!
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REMARK 3.7. It is of interest to search for other ways to build solutions beyond
the two standard methods of iteration and regularisation. One variant of the itera-
tion method which is occasionally useful is the Nash-Moser iteration method, which
is a PDE version of Newton’s method for finding roots of equations. The iterates
in this method tend to lose regularity with each iteration, but this is counteracted
by the extremely rapid convergence of the iteration scheme. For other types of
PDE (notably elliptic PDE), variational and topological methods have been very
effective in constructing solutions, but so far these methods have not been partic-
ularly successful when applied to nonlinear dispersive or wave equations (though
the induction on energy method, which we discuss in Section 5.4, can be thought
of as a type of variational approach, while the continuity method from Section 1.3
is a crude example of a topological approach). Another speculative possibility is
that probabilistic constructions of solutions, valid for almost all initial data rather
than all initial data, may eventually be more powerful than the current determinis-
tic methods, especially for supercritical equations where the deterministic methods
appear to be useless. This may require utilizing ideas from thermodynamics, such
as the use of invariant Gibbs measures and similar devices.

EXERCISE 3.6 (Preservation of reality). Show that if a classical solution to a
NLW is real-valued at one time tg, then it is real-valued for all other times for which
the classical solution exists. (Use uniqueness and conjugation invariance.)

EXERCISE 3.7 (Preservation of symmetry). Let I be a time interval and let ¢y €
I. Suppose u € C§I7IOC(I x R? — Q) is a classical solution to a NLS (resp. NLW)
such that w(to) (resp. wu[tg]) is spherically symmetric. For NLS, we furthermore
require that u obey the boundedness decay conditions in Proposition 3.2. Prove
that u(t) is in fact spherically symmetric for all times ¢ € I.

EXERCISE 3.8 (Descent of NLS). Suppose that a periodic NLS on a torus T4+1
is locally wellposed in H3(T?*!) in either the subcritical or critical sense. Show
that the same NLS, but placed on the torus T of one smaller dimension, is also
locally wellposed in H(T?) in the same sense. The same statement also holds for
global wellposedness, and with NLS replaced by NLW (but of course we replace H?
by HS x H5~! in that case).

EXERCISE 3.9 (Localised blowup for focusing NLW). Show that for any focusing
NLW there exists smooth compactly supported initial data (ug,u1) for which the
Cauchy problem (3.2) does not admit a global classical solution. (Hint: modify the
explicit solution (3.6) and use Proposition 3.3.)

EXERCISE 3.10 (Time shifting of strong solutions). Let I be a time interval
containing to, and let u be a strong H? solution to (3.1) with initial datum u(ty) =
ug. Let t; be any other time in I, and let uy := u(¢1). Show that u is also a strong
H? solution to (3.1) with initial datum w(¢1) = uy. Thus the notion of a strong
solution is independent of the initial time. Obtain a similar result for the NLW
(3.2). Also, show that the field a(t,z) := u(—t,x) is a strong H3 solution to (3.1)
on the interval —I with initial datum u(—tp) = @g. (These results can fail for weak
solutions; see Exercise 3.15.)

EXERCISE 3.11 (Gluing of strong solutions). Let I,I’ be intervals which in-
tersect at a single time to. Suppose that u,u’ are strong H? solutions to (3.1) on
I x R? and I' x R respectively with initial data u(tg) = u'(to) = uo. Show that
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the combined field @ on (I UI") x R? is also a strong solution to (3.1). Obtain the
similar result for the NLW equation where u and u’ have matching initial positions
and initial velocities. This exercise, combined with Exercise 3.10, shows that there
is no difficulty gluing together strong solutions on adjacent time intervals to create
a unified strong solution.

EXERCISE 3.12. Let p be an odd integer and s > d/2. Show that every weak
H? solution to (3.1) is also a strong H? solution. (You will need the fact that H2
is an algebra; see Lemma A.8.)

EXERCISE 3.13 (Local uniqueness implies global uniqueness). Fix p,d, u, s and
suppose that one knows that for any time #, and initial datum ug € H2(R?), there
exists an open time interval I containing ¢y such that there is at most one strong
H? solution to (3.1) on I x R? (i.e. one has local uniqueness of strong solutions).
Show that this automatically implies global uniqueness of strong solutions, or more
precisely for any time interval J containing ¢y that there is at most one strong H3
solution to (3.1) on J x R (Hint: prove by contradiction and use a continuity
method.)

3.3. Local existence theory

The greatest challenge to any thinker is stating the problem in a
way that will allow a solution. (Bertrand Russell)

We are now ready to construct solutions to NLS and NLW, and analyze the
strength of such solutions, in the senses discussed in Section 3.2. We will not
attempt to give the most complete results here, but instead give a sample of results
which illustrate the basic iteration method'”. The underlying idea of this method is
simple - select spaces S and N in which to hold the solution u and the nonlinearity
p|u|P~tu respectively, at which point the problem reduces to that of establishing
linear and nonlinear estimates in S and N. The selection of these spaces, however,
is something of an art rather than a science; there are some standard spaces that
work well in many situations, and one can analyze individual iterates to suggest
what spaces are likely to work, and which ones will not; however there is certainly
no “universal iteration space” that can cover all cases, and in one usually needs to
tailor the precise spaces to the equation at hand®,

17This method seems to be the best method for solving NLS and NLW, at least in the
subcritical and critical settings, with the Strichartz estimates (possibly with some Besov-type
augmentations) being the ideal tool to close the iteration. For the less semilinear equations
studied in later chapters, which contain derivatives in the nonlinearity, the iteration method often
requires more ingenious choices of spaces and estimates, as well as some additional tricks such
as gauge transformations, and thus face some nontrivial competition from other methods such as
viscosity methods or methods based on exploiting energy cancellation to obtain a priori estimates,
which have their own strengths and weaknesses.

180ne common way to proceed here is to compute the first few nonlinear iterates in the
Duhamel iteration scheme, and see what spaces one can estimate them in; if one can place them
all in a common space then this suggests what choices of S and N to use. Another way is
to work in reverse, starting with the quantity ||u||c?ng (which one needs to control to obtain
wellposedness) and estimating it in terms of other norms of w using the Duhamel formula; in
doing so it will become apparent what types of norms need to be controlled in order to have a
chance of closing the iteration. Typically, one needs to control u in those spaces in which the
linear solution is already known to be controlled in. We will use some of these heuristics when
studying the existence problem for other PDE in later chapters.
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A systematic study of the wellposedness theory for NLS can be found in [Caz2],
and for NLW in [Sog]. A basic heuristic for NLS is that one has local wellposed-
ness in H3(R?) if and only if s > max(s.,0), where s, == % — p—zl is the scale-
invariant regularity (and 0 is the Galilean-invariant regularity); the corresponding
heuristic for NLW is that one has local wellposedness in HZ(RY) if and only if

s > max(s,, s;,0), where s; := % — —L_ is the regularity associated to the Lorentz

—1
invariance. This heuristic is only par‘fially accurate (wellposedness can break down
or become weaker when the nonlinearity becomes very rough compared to the reg-
ularity s, and in the case of the NLW there are still some very low regularities and
exponents for which the problem is not fully resolved, see [Tao].

To simplify the notation let us use the time translation invariance to fix the
initial time %y to equal zero.

Let us begin with classical solutions to NLS. It turns out that to construct clas-
sical solutions it is more convenient to work in Sobolev spaces H:(R?) or weighted
Sobolev spaces H¥*(R?) (for suitably high values of s, k) than in more classical
spaces such as C¥(R%); the main reason for this is that the linear propagator eitA/2
preserves H3(RY) and are locally bounded on HY¥*(R9) (see Exercise 2.52) but
does not preserve CF(R?) (cf. Exercise 2.35). To avoid some technicalities, let us
restrict attention for now to algebraic nonlinearities, so that p is an odd integer®®.

PRrOPOSITION 3.8 (Classical NLS solutions). Let p > 1 be an odd integer, let
k > d/2 be an integer, and let p = +1. Then the NLS (3.1) is unconditionally
locally wellposed in H¥*(R?) in the subcritical sense. More specifically, for any R >
0 there exists a T = T(k,d,p, R) > 0 such that for all ug in the ball Br := {ug €
HEFRY) : ||u0||H§,k(Rd) < R} there ezists a unique solution u € CYHFF([-T,T] x
RY) to (3.1). Furthermore the map ug — u from Br to CYHF*([-T,T] x R?) is
Lipschitz continuous.

The same statements hold if HFF is replaced by HS for any s > d/2 (not
necessarily an integer).

REMARK 3.9. This proposition implies that for a Schwartz initial datum ug €

S:(R%) and an odd integer p one has a maximal Schwartz solution u € CloeSa(I X

R?) to any given algebraic NLS for some open interval I containing 0, which is
unique by Proposition 3.2. Note that one can use the equation (3.1) to trade
regularity in space for regularity in time (at a two-for-one conversion ratio), and so
solutions which are Schwartz in space will also be smooth in time.

PRrOOF. The key observations?” are Exercise 2.52, and the fact that the space
HEF(R9) is a Banach space algebra:

(3.24) ||fg||H§’k(Rd) Skyd ||f||H§”€(Rd)||g||H’;’k(Rd)-

19%hen the nonlinearity is rough, it is often necessary to regularise it, for instance by re-
placing |[ulP~1u by (€2 + |u|?)(P~1/2y for some £ > 0 and then setting & — 0, in order to have
a concept of a smooth solution that one can use to approximate rough solutions to the original
equation; see for instance Exercise 3.55. In some cases one can use Schauder estimates (Lemma
A.9) as a substitute for product estimates such as (3.24). As these technical issues are rather dull,
we shall try to avoid them as much as possible.

2OIndoed, this argument is quite abstract, and applies to any Banach algebra which is pre-
served by the linear flow. This is known as the semigroup method and has been extensively
developed, see for instance [Kat7].
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F1GURE 1. The classical energy method iteration scheme; the it-
eration closes if T is sufficiently small depending on R. One can
also replace HXF by H? for s > d/2 without difficulty.

We leave this estimate (a variant of (A.18)) as an exercise.

Let us now fix R, and let 0 < T' < 1 be a small time to be chosen later. We shall
use Proposition 1.38 with S = N = CPHEF([-T,T] x R?), with linear operator
D : N — 8 set equal to the Duhamel operator

¢
DF(t) := —i/ =AM 2P(s) ds
0

and the nonlinear operator N : S — A set equal to
Nu(t) == plu(t) P~ u(t).

(See Figure 1.) From Minkowski’s inequality and Exercise (2.52) we verify the
bound (1.51) with Cy = Oy, 4(T). From the algebra property we see that

INully Skoapr llulls;  [|1Nu— Nvllx Skapr [[u—0ls

whenever u,v € § are such that ||ulls, ||v]ls Ska R. If we choose T sufficiently
small depending on k,d,p, R, we can thus apply Proposition 1.38 and conclude
that for all uj, € S with ||unn|ls < R there exists a unique solution u € S to (1.50)
with ||ulls < R. Applying this in particular to uy, := ¢2/?uq (and using Exercise
2.52) we obtain a solution to (3.1) (in the Duhamel integral form), with the map
ug — u being Lipschitz continuous from the ball in H**(R?) of radius O(R) to
CYHEF*([0,T] x RY).

The above argument establishes uniqueness so long as we restrict the S norm
of solutions S to be O(R). But since the H** norm of wg is at most R at time
zero, one can in fact obtain unconditional uniqueness in S by a standard continuity
argument. Specifically, let © € S be the solution constructed by the above method,
then we have |lul]|s < C1 R for some absolute constant C;. Let u* € S be another
solution. For any 0 <t < T let H(¢) be the property that ||u*||C?H§,k([7t_’t]XRd) <
2C4 R, and let C(t) be the property that ||U*||C?H];,k([7t7t]XRd) < Ci1R. Then the
assumptions (b),(c),(d) of Proposition 1.21 are clear, and property (a) follows from
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the uniqueness theory already established (if T is suitably small). This gives the
unconditional uniqueness.

The same argument works with H¥* replaced by H? since one still has the
crucial algebra property

91l sy Shoa 1 f s ey 191 s (s
see Lemma A.8. O

REMARK 3.10. This argument was completely insensitive to the sign u of the
nonlinearity; this is a typical feature of the local existence theory. The global exis-
tence theory, however, will be much more sensitive to the sign of the nonlinearity.

The above result shows that one has unconditional local wellposedness in
H:(R?) for an algebraic NLS equation for any s > d/2. This shows (using the
argument in the proof of Theorem 1.17) that given any ug € H2(R?), there exists
a unique maximal interval of existence I and a unique solution u € CY H3(I x RY).
The size of this interval can only shrink to zero if the H2(R?) norm of the data
goes to infinity. Hence if I has a finite endpoint 7', then the H2(R?) norm of u(t)
will go to infinity as ¢t approaches T'. Thus the maximal interval is necessarily open,
as one cannot possibly continue a solution in CY H? at a point where the H? norm
is going to infinity. An identical result also holds in the periodic case T".

To rephrase the above discussion, if a solution to NLS (with algebraic nonlin-
earity) is initially in H?(R?) with s > d/2, then it can be continued in a unique
continuous manner in H3(R?) so long as the H2(R?) stays bounded. Let us infor-
mally call a norm X a controlling norm?! for this equation if the boundedness of
this X norm is enough to ensure continuation of smooth solutions. Thus we now
know that any sufficiently high regularity Sobolev norm is a controlling norm for
any algebraic NLS. It is of interest to obtain controlling norms which are as low
regularity as possible. As a rule of thumb, any reasonable norm which is subcritical,
or which is critical and involves some integration in time, has a chance of being a
controlling norm. For instance, we have

PROPOSITION 3.11 (Persistence of regularity). Let I be a time interval con-
taining to = 0, let s > 0, and let w € CYHS(I x RY) be a strong HS solution to
an algebraic NLS equation. If the quantity ||u||LfflL;o(Ide) is finite, then u(t) is
uniformly bounded in H3, indeed we have

~1
(325  ulleazaxms < (O] esp(Cpalully s, - o)
In particular, if I has finite length |I|, then we have
~1
HuHLf"H;(IXRd) < HU(O)HH; exp(CP,&dlIl”u”ZzgoL;o(ijd))'

PrROOF. We use the energy method. By time reversal symmetry we may take
I =10,T] for some T > 0. From the Duhamel formula

t
u(t) = e"2u(0) — i / A2y () P u(t!) dt!
0

21e shall be somewhat vague as to whether X is a spatial norm or a spacetime norm. Both
types of norms are useful types of controlling norms.
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and the unitary nature of e”**/2 on H2(R%), we conclude from Minkowski’s in-
equality that

t
)Lty < 12(0)]| sy + / )P~ )| s ey '

We expand |u(t')[P~1u(t') as a polynomial of degree p in u(t') and its complex
conjugate u(t’). Applying Lemma A.8 repeatedly we have

_ -1
)P~ u ) s ray Spos.a ) 1 w7 -

The claim now follows from Gronwall’s inequality. ]

REMARK 3.12. In the converse direction, any field in CY H? will be locally in
LPL and hence in LY _1L§° by Sobolev embedding. Thus one can continue a
solution in H? for s > d/2 if and only if the L¥ 71L§° norm remains locally finite;
in particular, if the solution blows up (fails to remain smooth) at some time Tk,
then the solution must become unbounded near the blowup time 7). (which justifies
the terminology of “blowup”). Since these blowup criteria are independent of H?2,
we thus observe if an initial datum wug lies both in a lower regularity Sobolev space
H?' and a higher regularity Sobolev space HZ?, where so > s1 > d/2, then the
solution can be continued in one regularity for precisely the same amount of time
as it can be continued in another; thus it is not possible to develop a singularity
which causes the H22 norm to blow up while the H>! norm remains bounded. This
phenomenon (known as persistence of reqularity - if a solution map preserves rough
regularities, then it also preserves smooth regularities) is typical of all regularities
for which one has a strong wellposedness theory, but can fail?? for regularities that
are excessively low (see Exercise 3.15). Note that from the time reversal symmetry
(and uniqueness) we also see that the regularity cannot spontaneously increase: if
a solution lies in CYH (I x RY) and is not in HS? at some initial time ¢, then it
will also not be in HZ? for any later (or earlier) time. Thus regularity is neither
created nor destroyed in the Sobolev scale, so long as the solution persists. This is
in contrast to dissipative equations such as the heat equation, which is smoothing
when evolved forwards in time and illposed when evolved backwards in time.

REMARK 3.13. Observe that the L’ 'L2° norm that controls the persistence
of regularity here is invariant under the scaling (3.9). This is closely related to the
fact that no factor of |I| appears in (3.25). It has the consequence that the bound
(3.25) holds even for unbounded intervals I, and thus shows that one can keep
the H? norm of a solution u(t) bounded even as ¢ — oo, provided that one can
somehow keep the global LY _1Lg° norm bounded also. This result is an instance of
a general principle, that scale-invariant global spacetime integrability bounds imply
good asymptotic behaviour at infinity; this philosophy will be particularly apparent
in the scattering theory in Section 3.6.

REMARK 3.14. The scale-invariance of the controlling norm is a general phe-
nomenon; controlling norms are either critical (invariant with respect to scaling) or

22More precisely, persistence of regularity can fail when there is no control of critical or
subcritical type on the solution. Note that in Proposition 3.11, the regularity H® that was being
controlled could be subcritical, critical, or supercritical; the important thing is that the controlling
norm L?71L§° is critical. More generally, it is permissible in a scale invariant argument to use one
quantity which is subcritical or supercritical, so long as all the bounds are linear in that quantity.
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subcritical (they only become scale-invariant if multiplied by some positive power
of the length |I| of the time interval, as is the case for instance with the L°L2°
norm here). All other things being equal, it is preferable to use a critical controlling
norms than a subcritical one (provided of course that a critical controlling norm
can be located in the first place) as they are generally smaller, and can yield global
control on solutions rather than just local control. Norms which are supercritical,
on the other hand, cannot possibly be controlling norms (this would lead to absurd
results, such as the spacetime bounds for large time intervals being smaller than
the bounds for small time intervals). The most famous example of this is the three-
dimensional Navier-Stokes equations, which enjoy boundedness of kinetic energy
but for which global existence of smooth solutions is a major unsolved problem,
in large part because the kinetic energy turns out to be a supercritical quantity
in three spatial dimensions and thus cannot be a controlling norm. In practice,
possession of a bound on a supercritical quantity has proven to be of little use in
the global regularity theory, unless combined with additional information such as
a bound on a subcritical quantity (so that one can interpolate between the two to
obtain critical controlling quantities). More recently, techniques have been devel-
oped to combine supercritical control with existing critical control, to obtain even
better critical control; in particular, in the energy-critical defocusing NLS, the mass
and momentum conservation laws (which are supercritical in this case) can be used
to limit the concentration behaviour of energy towards higher frequencies and thus
yield control of other critical quantities such as certain spacetime Lebesgue norms.
See Chapter 5.

We now turn from classical solutions to less regular solutions, in particular
considering solutions in HZ for s < d/2. In this case, we no longer expect the
solution to lie in L°(RY) for all time, since H? no longer embeds into L°. However,
the Strichartz estimates in Theorem 2.3 suggest that one can still lie in time-
averaged LY spaces such as LY _1L§° (R?) for regularities lower than d/2; intuitively,
this reflects the fact that while an H function can focus much of its “energy” at
one spatial point to create a large L3° norm (cf. Proposition A.4), the dispersive
effects of the Schrodinger evolution imply that this focus cannot be maintained for
more than a short period of time. Of course, this is only a heuristic, because the
Strichartz estimates only apply directly to the linear Schrodinger evolution rather
than the nonlinear one, however it does suggest that some sort of iterative argument,
using the Strichartz estimates to treat the nonlinear equation as a perturbation of
the linear one, can work.

To do this, it is convenient to create a single space S° which captures all the
Strichartz norms at a certain regularity H; simultaneously. We illustrate this first
with the L2 theory. We introduce the Strichartz space S°(I x RY) for any time
interval I, defined as the closure of the Schwartz functions under the norm??

||U||50(1de) = sup HUHL;’L;(IXRd)u
(¢,r) admissible

231n the case d = 2 case, the set of admissible exponents is not compact, and so one has
to truncate the supremum, for instance restricting ¢ > 2 + € for some € > 0, in order for the
Strichartz constants to be uniform in the exponent. Also, in some endpoint applications it is more
convenient to strengthen the norms S°, N9 to a certain Besov-space version of themselves. We
ignore these technicalities to simplify the exposition.
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where admissibility was defined in Theorem 2.3. In particular the S° norm controls

the CYL2 norm. This norm is a Banach space and has a dual N°(I x R%) :=

S9(I x R%)*; by construction we see that
||FHNO(IXRd) S HF”L?’L;/(IXRd)

whenever the right-hand side is finite. The Strichartz estimates in Proposition 2.3

can then be combined into a unified estimate

(3.26) [ullsorxray Sd llw(to)ll L2 mey + 1F]| norxra)

whenever ty € I and iu; + %Au = F'. Because of this estimate, one often expects to
place L2 solutions of NLS in the space S°, at least provided that one has some hope
of placing the nonlinearity F' = p|u|P~!u in the companion space N°. A typical
application of this estimate is

PROPOSITION 3.15 (Subcritical L2 NLS solutions). [Tsu] Let p be an L2-
subcritical exponent (so 1 < p < 1+ 3) and let p = +1. Then the NLS (3.1)
is locally wellposed in L2(R?) in the subcritical sense. More specifically, for any
R > 0 there exists a T = T(k,d,p,R) > 0 such that for all ug in the ball
Br = {up € L3(RY) : uollp2mey < R} there exists a unique strong L2 solu-
tion u to (3.1) in the space S°([-T,T] x RY) C CYL2([-T,T] x RY). Furthermore
the map ug — u from Br to S°([~T,T] x R?) is Lipschitz continuous.

REMARK 3.16. One can weaken the space S°([—T, T] x R?) somewhat and still
obtain uniqueness (see [CWeis|, [CWeis2]). However, it is not known if one can
replace S° by CPL2 and thus obtain an unconditional wellposedness result. In the
next section we shall extend this local existence result to a global existence result.

PrROOF. We modify the proof of Proposition 3.8. Again we fix R and choose
T > 0 later. We will apply Proposition 1.38 for a suitable choice of norms S, N and
some € > 0; a specific instance of our scheme in the case d = 1, p = 3 is described in
Figure 2. One such choice is to set S = SO([-T, T|xR%) and N = NO([-T, T]xR%).
In order to place the ui, in Be /o, we see from the Strichartz estimate (3.26) that
we need to take ¢ = C1 R for some large constant C; > 0 (depending only on d).
The estimate (1.51) also follows from (3.26) (for some large Cp > 0 depending on
d), so it remains to verify (1.52). In other words, we need to show that

_ _ 1
ulP~u — [vP~ o yo— 7 1 xRre) < EHU — |l so(j—7, 1] xR

whenever [|ul|so—7,1)xr?); |Vl s0(—7,71xR4) < C1R. It is convenient to introduce
the exponent pair (g,r) by solving the equations

2 . d _d p 1

q r 20 r o
One can easily check using the hypothesis 1 <p < 1+ % that we have 2 < r < ¢ <
00, 80 in particular (q,r) is admissible. In particular, we can estimate the N° norm

by the LY L’ norm. Since ¢ > r, we see that B < %, so we may replace the L]

norm by the Lg/ P norm by paying a factor of T® for some o > 0. If we then use
the elementary estimate

(3.27) lul" "t = [Pl Sp Ju = ol (julP ™ + o7
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FIGURE 2. An iteration scheme in L2(R) for the the one-
dimensional cubic NLS d = 1,p = 3 (which is L2-subcritical),
so that ¢ = 8 and 7 = 4. In all the iteration schemes presented
here, the sign u of the nonlinearity is irrelevant. The subcritical
nature of the equation allows for a gain of a power of T at some
stage. This is not the simplest iteration scheme available for this
equation, but it is rather representative. Note that the fact that
u was a strong solution (i.e. u € CPL2) is a byproduct of the
argument but is not otherwise used in an essential way in the proof.

and Holder’s inequality, we conclude

ulP~ u = [P~ ol yo— 7,7 xRA)

Sp T%lu— 'U”L;?L;([fT.,T]XRd)(”U”L;?L;([fT,T]de) + ||UHL§L;([7T,T]><Rd))p71

Sp.on,r T |lu— U”L;’L;([—T,T]de)

< TJu = vl[so(—1,1)xR)

Thus we obtain (1.52) if T' is chosen sufficiently small depending on p, C;, R. We
can then apply Proposition 1.38 to construct a solution in S to (3.1) with norm
at most C1 R/2, which is unique among all solutions with norm at most C; R, and
the map wug — u will be Lipschitz continuous. The requirement that the norm be
at most C1 R can be dropped from the uniqueness conclusion by using a continuity

argument as in

Proposition 3.8.

O

In the critical case p = 1 + % one still has wellposedness, but in the critical
sense (so that the time of existence T' depends on the profile of the datum and not
just on the norm). More precisely, we have
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FIGURE 3. An iteration scheme in L2(R?) for the two-dimensional
cubic NLS d = 2,p = 3 (which is L2-critical). For small data one
can simplify the scheme somewhat, but for large data it is impor-
tant that the SO is allowed to be large, while the L}, component
of the S° kept small; thus the main loop of the iteration should
involve the Lf@ norm more than once in order to close the argu-
ment, because no gain of a power of T is available in the critical
setting. This also makes the L} _ norm a controlling norm for the

t,x
evolution.

PROPOSITION 3.17 (Critical L2 NLS solutions). [Tsu] Let p be the L2-critical
exponent p = 1 + % and let u = +1. Then the NLS (3.1) is locally wellposed
in L2(R?) in the critical sense. More specifically, given any R > 0 there exists
g0 = eo(R,d) > 0, such that whenever u, € L2(R?) has norm at most R, and I is
a time interval containing 0 such that

||€ZtA/2U*||Li<;t+2>/d(lde) <egp
then for any ug in the ball B := {ug € L2(R?) : |jup — Ul[2(ray < €0} there exists
a unique strong L2 solution v € S°(I x R%) to (3.1), and furthermore the map
ug + u is Lipschitz from B to S°(I x R?) (of course, the Lipschitz constant will
depend on u,).

This proposition is proven similarly to Proposition 3.15 and is left to Exercise
3.18. Note that if the initial datum is sufficiently small in L2 norm, then this Propo-
sition, combined with Strichartz estimates, yields global existence in time. If the
initial datum is instead large, the Proposition combined with Strichartz estimates
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will still give local existence, because the global Lf_’(znw)/ " norm of e u, will be
finite, and hence can be localised to be small by choosing a sufficiently small time
interval.

itA/2

REMARK 3.18. This proposition and the preceding one should be compared
against Principle 3.1. It turns out that the L2 theory becomes bad for supercritical
powers p > 1+ %; see Section 3.8 for further discussion and results.

Similar results hold for other regularities, such as H}!. Here it is convenient to
use the norms
lulls1(rxra) := llullso(rxmray + [ Vullsorxre)
and
llull v1(rxray = lull vorxray + [ Vullyorxra)
Note that as the Schrédinger equation commutes with derivatives, we see from
(3.26) that

(3.28) lullsrrxray Sa lwlto)llmrrxrey + 1FlI N1 zxra)-

Let us give two sample results in dimension d = 3, in which the H!-critical exponent
is the quintic one p = 5:

PROPOSITION 3.19 (H!(R?) subcritical NLS solutions). Let u = +1. If2 <
p < 5, then the NLS (3.1) is locally wellposed in HX(R?) in the subcritical sense.

REMARK 3.20. For this Proposition and the next, the reader may wish to
refer back to the Strichartz “game board” for Schrodinger equations on H!(R?)
from Figure 1 of Chapter 2, and see how the various “moves” of Leibnitz, Holder,
Sobolev, and Strichartz affect the “game pieces” u, Vu, F(u), etc. on this board.
(The objective of the iteration “game” is to construct a set of assumptions (thus
placing game pieces in various spaces with various norm bounds) on the solution,
such that it is possible to apply a legal sequence of moves and end up with all the
game pieces returning to the same spaces but with better estimates.)

PROOF. (Sketch) We apply Proposition 1.38 with S = SY([-T,T] x R3), N =
NY([-T,T] x R?). By arguing as in Proposition 3.15, we will be done as soon as
we show that

[P~ u = (0P~ ol v (e cre) Spor T —vlls2 (17 xRS
for some a = a(p) > 0, whenever the S} norms of u,v are O(R) for some R > 0.
Let us omit the domain [T, 7] x R? from the notation for brevity. Choosing the

admissible exponents (10,30/13) for the S. norm and (2,6) for the N' norm, it
suffices to show that

||vk(|ulp—1u - |U|p_1v)||Lng/5 S;D,R TaHu - ’UHL%DWml,SO/ls

for k = 0,1. Let us just deal with the higher order case & = 1, which is the
more difficult of the two?%. Observe that the gradient of |u[P~!u can be written
as F1(u)Vu + Fa(u)Vu, where Fi,Fy : C — C are functions which grow like
Fj(z) = Op(]z|P™1), and which have the Lipschitz-type bound VF;(z) = O,(|z[P~2).

247 general principle in the local-in-time theory is that the highest order terms are always
the most difficult to estimate, so that once those are dealt with the lower order terms should be
treatable by a modification of the argument.
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FIGURE 4. An iteration scheme in H!(R3?) for the three-
dimensional cubic NLS d = 3,p = 3 (which is H!-subcritical).
This is similar to Figure 2; besides the changes in numerology,
the main new feature is the appearance of the Leibnitz rule and
(non-endpoint) Sobolev embedding to handle the additional deriva-
tives.

Let us just consider the contribution of the F; terms to the above expression, so
we need to show

HFl (’U,)VU - F1 (U)VU”Lng/S Sp,R Ta”'u, — U|‘L%0W£,30/13.
From the Lipschitz bound (and the hypothesis p > 2) we have
Fi(u)Vu=Fy(0)Vo = Op(([ulP ™ +[v[P ™)V (u—0))+Op(([ulP 7> +[v[P~?) (u—v) V).

We estimate the Lng/ ® norm by the L%O/ P Lg/ g norm, gaining a power of T' (here
we use the fact that p < 5), and use Holder to estimate

—1
HFl (u)vu -k (U)V’UHLng/s 5 Ta(”u”i%ol/fz»(pfl)ﬂ HV(U - U)||L}0L20/13

-2
+ Hu”ig%i(?*”””u - ”HL%OLE;NPHVUHL}oLgO/lS)-
From Sobolev embedding and the hypothesis 2 < p < 5 we have

HUHL%OLi(P*Um S ||u||L}0W;’30/13
and the claim then follows from the hypothesised bounds on w, v. (See Figure 4 for

an illustration of the scheme in the case p = 3.) (]

There is a version of this argument available in the limit p = 5:

PROPOSITION 3.21 (H}(R?) critical NLS solutions). Let u = +1 and p = 5.
Then the NLS (3.1) is locally wellposed in HL(R3) in the critical sense. More



140 3. SEMILINEAR DISPERSIVE EQUATIONS

(small norm) (small norm)

Forcing term

Forcing term
9o gl > . 1605

F(u) in NF » Fu)inl. W

F

Leibnitz

Holder]
[Strichartz estimat:

(large norm) (large norm)
Initial datum . : .
Solution Solution | Solution
TNE - [ 10,1.3013 - - "0,
[Sobolevj UINL L
(large norm) (small norm)
Solution
0.1
uinC H

(large norm)

FIGURE 5. An iteration scheme in H! for the three-dimensional
quintic NLS d = 3,p = 5 (which is H}-critical). This rather tricky
scheme is similar to Figure 4 but with homogeneous norms, and
with certain norms identified as being small to compensate for the
lack of a Holder in time (cf. Figure 3). It will be important that
the smallness in L,},Om is exploited more than once in order to close
the iteration properly.

precisely, given any R > 0 there exists g = €o(R) > 0, such that whenever u, €
HY(R3?) has norm at most R, and I is a time interval containing 0 such that

HeitA/Qu*”L}f’r(IxR?’) <¢o

then for any uo in the ball B == {uy € HXR3) : |jug — Ul 1 (m3y < €0} there
exists a unique strong H; solution u € S (I x R3) to (3.1), and furthermore the
map ug — w is Lipschitz from B to S*(I x R®). Here |u||g: = ||Vul|so is the
homogeneous counterpart to the S* norm.

We leave the proof of this to the exercises. Note that the L,},Om norm is controlled

(via Sobolev embedding) by the L}°W 230/1% 1 orm, which in turn is controlled by
the S! norm. From Strichartz estimates we thus conclude that

Helm/Qu*HLg?x(RxRB) < ||U*HH;(R3)7

and thus Proposition 3.21 implies global wellposedness for quintic NLS on R3 with

small energy, and local wellposedness (in the critical sense) for large energy. Again,

this proposition and the preceding one should be compared against Principle 3.1.
In the supercritical case p > 5, the H! perturbation theory breaks down com-

pletely; again, see Section 3.8. However in the defocusing case with 5 < p < 6 one
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can still construct global weak H! solutions by a weak compactness method; see
Exercise 3.56.

Similar wellposedness results exist for the NLW equation, and for the periodic
NLS equation; we leave this to the exercises. Omne can briefly summarise (and
oversimplify) the known results for local wellposedness as follows. For NLS, one
has local wellposedness in H(R?) as long as s > 0 and the nonlinearity? is H3-
subcritical or Hj-critical, though in the latter case the wellposedness is in the
critical sense (the time of existence depends on the profile of the datum rather than
the norm, but for small norm one has global existence). See [CWeis2], [Caz2]. For

NLW, one has a similar result but with an additional constraint?® s > s;, where s; is
the Lorentz regularity s; := % — p%l; this constraint is only relevant in the H;/ 2

subcritical cases p < 1+ ﬁ; see [LSog], [Sog]. For periodic NLS, the situation
is much less well understood, due to the lack of sharp Strichartz estimates in this
setting; see [Bou]. (The local theory for periodic NLW is essentially identical to
non-periodic NLW; see Exercise 3.24.)

EXERCISE 3.14 (H®* is a Banach algebra). Prove (3.24). (Hint: use the Leib-
nitz rule, Holder, Sobolev, and Gagliardo-Nirenberg, controlling the lower order
terms before moving on to the higher ones. A Littlewood-Paley approach is possible
but somewhat lengthy because of the need to continually commute the Littlewood-
Paley operators with weights such as (z)*.)

EXERCISE 3.15. Using the Fourier transform, show that the solution (3.15) to
the pseudoconformal focusing NLS blows up in H; for any s > 0 as ¢ — 0, but
stays bounded in L2, and even goes to zero in H? for s < 0. (This reflects the fact
that this equation is locally wellposed in the subcritical sense in H; for s > 0, is
locally wellposed in the critical sense in L2, and is illposed in H? for s < 0.) Using
this, show that when s < 0, one no longer has uniqueness for weak H} solutions,
and that Exercise 3.10 also breaks down for weak H solutions.

EXERCISE 3.16. Let u € S'(I x R3) be an H!-wellposed solution to quintic
NLS (so p = 5 and d = 3), and suppose that u(tg) € H*(R3) for some tq € I and
some integer k > 0. Show that u(t) € H*(R3) for all t € I, and in fact

llu(to)ll s (m3) Shlullgrrxrs) [ (to)ll rx (r3)-

(Hint: Let M := |ullg1;4prs). Subdivide I into time intervals I; where the LY,
norm on I is small compared with M. Then use Strichartz estimates and continuity
arguments to establish S* control on each I;.)

EXERCISE 3.17 (Unconditional uniqueness). Let u,v € C?HL(I x R?) be strong
H} solutions to quintic NLS (so p = 5 and d = 3) with u(tg) = v(tp) for some
to € I. Show that u = v. (Hint: Let J be a small time interval containing g,

and use Strichartz estimates to control [|u — v||p2ps(sxrs) in terms of itself and

u — ]| L2 o (sxre). Then use the continuity of u — v in H} and hence in L to
close the argument. To extend from J back to I, use the continuity method.) In
particular, this shows that the H}!-wellposed solution given by Proposition 3.21 is

25There is also a technical smoothness condition required on the nonlinearity in the non-
algebraic case; see [CWeis2], [Caz2].

26Again, we need a smoothness condition on the nonlinearity. Also this result is not fully
established in high dimension n > 4 when s is very close to zero, for technical reasons; see [Tao].
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the only strong H}! solution. One in fact has unconditional uniqueness for strong
H} solutions for all H}-critical and H}!-subcritical equations; see [Kat9], [Caz2],
[TV].

EXERCISE 3.18 (L2-critical wellposedness). Prove Theorem 3.17. (Hint: there
are now two norms one wishes to place the solution u in: the S norm, and the
Li(jﬁ)/ ¢ norm. The solution will be small in the latter norm but can be large in
the former norm. To account for this, one either has to apply Proposition 1.38 with

an artificial norm such as
ulls == dllullso + llull  2ca+2)/a
t,x

for some small §, or else use work with the iteration scheme directly and establish
bounds on all the various norms at each stage of the iteration. See also Figure 3.)

EXERCISE 3.19 (H}!-critical wellposedness). Prove Proposition 3.21. (You may
find Figure 5 to be helpful.)

EXERCISE 3.20. Show that the cubic NLS on the circle T is locally wellposed
in L2(T) in the subcritical sense. (Hint: use Exercise 2.74.) Also, show persistence
of regularity, or more precisely if the initial datum lies in H¥(T) for some positive
integer k, then the local L2(T) solution constructed by the iteration method is in
fact a strong HZ(T) solution.

EXERCISE 3.21 (Classical local wellposedness of NLW). Show that an algebraic
NLW is unconditionally locally wellposed in H? x HS~! for s > d/2 in the subcritical
sense, thus for each R > 0 there exists a T = T'(k, d, p, R) > 0 such that for all initial
data (ug,u1) in the ball B := {(uo,u1) € Hi(R?) x H ' (R?) : [luoll gz (re) +
1]l grs ey < R} there exists a unique classical solution u € Cf H3 ([T, T] x R%) N
CHH*~Y([~T,T] x R%) to (3.1). Furthermore the map (ug,u;) + u is Lipschitz
continuous. (Hint: adapt the proof of Proposition 3.8, and use (2.29).) Show also
that the solution can be continued in time as long as u stays bounded in spacetime.

EXERCISE 3.22 (H!(R?) subcritical NLW solutions). Let y = +1 and 2 <
p < 5. Show that the NLW (3.2) is locally wellposed in H(R3) x L2(R3) in the
subcritical sense. (Hint: there are many schemes available. The simple scheme
Figure 6, that does not use Strichartz estimates and which dates back to [Jor],
only works up to p < 3; for higher p one needs to use spaces that involve some
integration in time. You may also wish to review Figure 2 from Chapter 2, and
peek at Figure 4 from Chapter 5.) For the critical case p = 5, see Exercise 5.1.

EXERCISE 3.23. Let d > 3, u = +1, and let p := 1 + ﬁ be the Hi—critical
power. Show that for any ug € H:(R?) with sufficiently small norm, there exists a
unique global solution u € S'(R x RY) to the NLS (3.1) with the specified initial
datum. (Hint: for 3 < d < 6, one can modify the proof of Proposition 3.21 to
accomodate the inhomogeneous Sobolev and Strichartz norms. For d > 6, we have
p < 2 and there is now a difficulty obtaining a contraction mapping. However, one
can still construct iterates, show that they are bounded in S*(R xR?), and converge
locally in time in S°(1 x R%). A variant of this argument then gives uniqueness, at
least locally in time, which can then be extended to be global in time by continuity
arguments. See [CWeis2], [TV] for a more thorough treatment of this equation.)
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FIGURE 6. A simple iteration scheme in H} x L2, based on the
energy estimate, for the three-dimensional cubic NLW d = 3,p = 3.
For higher powers p, Strichartz estimates and spaces are needed.

EXERCISE 3.24. Suppose that an NLW on R is known to be locally wellposed
in H? x H5~1 in the subcritical sense for some s > 0. Assume also that one has the
finite speed of propagation result, Proposition 3.3, for H? x H:~!-wellposed solu-
tions. (In practice, this hypothesis can either be deduced from the corresponding
result for classical solutions by a limiting argument, or else by direct inspection of
the iterates used to construct the wellposed solution.) Show that the corresponding
periodic NLW on T is also locally wellposed in H? x H3~'. (You may find Exer-
cise A.18 to be useful.) This type of descent argument does not always work in the
nonperiodic setting, especially for large times; indeed, it is quite possible for the
behaviour of an equation for large, localized data to be better in higher dimensions
than in lower ones, due to the increased dispersion available.

EXERCISE 3.25 (Analytic wellposedness). Consider an algebraic NLS, and let
s > d/2 and R > 0. By the H? version of Proposition 3.8, we know that there
exists T = Ty, s > 0 such that every ug € H:(R?) with norm at most R extends
to a strong H? solution u € CYH3([0,T] x R%). Show that if T is small enough, the
map ug — u is in fact an real analytic map, thus there is a power series expansion
u = oo Ni(uo,...,up) which converges absolutely in CY H:([0,T] x R?), where
for each k, N} is a k-multilinear operator from H2(R?) to CYH2([0, T] x R%). (Hint:
you can adapt the proof of the Cauchy-Kowalevski theorem, see Exercise 1.1.) One
consequence of analyticity is that the solution map is also infinitely differentiable
from HS to COHS.

3.4. Conservation laws and global existence

The journey of a thousand miles begins with one step. (Lao Tzu)

The wellposedness theory of the previous section allowed us to use iterative
methods to construct local-in-time solutions to NLS and NLW given suitable reg-
ularity assumptions on the initial data; if the datum was also small in a critical
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norm (e.g. small in L2 norm for the L2-critical NLS, or small in H} norm for the
Hl-critical NLS) then one obtained a global solution also. These methods were
perturbative in nature (using the Duhamel formula to approximate the nonlinear
evolution by the linear evolution) and thus do not work directly for large data and
long times (since one expects the evolution to be genuinely nonlinear in this case).
However, in these cases one can use non-perturbative tools to gain enough control
on the equation to prevent the solution from blowing up. In this section we describe
the most important tool for doing this, namely the conservation laws.

As before, we begin by discussing the nonlinear Schrodinger equation (3.1). In
this case we have two independent conservation laws, namely energy conservation
and mass/momentum conservation?”. The latter can be most effectively described
by pseudo-stress-energy tensor Tqg, defined for o, 3 =0,1,...,d by by

TQO = |u|2

TOj = Tj() = Im(ﬂazju)

— 1 (p—1Dp
Tjk = Re(axjuazku) - Z JkA(|u|2) + pT5jk|u|p+1,
If the solution is sufficiently smooth, one easily verifies the local conservation laws
(2.35); see Exercise 3.26. In particular, for smooth decaying solutions, this leads to
conservation of total mass M[u(t)], defined by

(3.29) Mlu(t)] := /Rd Too(t,x) do = /Rd lu(t, z)|? du

and total momentum plu(t)] = (p1[u(t)],...,pa[u(t)]), defined by

pilu(t)] == /Rd To;(t,z) do = /Rd Im(@0,,u) du;

again, see Exercise 3.26. As in Section 2.4, the pseudo-stress-energy tensor also
yields many other important conservation laws and montonicity formulae; we will
develop some of these later in this chapter.

The above conservation laws are initially only justified for smooth decaying
solutions. However, if the conservation law is controlled by an H norm, and one
has a satisfactory wellposedness theory at HJ, then there is a standard limiting
argument that allows one to extend these conservation laws to these H;-well posed
solutions. We illustrate this principle with the example of the one-dimensional
cubic NLS:

PROPOSITION 3.22 (Conservation law for a wellposed solution). Let d = 1,
p=3, =+l Letue S°I x RY) C CPL2(I x R%) be a strong solution to (3.1)
defined on some time interval I. Let the total mass M[u(t)] be defined by (3.29).
Then Mu(t)] = M[u(to)] for all to,t € I.

PROOF. Since I is the increasing union of open intervals we may assume with-
out loss of generality that I is open. Fix ¢ty € I. Since u € CJL2(I x R), the set
of times {t € I : M[u(t)] = M[u(to)]} is closed in I, and it clearly contains tg, so it
suffices by the continuity method to show that this set is open. In other words, it

2T the special case of the one-dimensional cubic NLS (d = 1,p = 3), it turns out that
the equation is completely integrable and there are in fact infinitely many conservation laws, see
Exercise 3.36.
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suffices to show that for any ¢; € I, that we have M[u(t)] = Mu(t1)] for all times
t in a neighbourhood of #;.

By time translation invariance we can take t; = 0. Set ug := u(0). We
can approximate ug as the limit in L2(R%) of a sequence u((J") € HIO(RY) (say)
of smooth initial data, which will be uniformly bounded in L2(R¢). Applying
Proposition 3.15, we can obtain a time interval [-T,T] C I independent of n, and
strong solutions u(™ € SO([-T,T] x R%) to (3.1) with initial data u(™(0) = uén).
Since uén) converges to up in L2, the uniqueness and continuity conclusions of
Proposition 3.15 guarantee that (™) will converge to u in SO([~T,T] x R%). Next,
since the u(™ are uniformly bounded in S°([~T,T] x R%), they are also uniformly
bounded in L} L2 ([-T,T] x R?%) and hence in LZ2L([-T,T] x R?). We may thus
apply Proposition 3.11 (and the remarks following that proposition) and conclude
that u(™ € COHS([-T,T] x R%) for any s > d/2. From this, Sobolev embedding,
and the equation (3.1) it is easy to see that u(™ is smooth on [T, T] x R®. This
is enough regularity for us to apply the classical mass conservation law in Exercise
3.26 and conclude that

| P do= [ 0,0 d

R¢ R¢

for all t € [T, T]. Since u(™ converges to u in S°([~T,T] x R%), it also converges
in CYL2([-T,T] x R%), and hence on taking limits as n — oo we have

/ lu(t, z)|? dx :/ |u(0, z)|? dx
R R
and hence M[u(t)] = M[u(0)] for all ¢ in a neighbourhood of ¢, as desired. O

Note that the full power of the wellposedness theory was used here; not only the
existence aspect of the theory, but also the uniqueness, persistence of regularity, and
continuous dependence on the data. This basic argument - obtaining conservation
laws for rough solutions by approximating them by smooth solutions - is quite
general and extends to many other equations. There is an additional twist however
in the case when the nonlinearity is not algebraic (i.e. p is not an odd integer),
because it is often not possible in such cases to obtain an approximating solution
that is sufficiently smooth that one can justify the conservation law classically. In
such cases one must not only regularise the initial data, but also regularise the
equation as well; this requires a further aspect of the wellposedness theory, namely
the stability theory of the equation, which we will address in Section 3.7.

A conservation law can often, but not always, be combined with a local well-
posedness result to obtain a global wellposedness result. Let us illustrate this with
a simple example:

PROPOSITION 3.23. [Tsu] Let d = 1, p = 3, p = £1, and t; € R. Let
ug € L2(R?), and let I be any bounded time interval containing to. Then there is
a unique strong solution u € S°(I x R?) C CYL2(I x RY) to (3.1) defined on some
time interval I. Furthermore, the map ug — u is a continuous map from L2 to
SO(I x RY).

In particular, this proposition gives a global strong solution u € C?L2(R x RY)
to (3.1). However this solution is only in the S° space locally in time. (Indeed, in
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the focusing case p = —1, soliton solutions to this equation exist which do not lie
globally in S°.)

PROOF. we first use time translation invariance and time reversal symmetry
to reduce to the case when to = 0 and I = [0,T] for some T > 0. (Note that by
Exercise 3.11 one can easily glue a strong solution on an interval such as [0,T] to
a strong solution to an interval such as [T, 0], and stay in S°.)

We give two proofs of this result; they are equivalent, but offer slightly different
perspectives as to how a conservation law extends a local existence result to a global
existence result. For the first proof, we divide the long time interval [0,T] into
shorter time steps, where on each smaller interval the perturbative theory gives a
local solution. More precisely, let M[u(0)] := ||u0|\%§(Rd) denote the initial mass,

and observe from Proposition 3.15 that there exists a time 7 = 7(M[u(0)]) > 0
such that the equation (3.1) will have a local strong solution in S%([to, o + 7] x R%)
whenever the initial datum u(tg) has mass less than or equal to M[u(0)]. We now
split the time interval [0,7] as a finite union of intervals [t,,tn+1], where each
interval has length less than or equal to 7, and ¢ty = 0. By applying Proposition
3.15 followed by Proposition 3.23 (and Exercise 3.11), an easy induction shows
that for every n we can construct a strong solution u to (3.1) in S°([0,¢,] x R%),
and thus we eventually obtain a strong solution to S°([0,7] x R%); see Figure 7.
Uniqueness follows from Proposition 3.15 and a continuity argument similar to that
used to prove Exercise 3.13. The continuous dependence follows by concatenating
the continuous dependence results on each of the intervals [t,,,t,,+1], using the fact
that the SO([t,, tnt1] x R?) norm of u controls the L2 norm of u(t, 1), and using
the fact that the composition of continuous maps is continuous.

The second proof proceeds by contradiction; it is quicker but is more indirect
(and does not give the continuous dependence as easily). We sketch it as follows.
Just as the Picard existence and uniqueness theorems imply a blowup criterion for
ODE (Proposition 1.17), the existence and uniqueness theory in Proposition 3.15
gives a blowup criterion for L2 strong solutions to (3.1), namely that these solutions
will exist globally unless the L2 norm goes to infinity in finite time. However, Propo-
sition 3.22 clearly implies that the L2 norm of a strong solution stays bounded.
Thus blowup cannot occur, and one must instead have global existence. (|

One can combine this global existence result with persistence of regularity the-
ory (e.g. Proposition 3.11) to show that the global solution constructed in Propo-
sition 3.23 preserves regularity; see Exercise 3.28. In particular, with a smooth
decaying initial datum we have a global smooth solution to the one-dimensional
cubic NLS.

Similar arguments give global L2-wellposedness for any L2-subcritical equation.
The situation is remarkably different when one considers the two-dimensional cubic
NLS (d = 2, p = 3, u = £1). The key difference is that whereas the one-dimensional
cubic NLS was L2-subcritical, the two-dimensional cubic NLS is L2-critical. This
is reflected in the local wellposedness theory for this equation, given by Proposition
3.17. If the initial datum has a sufficiently small L2 norm, then this proposition
already gives a global existence result without any need for a conseration law. How-
ever, when the L2 norm is large, one cannot simply combine the conservation law
with the local existence theory to obtain a global existence theory; the problem is
that the time of existence given by the local wellposedness theory does not depend
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FIGURE 7. The first proof of Proposition 3.23. The nonlinear iter-
ation in the local theory could potentially increase the L2 norm as
one advances from one time step ¢, to the next t,41, thus leading
to a collapse of the lifespan t,, 41 — ¢, of that theory; however if one
uses instead the conservation law to control the L2 norm then no
collapse occurs (cf. the global wellposedness of the ODE in Figure
9 from Chapter 1). Indeed the local theory plays a mostly quali-
tative role in the global argument, justifying the local existence of
the solution as well as the conservation law, but not providing the
key quantitative bounds.

only on the L2 norm on the datum, but also on the profile of the datum itself (and
more specifically on the spacetime behaviour of the free evolution of the datum).
Because of this, the conservation law is insufficient by itself to make either of the
arguments used in the proof of Proposition 3.23 extend to this case; iterating the
local wellposedness theorem can lead to a shrinking interval of existence, which can
lead to blowup in finite time. Indeed, in the focusing case y = —1, the explicit
blowup solution given in (3.15) shows that even for smooth L2 (R?) initial data one
can have finite time blowup for this equation. (Note that the classical uniqueness
theory shows that this failure of global existence cannot be avoided by strengthening
the notion of solution.) In the defocusing case u = 1, global existence (and well-
posedness) for L2(R?) initial data is suspected to be true for the two-dimensional
cubic NLS, but this is not known, even for radially symmetric initial data, and is
considered a major open problem in the field; a similar open question exists for any
other L2-critical defocusing NLS. However, the situation improves when the initial
data is assumed to be in the energy class H}(R?), rather than merely in L2(R?),
because a new conservation law becomes available, namely energy conservation?®
For a general NLS, the total energy F[u(t)] takes the form

(3:30) Blu(t)s= [ 5IVutt.a) + s fute.o) ' de

+1
We refer to the first term % [, |Vu(t,2)|? as the kinetic energy or linear energy,
and the second term %M(t, x)|PTL dx as the potential energy or nonlinear energy.
Note that in the defocusing case p = +1 these two terms have the same sign,
whereas in the focusing case © = —1 they have opposite signs. In practice, this

281y principle, momentum conservation should become useful also once one reaches the reg-
ularity H;/Q or higher, thanks to Lemma A.10. However, because the momentum is a vector
rather than a positive quantity, the momentum is in practice not sufficiently coercive to obtain
any useful control of the solution. See however the Morawetz arguments in the next section.
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means that the energy conservation law is more coercive (gives more control on the
solution) in the defocusing case than in the focusing case.

The following heuristic principle, related to Principle 1.37 and Principle 3.1,
can be helpful in predicting behaviour of equations in the energy class:

PRINCIPLE 3.24 (Energy principle). Suppose a solution has finite energy. If
the linear energy dominates the nonlinear energy, we expect linear behaviour; if the
nonlinear energy dominates the linear energy, we expect nonlinear behaviour.

This heuristic has very little rigorous justification to back it up, yet is surpris-
ingly accurate in many cases, as we shall see in several places in this text.

For sufficiently classical solutions one can justify conservation of energy F[u(t)]
by integration by parts; see Exercise 3.31. In the energy subcritical cases s. < 1, the
energy functional u +— FE[u] is continuous in H!(R%) (Exercise 3.32). Combining
this with the local H} wellposedness theory (such as Proposition 3.19 and 3.21) as
in Proposition 3.22, one can extend the energy conservation law to all H !-critical
and H}-subcritical wellposed solutions. (In fact one has this for strong solutions
also, thanks to uniqueness results such as Exercise 3.17. The high-dimensional cases
n > 6 are a little tricky; see [Caz2], [TV].)

Let us now return to the two-dimensional cubic NLS (d = 2,p = 3), and see
what this new conservation law gives us. The focusing and defocusing cases are
now rather different (as one can already see from the blowup solution (3.15)). In
the defocusing case, it is clear that energy and mass together will control the H}
norm of the solution:

la(®)Z S Elu(®)] + Mlu(®)].
Conversely, the Gagliardo-Nirenberg inequality (Proposition A.3) shows that the
energy and mass are controlled by the H! norm:

Elu(®)] S llu®)lfzn (1 + lu@®)122) S lu)lzn (1 + lu@®)7)

Mlu(t)] = [lu®)l72 < lu@®)lF:-
From these bounds and the energy and mass conservation laws we see that for
any Hl-wellposed solution, the H}! norm of the solution u(t) at some later time
t is bounded by a quantity depending only on the H} norm of the initial datum.
On the other hand, Proposition 3.19 shows that an H! wellposed solution can be

continued in time as long as the H! norm does not go to infinity. Combining these
two statements we obtain

PROPOSITION 3.25. The defocusing two-dimensional cubic NLS (d = 2,p =
3,p = +1) is globally wellposed in H}. Indeed for any ug € H} and any time
interval I containing to, the Cauchy problem (3.1) has an H}-wellposed solution
ue SYI xR?) CCYHL(I x R?).

The reader should see how the scheme in Figure 7 is modified to accomodate
the utilisation of two conservation laws (mass and energy) rather than just one.

REMARK 3.26. This argument is in fact quite general and works for any H}-
subcritical defocusing NLS; see for instance [Caz2] or Exercise 3.35. One also has
global wellposedness in H} for the H}!-critical equation but this is significantly more
difficult and will be discussed in Chapter 5. This fits well with Principle 3.24, since
in the Hl-critical equation, Sobolev embedding only barely manages to control the
nonlinear energy in terms of the linear energy.
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REMARK 3.27. In the focusing case, a problem arises because of the negative
sign of the nonlinear component of the energy E[u(t)]. This means that while the
energy is still controlled by the H! norm, the H} norm is not necessarily controlled
by the energy. Indeed, (3.15) shows that global wellposedness fails for some H}
data. However this turns out to be the borderline case: for any H} data with mass
strictly less than that of the blowup solution in (3.15), the Gagliardo-Nirenberg
inequality becomes strong enough again to control the H! norm by the energy and
thus regain global wellposedness. See Exercise 3.33.

The above discussion was for the two-dimensional cubic NLS, which was L2-
critical. For equations which are L2-subcritical, it turns out that the Gagliardo-
Nirenberg inequality is now so strong that the sign p of the nonlinearity plays
essentially no role in the global theory; see Exercise 3.34. For equations which are
L2-supercritical but H-subcritical or H!-critical, the defocusing equation enjoys
global existence in H! as discussed above, but blowup can occur for the focusing
equation unless a suitable smallness condition is met; see Exercise 3.35 and Section
3.8.

Having discussed the conservation laws for the NLS, we now turn to the NLW
(3.2), which we write using the Minkowski metric as

(3.31) 0%Opu = p|ulPtu.

For this equation there is no mass conservation law, and the energy/momentum
conservation laws can be unified via the stress-energy tensor

—_— 1 S 2
(3.32) T = Re(0udu) — 29 Re(dudlu + . f )

(compare with (2.45)). In coordinates,

1 1 n
TOOZT — _6 2 - 2 p+1
0 = 310 + 3 Vu + Lo

T% = —Tjo = —Re(dudy,u)

; —\ 0 2
k k 2 2 H 1
T7% = Tjp = Re(0r, u0z, 1) — ]2 (|Vul|* — |Opu]® + ) lu[Pt1).

From (3.31) we easily verify the divergence-free property
(3.33) 9., T =0

or in coordinates

(3.34) T +0,,T% =0; 9,TY +0,, T =0,

for classical solutions at least. This leads (for classical, decaying solutions) to
conservation of the total energy

1 1 I
3.35)  Elult] = [ T z)d :/ Liosul? + L1vul 4 —H_juptt g
(3.35)  Eu[]] /R (t) de= [ 10w+ 5IVul + L ful do



150 3. SEMILINEAR DISPERSIVE EQUATIONS

and total momentum?®

pj(ult]) :== /Rd T% (t,2) dox = _/Rd Re(9udy,u) dz.

By the limiting arguments as before, these conservation laws can be extended to
H}-wellposed solutions, as long as the equation is either H!-subcritical or H}-
critical.

For defocusing H !-subcritical equations, the energy conservation can lead to
global existence in even for large initial data. Let us illustrate this with the three-
dimensional cubic NLW (d = 3,p = 3, u = +1). From Exercise 3.22 we have a local
wellposedness result for initial data in H! x L2 in the subcritical sense, which easily
implies a blowup criterion, namely that the Hl x L2 wellposed solutions to this
equation can be continued in time as long as the quantity |[u(t)[| g1 + [|Ou(t)|| L2
does not go to infinity in finite time. To bound this quantity, we observe from
(3.35) and energy conservation that we can bound the homogeneous component of
this quantity easily:

()l + 10wtz S Elult]/* = Eful0]]'/2.

To control the lower order term |u(t)|z2 we use the fundamental theorem of cal-
culus and Minkowski’s inequality:

t
lu(®)ll Lz < [lu(0)] 2 +|/0 [0cu(s)| L2 ds|

< u(O)llz2 + | / Eluls]]/? ds|
— 11022 + [t/ E[u0]>.

Thus we can control the H! x L2 norm of u[t] by a quantity that depends mostly
on the initial data:

()l + 102 S [u(0)l|z2 + (1 + [t) ELul0])/.

In particular, if u[0] € H} x L2, then E[u[0]] is finite and the quantity [lu ()| m +
[@¢u(t)|| L2 cannot go to infinity in finite time for any H, x L2-wellposed solution.
Comparing this with the blowup criterion®” we see that we have a global CYH! N
C} L2 strong solution to this equation for any initial data in the energy space
H! x L2. Once one has this global existence result in the energy class, we also
obtain it for smoother classes; see Exercise 3.38.

The above argument in fact works for any Hl-subcritical NLW; see [GV2],
[Sog]. The case of the Hl-critical equation is again more delicate (because the
lifespan given by the local existence theorem depends on the profile of the data as

29Note the presence of the time derivative, which is absent for the NLS momentum. Indeed,
while the NLS momentum is naturally associated to the regularity H;/2, the NLW momentum is
associated to the regularity H;, and thus is of the same order as the energy. Thus the relationship
between momentum and energy in NLW is different from that in NLS, which turns out to be a
crucial difference in the critical scattering theory, see Chapter 5 below.

301t is instructive to use the other approach to global existence from Proposition 3.23, namely
dividing up a long time interval into short ones. Here, because the quantity ||u(t)||H% +|10¢u(t) ”L%
could grow linearly in ¢, the interval of existence guaranteed by the local theory could decay
polynomially in ¢. However, the length of this interval will not go to zero in finite time, which is
all one needs to establish global existence.
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well as on the H! x L2 norm, and so the blowup criterion is more subtle), and will be
treated in Section 5.1; again, this is in accordance with Principle 3.24. For focusing
NLW, there are no Gagliardo-Nirenberg tricks available to control the nonlinearity
(since there is no mass conservation law), and indeed for such equations large data
can lead to blowup no matter what the power is; see Exercise 3.9.

EXERCISE 3.26. Verify (2.35) for the pseudo-stress-energy tensor for szoc
solutions to (3.1). These conservation laws may seem somewhat miraculous, but
can be explained using Lagrangian methods; see [SSul], as well as Exercises 3.30,
3.40. Conclude that if u € CF | (I x R?) is a solution to (3.1) which also lies in
CYH:(I x RY) for a sufficiently large s, then we have mass conservation M[u(t)] =
Mu(to)] and momentum conservation p;(t) = p;(to) for all ¢,to € I. (In order to
justify the integration by parts, one needs to apply a smooth cutoff in space, and
then let the cutoff go to infinity, using the H; control on u to show that the error
incurred by the cutoff goes to zero.) These rather restrictive regularity conditions
can usually be removed by a limiting argument.

x,loc

EXERCISE 3.27. Obtain the analogue of Proposition 3.22 but with d = 2 instead
of d = 1. (The challenge here is that the equation is now L2Z-critical instead of L2-
subcritical, and one has to use Proposition 3.17 instead of Proposition 3.15.)

EXERCISE 3.28. Let p=3,d=1,u = £1, and let uy € HJ(R) for some s > 0.
Show that the solution u constructed in Proposition 3.23 is a strong H_ solution,
and we have the bound [[u(t)||ns < exp(Ct)|uo||ms, where C' = C(s, [[uol|z2) > 0
depends only on s and the initial mass.

EXERCISE 3.29. Show that the energy (3.30) is formally the Hamiltonian for
the NLS (3.1) using the symplectic structure from Exercise 2.47. Also use Noether’s
theorem to formally connect the mass conservation law to the phase invariance of
NLS, and the momentum conservation law to the translation invariance of NLS.

EXERCISE 3.30. Use Exercise 3.2 to link the pseudo-stress-energy tensor and
energy conservation law for d-dimensional NLS to the stress-energy tensor for d+1-
dimensional NLW. (In d 4+ 1 dimensions, you may find it convenient to introduce a
null frame (¢',2/,21,...,24) where t' :=t — 2441 and 2’ :=t + x441, and compute
the coordinates of the stress-energy tensor in that frame.)

EXERCISE 3.31. Let u € C} (I x R%) be a classical solution to (3.1). Verify
the identity

l 2 2p p+1y
(5 IVu(t. ) + 5 u(t.0) ) =

(9j(%1m(8jku(t, 2)Opu(t, ) + plu(t, z) P~ Im(u(t, )0;u(t, ))).

If u is also in CYH¥*(I x R?) for some sufficiently large k, deduce the energy
conservation law Efu(t1)] = Elu(to)] for all to,t; € I (by arguing as in Exercise
3.26).

EXERCISE 3.32. If s, < 1, show that the energy functional u +— Efu] is well-
defined and continuous on the space H!(R?). (Hint: use Sobolev embedding and
an estimate similar to (3.27).) When s, > 1, show that the energy is not always
finite for H}(R?) data.
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EXERCISE 3.33. [Wei] Let ug € H!(R?) have mass strictly less than the mass
of the blowup solution in (3.15). Show that there is a global strong H} solution to
the cubic defocusing two-dimensional NLS (i.e. (3.1) with d = 2,p = 3,u = —1)
with initial datum wug. (Hint: you will need the relationship between @ and Wiax
given by Lemma B.1 in order to control the H! norm by the energy.) Note that
this is consistent with Principle 3.24. There has been much recent analysis of the
case when the mass is exactly equal to, or slightly higher than, the mass of the
blowup solution (3.15): see [Mer2], [Mer3], [MR], [MR2], [MR3].

EXERCISE 3.34. Let u be an Hl-wellposed solution to the one-dimensional
cubic NLS (d = 1,p = 3,p = +£1) with initial datum wg; this is a global so-
lution by Proposition 3.23 and persistence of regularity. Establish the bound
lu(t)|| 52 (r) Sl\uollH%(R) 1 for all times t, regardless of whether the equation is

focusing or defocusing. (The point here is that in the L2-subcritical equations, the
Gagliardo-Nirenberg inequality allows one to control the nonlinear component of
the energy by a fractional power of the linear component of the energy, times a
factor depending only on the conserved mass; cf. Exercise 1.22 and Principle 3.24.)

EXERCISE 3.35. Consider the defocusing three-dimensional cubic NLS (d =
3,p = 3). Show that one has global H!-wellposed solutions if the initial datum
ug is sufficiently small in H!(R?) norm, and in the defocusing case one has global
Hl-wellposedness for arbitrarily large H}(R3) initial data. (Again, one can rely
primarily on the Gagliardo-Nirenberg inequality and the conservation laws. An
alternate approach is to develop a small data global existence theory at the crit-
ical regularity Hml/ 2(R3) by perturbative arguments, and then use persistence of

regularity to move from H ;/ *to H L)

EXERCISE 3.36. Consider the one-dimensional cubic NLS (d = 1,p = 3). It
turns out that there is a conserved quantity (at least for classical solutions to NLS)
of the form

Es(u) = / |0pzu|? + c1p|0pul?|ul? + copRe((TOu)?)) + cap?|u|® da
R

for certain absolute constants ¢1, co, c3 whose exact value is unimportant here. (The
verification of this conservation law is extremely tedious if done directly, though
the machinery in Section 4.2 can expedite some of the algebra; one can also proceed
via the Lax pair formulation of this equation.) Assuming this, conclude the bound
lu(t)|| z2(r) §||UOHH% ) 1 for all times ¢, at least for classical solutions to (3.1).

(The same bound in fact holds for all H2 solutions, and one has a similar result
with H2 replaced by HF for any integer k > 0.)

EXERCISE 3.37. Show that the 1D cubic periodic NLS (with either sign of
nonlinearity) is globally wellposed in L2(T). Also show that if the initial datum is
smooth, then the solution is globally classical. (One should of course use the local
theory from Exercise 3.20.)

EXERCISE 3.38. Show that for every smooth initial data u[0] to the three-
dimensional cubic defocusing NLW (d = 3,p = 3,u = +1), there is a unique
classical solution. (In the text we have already established global wellposedness in
H!x L2 for this equation; it is now a matter of applying the persistence of regularity
theory (to ensure the solution is smooth) and the finite speed of propagation and
uniqueness theory (to localise the initial data to be compactly supported).)
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EXERCISE 3.39. Consider a global H! x LZ-wellposed solution u to the three-
dimensional cubic defocusing NLW (d = 3,p = 3,4 = +1), as constructed in the
text. If (ug,u1) € HE x HE=1 for some k > 1, show that the quantity w®) s +
[w(t)| zyx-1 grows at most polynomially in time ¢, in fact we have the bound

lw@lrs + (Ol =1 Shuol g+l 1+ |t])

for some Cy > 0. (Hint: induct on k. This result should be compared with the
exponential bounds in Exercise 3.28. The difference is that for the wave equation,
the energy estimate (2.28) or (2.29) gains one degree of regularity, which is not
the case for the Schrodinger equation. However, in many cases it is possible to use
additional smoothing estimates and almost conservation laws to recover polynomial
growth of Sobolev norms for the Schréodinger equation; see [Sta], [CKSTTS], and
the scattering estimates we give in Section 3.6 can eliminate this growth altogether).

EXERCISE 3.40. Show that the NLW (3.2) is the (formal) Euler-Lagrange equa-
tion for the Lagrangian S(u,g) = [gi+a L(u,g) dg, where L(u, g) := 9P, udpu +
%Mp“. Conclude that the stress-energy tensor given here coincides with the
one constructed in Exercise 2.60.

EXERCISE 3.41 (Positivity of stress-energy tensor). Let u be a classical solution
to a defocusing NLW, and let T be the associated stress energy tensor. Let ¢, y®
be forward timelike or forwardlike vectors, thus 2°,4° > 0 and 2%z, y%ys < 0.
Show that Topz®y” > 0. In particular we have the positivity property (2.47).
(Hint: first establish this when 2 is the standard timelike vector €, then use
Lorentz invariance to handle the case when z is a general timelike vector, then
use limiting arguments to handle the lightlike case.) This positivity is related to
the finite speed of propagation property for NLW but is not identical; indeed,
in the focusing case y = —1, the positivity fails but one still has finite speed of
propagation.

EXERCISE 3.42. Consider a H -subcritical focusing NLS. Show that the ground
state €™ Q(x) has positive energy in the L2-supercritical case p > 1+ %, Z€ero energy
in the L2-critical case p = 1+ 3, and negative energy in the L2-subcritical case
p<1+ %. Similarly for all translates, rescalings, and Galilean transforms of the
ground state. (Hint: Use Exercise B.3.)

EXERCISE 3.43 (Orbital stability of NLS). [Wei3] Consider a L2-subcritical
focusing NLS. Define the ground state cylinder ¥ as in Exercise B.14. Show that if
the initial datum uo € H}(R?) is sufficiently close to ¥ in H}(R?), then the global
H solution u to the Cauchy problem is such that disty: (u(t), X) ~ dist g1 (uo, )
for all ¢t € R. (Hint: first rescale so that uo has the same mass as ¥, then use
Exercise B.14.) An earlier result of this type appears in [CL]. The theory of
orbital stability of ground states for much more general equations has been studied
extensively; see for instance [GSS], [GSS2] for a systematic approach.

3.5. Decay estimates

Things fall apart; the centre cannot hold. (WB Yeats, “The second
coming”)
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The conservation laws of the preceding section can give global bounds on a
solution u(t) to NLS or NLW that are either uniform in time, or grow at some
controlled rate (polynomial or exponential in time). We have already seen that such
bounds can be sufficient to obtain global existence of the solution. However, one is
not just interested in whether solutions exist globally in time; one is also interested
in the asymptotic behaviour of these solutions as ¢ — oco. The conservation laws
show that these solutions stay bounded in certain norms, but this still leaves a lot
of possibilities for the asymptotic development. For instance, consider the following
two rather different (and informally described) modes of behaviour:

e (Linear-type behaviour) The solution u behaves like a solution to the linear
equation; thus the nonlinear effects become asymptotically negligible. In
particular, we expect the solution to obey the same type of dispersive
and Strichartz estimates as the linear equation, thus for instance we may
expect the LS° or other LP norms of the solution to go to zero as t — Foo.
We also expect Sobolev norms such as ||u(t)||z: to stabilise as ¢ — o0,
as opposed to growing polynomially or exponentially in time.

e (Soliton-type behaviour) The solution refuses to disperse, and for every
time ¢ the solution has a significant presence at some location z(t) de-
pending on ¢, for instance the local mass f|:c—z(t)\<R |u(t,z)|? dr might be
bounded away from zero for some fixed R. In particular the L or L
norms of u(t) will not go to zero as t — +o0o. This is the type of behaviour
exhibited by soliton solutions such as (3.7) (possibly after applying some
symmetries such as Galilean or Lorentz invariance). One can also con-
sider more complex behaviour when for each fixed time ¢, the solution has
significant presence at multiple points x1(t), ...,z (t); this is the case for
multi-soliton solutions, which are essentially a nonlinear superposition of
several separated solitons.

There is some evidence (both theoretical and numerical) that for “most”3!
global solutions to an NLS or NLW, that the asymptotic behaviour eventually
decouples into the above two extremes: most solutions should eventually resolve
into a “localised” component which behaves like a soliton or multi-soliton solution,
plus a “radiation” component which disperses like a linear solution. Making this
rather vaguely worded soliton resolution conjecture a rigorous theorem is a major
open problem in the field, and somewhat out of reach of current technology except
in special cases (e.g. small perturbations of a special solution such as a soliton,
multisoliton, or the vacuum state 0, or the one-dimensional cubic NLS, which is
completely integrable). However, significantly more is known in the defocusing
case u = —1. In many defocusing cases it is known that soliton-type behaviour is
excluded, and all solutions in fact disperse like a linear equation. These results are
part of the scattering theory for these equations and will be discussed more fully in
the next section. For now, let us just say that the question of whether a solution

310ne of the many difficulties with establishing this conjecture is that we expect there to
be a small class of exceptional solutions which exhibit more exotic (and unstable) behaviour,
such as periodic “breather” solutions, or clusters of solitons which diverge from each other only
logarithmically. Almost all of the known tools in the subject are deterministic in the sense that if
they work at all, they must work for all data in a given class, while to settle this conjecture it may
be necessary to develop more “stochastic” techniques that can exclude small classes of exceptional
solutions.
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disperses or not is intimately tied to whether there is some sort of decay estimate
for the solution in various norms, such as an L norm for some p > 2; in many
cases, knowing that such an L2 norm goes to zero as t — oo (either in a classical
sense, or in some time-averaged sense) is sufficient to establish that the solution
scatters to a linear solution, while conversely estimates such as Strichartz estimates
assure us that the L? norms of such solutions do indeed go to zero. (This should
also be compared with Principle 3.24.)

Thus it is of interest to obtain decay estimates on solutions to defocusing equa-
tions. The conservation laws establish boundedness in L2-based spaces such as L2
and H}, but do not yield any decay estimates in higher L2 norms. There are a num-
ber of known ways to establish such a decay estimate; in this section we shall discuss
three such, namely the Morawetz inequality approach, the (pseudo)conformal iden-
tity approach, and the vector fields approach.

We begin with the Morawetz inequality approach. This method is based on
monotonicity formulae, as discussed in Section 1.5. It is here that we can begin to
usefully exploit the momentum conservation laws. As momentum is a vector, these
laws are not of the coercive type needed to obtain uniform bounds on a solution as
in the preceding section, but the vector structure does permit3? one to construct
various quantities based on the momentum density which are monotone in time,
and so the fundamental theorem of calculus will provide some spacetime bounds
that force some decay in the solution.

In the linear setting, Morawetz inequalities for the NLS and NLW were already
introduced in Section 2.4 and Section 2.5, using the pseudo-stress-energy and stress-
energy tensors respectively. The NLS and NLW also have such tensors, and in the
defocusing case the sign of the nonlinearity will be favourable for preserving the
desired monotonicity. In the case of the NLS, we can repeat the derivation of
(2.37) (taking into account the new nonlinear term in the T,; components of the
pseudo-stress-energy tensor) and obtain the identity

0; /Rd a(x)|u(t,x)|* de = 0 /Rd Oz;a(x)Im(u(t, ©)0y; u(t, x)) dx

_ /R (02D (@) Re(Dy, 0, 0)

(p—1u
p+1

—1/ lu(t, z)*A%a(x) dz,
4 Rd

(3.36)
/ lu(t, )P Aa(z) dx
Rd

at least for smooth a of polynomial growth, and for classical, decaying solutions u
0 (3.1). One can specialise this to a = |z| and d > 3 (justifying this as in Exercise

321ndeed, it is not possible for an (autonomous) quantity based on the mass or energy density
to have a non-trivial monotonicity in time, as this would conflict with time reversal symmetry.
The momentum density is not subject to this problem, since reversing time also reverses the sign
of the momentum density.
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2.57) to conclude that

N N Tt
8,5/Rd Im(u(t,:z:)m Vu(t,z)) d _/Rd 2] d
20— Dy [ |ult, z)P*
547 e M ek

— 1/ lu(t, z)|*A2a(z) du.
4 Jra

When d > 3 the tempered distribution A2a is non-negative. In particular, in the
defocusing case this time derivative is non-negative, and we have the monotonicity

formula
lu(t, )P+

8t/ Irn(ﬂ(t,a:)i -Vu(t,x)) dx Zp/ — ) du.

R |z rRe 7|

Integrating this along a time interval [tg, ¢1] and using Lemma A.10, we obtain the
Morawetz inequality

3.38 B B L[ OIE

(3.38) / / T o Spa s (O

for any classical solution to defocusing NLS on [to,t;] x R?. In practice, the re-
quirement that this solution is classical can be dropped by the usual limiting ar-
guments>3, provided that one is working with a wellposed solution at a regularity
strong enough to control both sides of (3.38).

Suppose we are working with an H }-wellposed solution, with a defocusing equa-
tion which is H!-subcritical or H!-critical (this turns out to be sufficient to justify
the bound (3.38)). As we saw in the preceding section, the conservation laws of
mass and energy allow one in this case to show that the solution is global, and
bound the H}! norm (and hence mL? norm) of u(t) by a quantity depending on
the H! norm of the initial datum wug. Applying this to (3.38) and letting the time
interval [tg, t1] go to infinity, we obtain the global spacetime bound

t x |P+1
(3.39) / /Rd 2] dadt Sp,dJluoll ;3 15

first observed in [LStr] (and inspired by a similar result in [Mor] for nonlinear wave
Ju(t,z)|P+! d

x
\w\

equations). This is a decay estimate, as it shows that the quantity fRd
must go to zero, at least in some time-averaged sense. Because the weight - Tal is large
at the origin, this means (roughly speaking) that the solution cannot maintain a
significant presence near the origin for extended periods of time. This is a nonlinear
effect caused by the defocusing nature of the nonlinearity; it fails utterly in the
focusing case p = —1 (as one can see by inspecting the soliton solution (3.7)), and
also behaves strangely in the linear case u = 0 (see Exercise 3.44). It is especially
useful for spherically symmetric solutions, as such solutions already decay away
from the origin (Exercise A.19). However, this estimate is not as effective for
general solutions, which can be located arbitrarily in space. This problem can be
alleviated to some extent by exploiting spatial translation invariance. For sake of
simplicity we discuss the three-dimensional case d = 3, in which the formulae are

33In the case where the NLS is not algebraic, one also needs to regularise the nonlinearity in
order to create an approximating sequence of classical solutions, and exploit some stability theory
as in Section 3.7; we ignore this rather tedious detail.
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cleanest (for higher dimensions, see [Vis]|, [TVZ], and for lower dimensions, see
[Gri6]). By translating (3.37) by y we obtain

_ -y [ IVult2))?
O /R3 Im(u(t,x)| -Vu(t,z)) do —/ ———dz

r —yl rR: T Y
4 2p — 1 t, x) [Pt
(3.40) N (p )u/ lu(t, )| -
p+1 Jrs |z—y]
+ 7lu(t, y)|?

where Vu is the angular component of the gradient using y as the origin. This
estimate can then be used to obtain a translated version of (3.39) which prevents
the solution w from concentrating at the point y for long periods of time. The
freedom afforded by this additional parameter y can be exploited by integrating
(3.40) against a suitable weight in y. It turns out that the best weight to achieve
this with is the mass density Too(¢,y) = |u(t,y)[>. This gives

(3.41)
/ / u(t, y)|*Im(T(t, a:) —Y -Vu(t,x)) dedy
R3 JR3 |z =yl

_ " 209 w(t. 22 dxdy
—/’/ |mM|Wy@,n| <

dxd
// lu(t, )2 u(t, o)+
p+1 R3 | Y|

+w/|<twﬁ@
/ (Or|u(t, y)|*)Im(a(t, 3:) —Y -Vu(t, z)) dedy.
R3 JRS3 |z =yl
To deal with the final term of (3.41), we rewrite it in terms of the pseudo-stress-
energy tensor as

/ (0¢Too(t,y)) — Uk Tox(t,z) dzdy
rR® JR? | yl

and then use (2.35) and integration by parts to write this as
i —yi) (T — yi dzd
/ / TO_] t y _ ( J y])( > Y ))Tok(t,fﬂ) Y :
R3 JR3 lz =y |z =yl

if u is smooth and decaying then there is no difficulty justifying the integration by
parts. However, an application of Cauchy-Schwarz shows that

(zj —y;) (@K — Yx)
P )Tox (t, )]

(e, )1 u(t, ) [u(t, 1) [V, (0, )
< 3l PV, u(t, ) + fult,2) PV, u(t, )

whenever x # y; this can be seen for instance by rotating  — y to be a multiple
of the unit vector e; and working in coordinates. From this pointwise bound and
symmetry we thus see that we can bound the last term in (3.41) by the first. If we

|To;(t,y)(1—

IN

N
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are in the defocusing or linear cases p > 0, we can also drop the second term as
being non-negative, and we conclude

—Y 4
/R3 /R3 u(t, y)|*Im(u(t, a?)| m_y -Vu(t, x)) d:cdwa/R3 lu(t, z)|* d.

But by (a translated version of) Lemma A.10 we have the pointwise bound

[ Pt = Vutt, ) dedy) < Jat) o)y

From the fundamental theorem of calculus, we thus obtain the interaction Morawetz
inequality

t1
(3.42) / [ utta)it dodt 5 s ) (o),
=to,t1

whenever v is a classical solution to a defocusing or linear NLS on [to,#1] x R?;
this was first observed in [CKSTT10], and should also be compared with Example
1.34. There is no difficulty applying a limiting argument to extend this inequality
to H!-wellposed solutions when the NLS is H!-subcritical or H}!-critical. Using the
energy and mass conservation laws, we see in particular that we have the spacetime
bound

ty
(343) / / dCCdt NHU’UHHl 1

in this case, where ug is the initial datum of this solution. This bound resembles
(3.39), but is a linear phenomenon rather than a nonlinear one (it holds true even
when p = 0), and does not involve the weight ‘71‘ and so is not tied to any particular

spatial origin®®. This makes it a more useful decay estimate for controlling solutions
to NLS when there is no assumption of spherical symmetry.

The ordinary Morawetz estimates for NLS have a counterpart for NLW; see Ex-
ercise 3.46. However, it seems difficult to locate a useful analogue of the interaction
Morawetz inequality for the NLW; the somewhat miraculous positivity properties
of the time derivative of the interaction functional do not seem to be present in
the wave equation setting, even if one drops the nonlinearity. Fortunately, for these
equations the ordinary Morawetz estimate is already quite powerful, especially when
combined with finite speed of propagation.

The Morawetz inequalities are based on the monotonicity formulae method.
Another way to obtain decay is to find a conserved (or almost conserved) quantity
which is non-autonomous (depending explicitly on ¢). Often, such laws arise by
conjugating an autonomous conservation law with a symmetry (or approximate
symmetry) of the equation. For instance, for the free Schrodinger equation we have
already seen that the pseudoconformal symmetry from Exercise 2.28 conjugates the
usual energy conservation law to the conservation of the pseudoconformal energy
(2.33). Turning now to (classical) solutions u of the nonlinear Schréodinger equation,

34While the original Morawetz inequality controls the extent to which a solution can con-
centrate near a fixed point y, the trick of integrating that inequality against the mass density
means that the interaction Morawetz inequality controls the extent to which the solution con-
centrates against itself. In this perspective, the L% quantity ng |u(t, z)|* dx can be rewritten
as [gs Jrs [u(t, @) |u(t,y)|?6(z — y) dedy and thought of as a self-interaction of the mass den-
sity. The interaction inequality can also be thought of as an ordinary Morawetz inequality for a
six-dimensional (or “two-particle”) Schrodinger equation; see Exercise 3.45.
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recall that the pseudoconformal transform v of u, as defined in Exercise 2.28, obeys
the modified equation (3.16). In particular, in the L2-critical case p = prz the
pseudoconformal transformation is a symmetry of the equation; we have already
used this fact to construct the blowup solution (3.15). But this transform is still
useful even in the non-L2-critical case; one can view the equation (3.16) as an NLS

dip
in which the degree of focusing or defocusing, as quantified by 2 (P=Pr2) 1, is now
time-dependent. In analogy with the usual NLS, we can define a (non-autonomous)
energy Elv(t),t] for ¢t # 0 by

v(t) [P+
p+1

Because (3.16) is not time translation invariant in general, we do not expect this
energy to be perfectly conserved in time (except when p = pr:). Nevertheless, it
should be “almost” conserved in that its time derivative should be small. Indeed,
a computation (essentially the one in Exercise 3.31) shows that

d 4(p—pp2)-1 o(t) [P+
OtEu(t), t] = =(p— t2\PPry — dx
tEo(t),1] = 5(p — pr2) 2 W
in other words, the only source for the time variation of the energy of v is the
explicit dependence on the time variable t.

This formula can be used to control the time evolution of the energy of v, which
in turn gives control on the original solution by means of the easily verified identity

1 d(p—
Ep(t), t] ::/ §|Vv(t)|2+2tg(p pLi)u dz.
R4

b

(3.44) E[v(t), ] = Epclu(1/¢), 1/1]
where Ey is the pseudoconformal energy
1 : 2 pit? +1
(3.45) Epclu(t),t] == = [(x 4+ itV )u(t)|* de +2—— lu(t)[PT,
2 Rd p + 1 R

which is defined for all ¢ including 0. For instance, in the L2-critical case p = PL2,
the quantity F[v(t),t] is conserved in ¢, and hence the pseudoconformal energy
Epclu(t), t] is also conserved in ¢t. (This was only established for ¢ # 0, but can
be verified for ¢ = 0 also, either by a limiting argument or by establishing the
conservation of Eyc[u(t),t] directly; see Exercise 3.47.) In the L2-critical defocusing
case (p = prz, it = +1), we obtain in particular that
2
L [ OP < Bpefult). 4 = Byclul0).01 = gleu(0)];

which leads to the decay bound

__d_ _d_
||u(t)||L§(d+2)/2 Sd |t| o) ||Iu(0)||z;;2

for all times ¢ # 0 for which the (classical) solution exists; this bound can be
extended to more general classes of solution by the usual limiting arguments. Some
further examples of decay estimates of this type are given in the exercises; they
can give quite strong decay for a wide range of powers, but have the drawback that
they require some spatial decay on the initial datum (in this case, one needs zu(0)
to lie in L2).

For the NLW, the analogue of the pseudoconformal energy is the conformal
energy Qu(t),t], which was already introduced in (2.54) for the linear wave equa-
tion and is defined the same way for the NLW (using the nonlinear stress-energy
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tensor defined in (3.32), of course). For classical solutions to NLW one can use the
properties of the stress energy tensor to verify the identity

0QUu(t).t) = —pt(d - E=E [ jut,a)pt s
p+1 Rd
where p. 1= 1+ % is the conformal (or H !-critical) exponent. This can be utilised
to obtain decay estimates in analogy with the pseudoconformal energy and the NLS,
especially for the conformal power p = p,.

The pseudoconformal and conformal energy methods provide decay of the so-
lution in an L? sense. In some cases one wishes to also establish decay of the
solution in an L>° sense. This can be done via Sobolev embedding but requires one
to control quantities that involve more than one derivative. One way to do this
(assuming a sufficiently small, smooth, and localised initial datum) is by the vector
field method, which we introduced in Section 2.5. For technical reasons it is a little
simpler to work with a derivative nonlinear wave equation rather than a semilinear
NLW; for sake of illustration and concreteness we shall work with classical solutions
to the (rather artificial) three-dimensional scalar equation Ou = (9,u)3. We recall
the Killing vector fields X® defined in Section 2.5. We use this to define the higher
order energies E, (t) for any n =0,1,... as

Z Z K1 K ()7 + 106K Kou(t) |72

m=0 Kq,..., Ko

where Kj, ..., K;, range over the vector fields 0, O, 7;0x, —2k0y,, O t0y; +x;0;.
Since the Killing vector fields commute with [, we have

O(K; ... Kpu) = =K1 ... K, ((0pu)®)
and hence by the energy estimate (2.28) we have

Bu) S B0+ > /Hm A (0)) () | 2 dt

m=0 Ki,...,

for all ¢ > 0. Let us apply this with n = 5 (this is far more regularity than
strictly necessary, but serves to illustrate the general idea). We have at most five
Killing vector fields K1, ..., K,, applied to (G;u)® on the right-hand side. Using
the Leibnitz rule repeatedly, we can distribute these derivatives and observe that
at most one of the factors dyu will receive more than two of these Killing vector
fields. We place that factor in L2 and the other two in L°°, and obtain

(K7 .. Ko ((0w)®) ()| 22 S ( sup _sup K7 ... K Opu(t')| 22 )

m’<5 Kq,..., m!

(sup  sup ||Ky... K Owu(t)]n=)?.
M <2 Ky K

Now one observes that the commutator of 9; or 0., with one of the vector fields in
the list 0y, Oy, 0z, — Tx0y,, Or t0y; + ;0 is a linear combination of the vector
fields 0; and d,,. Using that fact repeatedly, we can bound

||K1 e Km/atu(t/)HLi 5 E5(t)

whenever m’ < 5. Applying the Klainerman-Sobolev inequality (see Exercise 3.48)
one obtains

1Ky K Opu(t)| e me) S () Bs ().



3.5. DECAY ESTIMATES 161

Combining all these estimates together we obtain the integral inequality
t
E5(t) < E5(0) +/ "\ 2E5()* dt’.
0

From this and a standard continuity argument we see that if E5(0) < e for some
suffiicently small absolute constant € > 0, then we have E5(t) < e for all ¢ > 0 for
which the classical solution u exists. Applying the Klainerman-Sobolev inequality,
this leads to decay bounds such as [|[V; u(t)|| < (£)~'. See [Sog] for a more

detailed and general treatment of this vector fields approach.

EXERCISE 3.44. Let d = 3. Show that the estimate (3.39) continues to hold
for the linear equation p = 0 when 5/3 < p < 7, but fails for p < 5/3 or p > 7.
(Hint: first obtain bounds for [g [, p lu(t, x)|PT dxdt for R a power of two by
using Strichartz estimates, and then sum in R. For the negative results, start with
a bump function initial datum (or a Gaussian) and rescale it as in Exercise 2.42.)
The estimate is also true at the endpoints p = 5/3 and p = 7 but requires a Lorentz
space refinement of the Strichartz estimates, observed in [KTao].

EXERCISE 3.45. For simplicity let us work with a global classical solution u :
R xR3? — C to the three-dimensional linear Schrédinger equation (so d = 3 and p =
0). Define the “two-particle” field U : R x R® — C by U(t,z,y) := u(t, z)u(t,y).
Show that U solves the six-dimensional linear Schrédinger equation. Apply (2.37)
to the solution U with the weight a(z,y) := |z — y| (using limiting arguments as
necessary to deal with the fact that a is not smooth) and deduce another proof of
(3.42) in the linear case p = 0. How does the argument change when one places a
defocusing nonlinearity in the equation?

EXERCISE 3.46 (Morawetz inequality for the wave equation). [Mor] Let u :
I x R?® — C be a classical solution to a three-dimensional defocusing NLW (thus

d =3 and p = 1), and let T*’ be the associated stress-energy tensor. Using (3.34)
and the identity

¥ = Re(y,u0,0) = “0(uf) + L2l
for the spatial component of the stress-energy tensor, establish the identity
at/ Ty = / Wul? | p [P L),
Ro || re |zl p+1 2| 2z
Integrate this in time and use the Hardy inequality (Lemma A.2) to establish the
Morawetz inequality

2 pt+l1
[ v [ v+ [ .02 ar 5, B
1 Jrs el 1Jrs Jal I

where E[u] = E[ult]] is the conserved energy; compare this with (3.38).

EXERCISE 3.47. Let u be a classical solution to a NLS. Verify the identity

Epclu(t), t] = *Efu(t)] — t/Rd x;To;(t,z) dov + /Rd %|x|2T00(t,x) da

which connects the pseudoconformal energy to the ordinary energy and the pseudo-
stress-energy tensor. Use this to verify the evolution law

dpt(p — pr2
O Epelu(t), t] = —% /R Ju(t, )P+ de
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directly, without recourse to the pseudoconformal transformation. From this and
Gronwall’s inequality, deduce the estimate

1 _
H“(t)Hi-;l Sdpt 2”55“(0)”%37

in the defocusing, L2-supercritical case y = +1,p > pg and all t # 0, as well as the
estimate

to
OIS Sapse 0N + [ [ )Pt doa,

in the defocusing, L2-subcritical case p = +1,p < pg and all t >ty > 0.

EXERCISE 3.48. Let f € CS, (I x R?) for some time interval I. By repeating
the arguments used to deduce (2.57) from (2.56), derive the Klainerman-Sobolev
inequality

(3.46) IVeafOlleems) SOY D IVeaKi o Knf(0)ll2(ms)

m<3 Ki,...,Km

for all t € I, where K, ..., K,, ranges over all the vector fields 0y, Oy;, ©j0z, —
20Oy, O 10y, + 1;0;.

3.6. Scattering theory

To know the road ahead, ask those coming back. (attributed to
Confucius)

The decay estimates of the preceding section give asymptotic control for global
solutions to NLS or NLW. It turns out in many cases, these estimates can be boot-
strapped to provide quite strong control on these solutions, in particular establishing
that they scatter to a linear solution. Intuitively, the reason for this is that if u(t)
decays to zero as t — +oo, then the nonlinearity u|u(t)[?~ u(t) decays even faster,
and so the nonlinear component of the NLS or NLW equation will vanish asymp-
totically (in a relative sense), and thus (by Principle 1.37) we expect the evolution
to behave linearly as t — dco. The main tool for making these heuristics rigorous
is the Duhamel formula ((3.22) or (3.23)), applied for various values of ¢ and ¢; the
arguments often bear some similarity with the Duhamel iteration arguments used to
establish local existence, though with some subtle differences. For instance, in the
local theory, large exponents p are more difficult to deal with than small exponents
(because they exacerbate the large values of the solution, which are the main source
of difficulty in closing a local iteration argument), but in the asymptotic theory, the
small exponents tend to be the most difficult®> (because they do not attenuate the
small values of the solution as much as the large exponents, and so the nonlinearity
does not decay as fast asymptotically). Since one needs to combine the local and
asymptotic theories to understand scattering, it should thus be unsurprising that
most scattering results only hold for exponents p that are neither too large nor too
small. (For instance, recall from our discussion of the exact solutions (3.18), (3.19)
that we do not expect scattering results when p < 1 + %) It is sometimes useful
to ensure that one’s arguments are as scale-invariant as possible, as this can allow
one to treat both the local theory and the asymptotic theory in a unified manner.

35For similar reasons, the asymptotic theory sometimes gets easier when there are derivatives
in the nonlinearity, despite the fact that these derivatives can make the local theory significantly
harder.
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We begin by discussing the scattering theory for NLS in the energy class H!. To
reduce the number of cases slightly we shall only consider scattering from ¢t = 0 to
t = +o0 or vice versa; one can certainly consider scattering back and forth between
t =0 and t = —o0, or between t = —oco0 and t = 400, but the theory is more
or less the same in each of these cases. We will also assume that the nonlinearity
is either H!-subcritical or H!-critical, so that we have a good H!-wellposedness
theory (locally in time, at least).

A solution to the linear Schrodinger equation in this class takes the form
eA/2y, for some uy € H!. We say that a global strong H} solution u to the
nonlinear equation (3.1) with initial datum u(0) = ug scatters in H} to a solution
eA/2y, to the linear equation as t — +oco if we have

Ju(t) — ™ Puy | g — 0 as t — +o0,
or equivalently (by using the unitarity of e?*4/2)
[|le A 2u(t) — Uyl — 0 as t — 4oo0.

In other words, we require the functions®® e~#*4/2y(t) converge in H} as t — +oc.
From the Duhamel formula (3.22) we have

t
efitA/Qu(t) =y — Z',LL/ 67it,A/2(|u(t/)|p71u(t/)) e
0
and so u scatters in H} as t — +oo if and only if the improper integral
[ e unrtuw)
0

is conditionally convergent in H},
by the formula

(3.47) Uy = ug — if /000 e A2 (Ju(t) [P~ u(t)) dt.

Thus one can view the asymptotic state v as a nonlinear perturbation of the initial
state ug. If we compare (3.47) with (3.22) and eliminate ug we obtain the identity

in which case the asymptotic state u is given

o]
(3.48) u(t) = e 2y +ip / A2 |y () P~ Tu(t')) dt’
t
which can be viewed as the limiting case o = +00 of (3.22).

Suppose that for every asymptotic state uy € H_} there exists a unique initial
datum ug € H} whose corresponding H!-wellposed solution is global and scatters
to e?/2u, ast — 4oo. Then we can define the wave operator Q, : H! — H}
by Qiuy := ug. Note that the uniqueness aspect of the Hl-wellposedness theory
ensures that the wave operator is injective. If it is also surjective - in other words,
if every H l-wellposed solution is global and scatters in H! as t — +o00, we say that
we also have asymptotic completeness.

In general, the existence of wave operators is relatively easy to establish (as long
as the power p is not too small or too large, and especially if a smallness condition
is assumed), both in focusing and defocusing cases. The asymptotic completeness,

361t is instructive to write e ~#A/2q(t) = Sy, (£) 1S (t)ug, where S(t) : ug — u(t) is the prop-
agator for the nonlinear Schrodinger equation, and Sy, (¢) is the corresponding linear propagator.
Thus scattering is an assertion that the “gap” between S(t) and Sy, (t) converges to something
bounded in H} as t — co.
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FIGURE 8. The iteration scheme used to construct a solution from
an asymptotic state at late times; it is essentially a backwards-in-
time version of the local existence scheme, but on an unbounded
time interval.

however, is a bit harder, is restricted to the defocusing case (since soliton solutions
clearly do not scatter to linear solutions), and requires the decay estimates. We
will not attempt a complete theory here, but just illustrate with a single example,
namely the cubic defocusing three-dimensional NLS (d = 3,p = 3, u = +1). Note
that global wellposedness for H! for this equation (in the subcritical sense) was
already established in Exercise 3.35.

ProposITION 3.28 (Existence of wave operators). Let d = 3, p = 3, and
w = +1. Then the wave operator 1y : H- — H) exists and is continuous.

PROOF. (Sketch) To construct the wave operator 2, we need to evolve a state
at t = 400 to t = 0. We shall factor this problem into two sub-problems; first we
shall solve the “asymptotic problem”, getting from ¢ = 400 to some finite time
t =T > 0, and then we will solve the “local problem” of getting from ¢ = T
to t = 0. The latter problem will be an immediate consequence of the global
wellposedness problem, so we focus on the former. We shall use the same Duhamel
iteration method used to prove Proposition 3.19, but with (3.48) being used instead
of the usual Duhamel formula (3.22). Fix uy € H}; we will assume the bound
lut][z: < A for some A > 0. From the Strichartz estimate (3.28) we have

€3 2uy || 51 (Rxms) Sa 1.
We would like to make this norm not only bounded, but small, by restricting the
time variable. This is not possible at present because the S' norm contains some
components of Lg® type, which do not necessarily shrink upon restricting time. To
fix this we shall pass from S! to a smaller controlling norm; a convenient choice
here is the norm

lllsy = Nz, + llull povayypors.
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From Sobolev embedding we have

HeitA/2 ) S ||eitA/2 itA /2

Uy || sy (RxR? “+|‘L§“/3W;’1“/3(RxR3)

u+”L§Wz1’3O/H(R><R3) + ||€
< ||eitA/2

Sal.

u+||Sl(R><R3)

Let € > 0 be a small absolute constant to be chosen later. If we set T' = T'(uy)
large enough, we see from monotone convergence that
€22 U || 8o (7, +00) xRS) < €

We now solve (3.48) in the spacetime slab [T, +o0) x R3 by iteration, keeping
the iterates bounded in S*([T,+00) x R3) and small in Sy, and the nonlinearity
|u|P~1u small in Li0/7W£’10/7([T, +00) x R?). This constructs a unique solution u €
SY([T, +00) x R3) to (3.48), which can be shown to be a strong H} solution to (3.1)
in this interval by a variant of Exercise 3.10. Using the global H!-wellposedness
theory, one can then extend this solution uniquely to S1([0,4+00) x R?), and in
particular u will take some value ug = u(0) € H} at time ¢ = 0. This gives
existence of the wave map; continuity can be established by concatenating the
continuity given from the above iteration scheme in the interval [T, +00) with the
continuity arising from the global wellposedness in the interval [0, T']; note that the
time T can be chosen to be uniform under small H! perturbations in uy thanks to
the Strichartz estimates. The uniqueness can be made to be unconditional (in the
category of strong H_! solutions) by arguing as in Exercise 3.17. O

REMARK 3.29. The above argument shows that (perhaps unintuitively) it is
in fact easier to evolve from an asymptotic state at ¢ = 400 to a large finite time
t = T, than it is to evolve from t = T down to t = 0, as the former does not
even require energy conservation or the defocusing sign of the nonlinearity. The
reason for this is that in the asymptotic regime ¢ — +o00, the asymptotic state is
so dispersed that the nonlinear effects are extremely weak; it is only at time 7" and
below that the solution reaches sufficient levels of concentration that one must start
paying more serious attention to the nonlinearity.

Now we establish asymptotic completeness. For pedagogical purposes we shall
split the argument into three parts. First we begin with a conditional result, that
shows that asymptotic completeness is implied by a certain spacetime bound; this
is a purely perturbative argument that does not require any decay estimates. Then,
we show that this rather strong spacetime bound is implied by a seemingly weaker
spacetime bound. Finally, we use the decay estimates of the previous section to
establish that spacetime bound.

PROPOSITION 3.30 (Spacetime bound implies asymptotic completeness). Let
d=3,p=3, and p = +1. Suppose that there exists a bound of the form

(3.49) [ullsr(RxR) Suollyy 1

for all H}-wellposed solutions to (3.1) (thus we assume that the nonlinear equation
obeys the same type of global Strichartz estimate as the linear equation). Then the
wave operator Q. is surjective from H} to H}, and the inverse erl 1S continuous.
(In conjunction with Proposition 3.28, this implies that Q1 is a homeomorphism
from H} to itself.)
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PrOOF. We shall demonstrate the surjectivity here, and leave the continuity
to an exercise. We need to show that for any ug € H., the global Hl-wellposed
solution u to (3.1) scatters in H}; by the preceding discussion, this is equiva-
lent to the conditional convergence of the integral [ e™*A/2(|u(t)|?u(t)) dt in
H}. By Strichartz estimates (e.g. (3.28)), it will suffice to show that |u|?u lies
in N'(R x R?). But from the Leibnitz rule and Holder’s inequality, followed by
Sobolev embedding we have

1
el s sy S D19 QP 2o e
k=0

1
2|7k
S M7l
=0

N ”uH%iwHUHL}OBW;*IO/S(RXR?’)

< ||U||?§1(RxR3)
and the claim follows by (3.49). O

PROPOSITION 3.31 (Weak spacetime bound implies strong spacetime bound).
Letd =3, p=3, and u = +1. Suppose that there exists a bound of the form

(3.50) lullzs , (RxR2) Sipuoll 1

for all H}-wellposed solutions to (3.1) and some fized 10/3 < q < 10. Then we
have (3.49).

Note that Sobolev embedding shows that the LZ norm is controlled by the S*
norm. The S! norm is ostensibly a stronger norm as it also controls one derivative
of the solution, but the point is that Strichartz estimates will allow one to control
this stronger norm by the weaker norm (and the energy). This bootstrapping
phenomenon is typical for any subcritical equation (reflecting a certain amount
of “room” in the iteration argument); for critical equations, the situation is more
delicate as the relevant Strichartz norm is now scale-invariant and thus can only
be controlled by other scale-invariant quantities; see Exercise 3.51. One can also
combine this result with persistence of regularity results such as Proposition 3.11,
giving in particular the bound

||U||C?H;(RxR3) §s,|\u0||H% HUOHH;(RS)
for any s > 0 for which the right-hand side is finite.

PROOF. Let u be an H!-wellposed solution to (3.1). We shall apply a pertur-

bative argument; to do this, we need the solution u to be made small in some sense.

This shall be accomplished by partitioning the time axis®”.

Let & = €(||uol[ 1) > 0 be a small number to be chosen later. Using (3.50), we

can divide the time axis R into O g |u,||,,, (1) intervals I, such that on each such

3TThis is very similar to how one iterates a local existence result to a global one, as in Figure
7. A key difference is that the time intervals considered here can be arbitrarily large or even
infinite. In practice, this means that we are no longer permitted to use Holder in time (except
perhaps on some exceptionally short intervals), as we generally cannot afford to lose a power of
the length of the time interval.
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interval we have

(3.51) llull Larxmsy < e

Now fix one of these intervals I, say I = [to,t1]. From (3.28) we have
llulls1rxrs) S llw(to)llmrme) + (R (IxR3)-

From energy conservation we have |lu(to)| g1 (rs) = OIIuoIIH1 (1). Now we argue as

in the proof of Proposition 3.30. Estimating the N norm by the L10/7W9}’10/7

norm and using the Leibnitz rule and Hélder inequality, we see that
1

ulull v rxre) S |||U|2|Vk“|||L;°z/7(1xR3)
k=0 ’

S ||u||%§’z(1><R3)Hu||Li0/3W1,10/3(1><R3)

S HUH%;:”I(]xRS)HUH51(1><R3)-
Now from the definition of S' and Sobolev embedding we have

||U||L;w(1xR3) S llullsrrxme)
for all 10/3 < r < 10. Interpolating this with (3.51) we obtain
HUHLQI(MRB) N Ea”U”lsT(O}xRS)
for some 0 < a < 1 depending on g. Combining all these estimates we obtain
lull s rxR2) S Oluoll gy (1) + € 1l 5 (7o

If we choose ¢ sufficiently small depending on [lug|| g1, then standard continuity
arguments (see Exercise 1.21) yields

[ullsr(rxms) = Ofuglly (1)-
Summing this over all of the intervals I we obtain (3.49) as desired. O

It thus remains to establish the spacetime bound (3.50). In the case of spher-
ically symmetric solutions, one can combine the ordinary Morawetz inequality
(3.39), which in this case gives

/ A% d:vdt Slluoll 1 1,

with the radial Sobolev inequality (Exerc1se A.19), which when combined with the
conservation of mass and energy give

[ut, @)/l e Lo (RxR3) Sl 1
Multiplying the two gives
lullLs , ®xR?) Siuollg 1

which is of the desired form (3.50) with ¢ = 5. Note how the Morawetz inequality
provides the decay near the origin, while the radial Sobolev inequality provides the
decay away from the origin. In the non-radial case, we cannot run this argument
so easily (though see [Bou6]); however the interaction Morawetz inequality (3.43)
yields (3.50) immediately (with ¢ = 4).

The above types of arguments are known to give scattering results in H}! for
defocusing NLS equations which are strictly between the H!-critical and L2-critical
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powers; see [Caz2]. A scattering theory at the H!-critical endpoint (based upon a
spacetime bound such as (3.50)) has recently been established but is significantly
more difficult; see Chapter 5. The H!-scattering theory for the L2-critical equation
remains open, even in the spherically symmetric defocusing case. Similar remarks
also apply to the NLW, but with the role of the L2-critical exponent now played
by the 2/ critical (conformal) exponent.

For NLS equations below the L2-critical exponent, no scattering theory is
known in H}, but one can extend the range of exponents for which a scatter-
ing result is known by assuming more spatial decay on the solution. For instance,
one can work in the pseudoconformal space

Y= {up € HX(R?) : zup € L2(RY)},

as one can now utilise the pseudoconformal decay laws for such initial data (such as
those in Exercise 3.47). It turns out that the exponent p still needs to be above a
certain threshold in order for that decay law to be strong enough to give scattering;
more precisely, if we have a defocusing NLS with

2+d+\/d2+12d+4< <14 4
4d P=270

and up € ¥, then there is a global H}-wellposed solution u, and e~"*4/2y(t) con-
verges in ¥ to some asymptotic state uy € X. See [Caz2], [TVZ]. On the other
hand, for NLS equations in which the power p is less than or equal to 1 + %, the
asymptotic effects of the nonlinearity are not negligible, and it is known that the
solution does not in general scatter to a free solution; see Section 3.8.

The pseudoconformal transformation is a useful tool for analyzing the asymp-
totic behaviour of NLS, because it swaps the asymptotic regime ¢ — 400 with
the local regime ¢ — 07 (though at the possible cost of introducing a singular-
ity at ¢t = 0). This transformation should also (heuristically at least) swap the
initial datum with its Fourier transform, or something resembling its Fourier trans-
form; see Exercise 2.28. The Fourier transform swaps H} to the weighted space
HY1:= {ug : (x)up € L2}, and so one might expect to be able to use this transfor-
mation to somehow intertwine the H! theory with an H%! theory. A sample result
is as follows.

PROPOSITION 3.32. Consider the two-dimensional defocusing cubic NLS (thus
d=2,p=3,u=+1, and the equation is L2-critical). Let ug € H2'. Then there
exists a global LZ-wellposed solution to (3.1), and furthermore the L (R x R?)
norm of ug 1s finite.

The L;{w bound is sufficient to yield a scattering result in L2; see Exercise 3.54.
In contrast, for H! data, no scattering result is known (the Morawetz inequalities
do some decay here, but it is not scale-invariant), while for L2 data, not even global
existence is known (unless the mass is small).

PROOF. We shall use an argument from [BC]. By time reversal symmetry and
gluing arguments we may restrict attention to the time interval [0, +00). Since wug
lies in HY!, it also lies in L2. Applying the L2 wellposedness theory (Proposition
3.17) we can find an L2-wellposed solution u € S°([0, T] x R3) on some time interval
[0, 7], with T' > 0 depending on the profile of ug. In particular the L{ ,([0,T] x R?)
norm of u is finite. Next we apply the pseudoconformal law (which is exact in the
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FI1GURE 9. The scheme used to establish a global Lf)m bound from
H?1 initial data. Notice how the original and pseudoconformal
viewpoints together form a “coordinate chart” for the compactified
time interval [0, +00], thus reducing a global problem to two local
ones.

L2-critical case, and can be justified by the usual limiting arguments) to conclude
that

1
Enelu(T), 7) = Eycluo,0) = 5 [ Jouof? do < oc
R?2
since ug € HO!.
We have obtained a solution from ¢ = 0 to ¢t = T. To go all the way to
t = +oo we apply the pseudoconformal transformation (Exercise 2.28) at time
t =

T, obtaining an initial datum v(1/7T) at time 1/T by the formula

1 -
v(1/T,x) := —=u(T, T:c)elTIIF/Q.

i/T
From (3.44) we see that v has finite energy:
1 1
—/ |Vo(1/T, z)* dx + —/ [v(1/T, x)[* dz = Epe[u(T), T] < c.
2 R2 2 R?2

Also, the pseudoconformal transformation conserves mass and hence
/ |v(1/T,z)? dx :/ |u(T, z)|? du :/ luo(2)|? dz < oo.
R? R? R?

We thus see that v(1/7T) has a finite H! norm. We can thus use the global H}-
wellposedness theory (from Exercise 3.35) backwards in time to obtain an H}-
wellposed solution v € S1([0,1/7] x R?) to the equation (3.16), which in this
case is identical to the original NLS: i6;v + $Av = [v|?v. In particular, v €
Lt .([0,1/T] x R?). We now invert the pseudoconformal transformation, which now
defines the original field u on the new slab [1/T,00) x R?. From Exercise 2.38 we
see that the L} ,([1/T,00) x R?) and CYL2([1/T,00) x R?) norms of u are finite.
This is enough to make u an L2-wellposed solution to NLS on the time interval
[1/T, 00); for v classical this is an immediate consequence of Exercise 2.28, and for
general v € S1([0,1/T] x R?) the claim follows by a limiting argument using the
H}-wellposedness theory. Gluing together the two intervals [0,1/7] and [1/T, ),
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we have obtained a global L} ([0, +00) x R?) solution u to (3.1) as desired. We
summarise the above argument in Figure 9. O

REMARK 3.33. One can go through the above argument and extract an explicit
bound on the global Lf)x norm of the solution u, but it depends on the profile of the
initial datum uy and not just on its H%! norm (as this is what determines how small
T is). Indeed, if one could obtain a bound depending only in the H%! norm then
the scaling invariance and a limiting argument would allow one to replace H2'! with
L2, which would lead to the (still open) result that one has global wellposedness
and scattering in L2 for this equation. The above argument can also be generalised,
linking a wellposedness theory in H? to a scattering theory in H%* for any s > 0
and any L2-critical equation; see [BC].

Observe how in the above argument, the pseudoconformal transformation was
used to convert an asymptotic time horizon t = 400 to a finite time horizon ¢ = 0,
thus allowing one to use local theory to obtain asymptotic control of the solu-
tion. There is a somewhat similar trick for wave equations known as conformal
compactification, in which one applies a conformal transformation of Minkowski
spacetime to a pre-compact Lorentzian manifold (the “Penrose diamond”). In
one dimension d = 1, this compactification is especially simple in null coordinates
w:i=t+z,v:=t—x, as it is given simply by (u,v) — (tan~!u,tan=! v), thus map-
ping R*! to the diamond-shaped region {(¢,z) € R : |t + 2|, |t — x| < w/2}. If
the equation is of a suitable type (it typically must obey some sort of “null condi-
tion”, or the nonlinearity must be sufficiently high order), then this transformation
does not introduce any severe singularities at the boundary of the diamond (cf.
(3.16) in the case p < pr:), and one can use local theory on the Penrose diamond
to obtain a transformed solution on the entire diamond (if the datum is sufficiently
small, smooth, and decaying), and then by inverting the conformal compactifica-
tion one obtains a global solution in Minkowski space. Typically the transformed
solution extends to the boundary of the Penrose diamond and beyond, which often
leads to scattering-type behaviour for the original solution. See [Chr].

Several of the above methods can also be used to establish various scattering
results for NLW; the conformal conservation law, Morawetz estimates, the vector
fields method, and the conformal compactification methods are particularly useful.
Because of finite speed of propagation, one can often reduce the case of compactly
supported data. We will not discuss these results here, except in the energy-critical
case which we treat in see Section 5.1, and refer the reader to [Stra], [GV6], [BZS],
[GV5], [Nak3], [Hid].

EXERCISE 3.49. Complete the proof of Proposition 3.28. (Full details can also
be found in [Caz2].)

EXERCISE 3.50. Establish the continuity component of Proposition 3.30. (One
may need to divide the time axis into intervals on which certain spacetime norms are
small, in order that the perturbative argument can apply to give local continuity.
Then concatenate the results to obtain global continuity.)

EXERCISE 3.51. Suppose one replaces the H!-subcritical cubic NLS in Propo-
sition 3.31 with the H!-critical quintic NLS (so d = 3,p = 5, = +1). Show that
one can still prove this Proposition if one fixes ¢ = 10 (this is the unique value of
g which is invariant under the scaling symmetry of the equation).
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EXERCISE 3.52. Suppose one is working with a global H}(R?)-wellposed so-
lution u to either the cubic or quintic three-dimensional NLS (with either sign of
nonlinearity). Suppose it is known that the potential energy ﬁ Jre lu(t, )P da
goes to zero as t — co. Conclude that the solution scatters in H} to an asymptotic

state e®2/2y, . (This is yet another affirmation of Principle 3.24.)

EXERCISE 3.53 (Blowup criterion for Hl-critical NLS). Suppose that u €
CP 1o Hi ([0, Ty) x R?) is a strong H, solution to quintic NLS (so d = 3 and p = 5)
which cannot be continued beyond a finite time T, as a strong solution. Show that

the L{9,([0,7%) x R3) norm of w is infinite. (Hint: argue by contradiction and obtain

an Sl([O,T*) x R?) bound on u. Conclude that for times t close to T', both the
linear and nonlinear evolution of u(t) will be small in L{9 ([, 7%) x R3), and hence
for L% ([t, T\ +¢) x R?) for some & > 0, contradicting the hypothesis that 7, is the
maximal time of existence.)

EXERCISE 3.54. Consider the two-dimensional defocusing cubic NLS (thus d =
2,p=3,u = +1). Show that if a global L2-wellposed solution u is known to have
finite L{ ,(R x R?) norm, then e~"*4/2y(t) converges in L2 to an asymptotic state
uy € L2 as t — +oo0.

3.7. Stability theory

True life is not lived where great external changes take place - where
people move about, clash, fight, and slay one another - it is lived
only where these tiny, tiny, infinitesimally small changes occur.
(Leo Tolstoy, “Why Do People Intoxicate Themselves?”)

The differential equations that one studies in mathematics, such as NLS and
NLW, often arise from physics as simplified models for more complicated systems.
In reality, the actual equations that govern a physical system will not evolve by
these model equations exactly, but will contain some additional terms. For sake
of discussion let us fix the model equation to be the NLS (3.1). Instead of solving
NLS, the true system may be governed by a field 4 which obeys a perturbed NLS

1
(3.52) 10y + §M = plafPra4e;  a(to) = uo + eo

where the forcing term e = e(t, ) and the initial datum error ey = eg(z) are small,
and possibly depending on @ and on some external forces®®. It is thus of interest to
develop a stability theory for equations such as NLS, which would guarantee that the
solution to a perturbed NLS does not deviate too far from the solution to the actual
NLS if e and eg are small some suitable norms. Note that this would generalise
the property of continuous dependence of the data, which is already given by the
wellposedness theory and corresponds to the special case e = 0. It also generalises
the uniqueness theory, which can be viewed as the case e = ¢y = 0. A strong
stability theory lends confidence as to the robustness of the results obtained for the
model equation. Conversely, if a PDE is known to be very unstable then this would

38The field of stochastic partial differential equations studies such equations with the as-
sumption that e is some stochastic field, e.g. Gaussian white noise. These random fluctuations
often serve to regularise the behaviour of the equation and keep it well-behaved even when the
deterministic equation is not known to be wellposed. However, we shall focus on the determin-
istic theory in which e is fixed, which is the case needed for applications such as construction of
solutions via approximate solutions.
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cast doubt on the ability of that PDE to accurately simulate (either numerically or
theoretically) a real-life system, except perhaps in some stochastic sense.

A stability theory is also useful to have in the analysis of PDE. It opens up a
very useful strategy for constructing solutions u to an equation such as NLS, by
first constructing an approzimate solution u, for which i0:u + %Aﬁ is very close
to p||P~14 and @(tg) ~ up. In other words, an approximate solution to NLS is
nothing more than an exact solution to the perturbed NLS (3.52) for some small e
and eg. Stability theory can then let us pass from the approximate solution u to a
nearby exact solution u to the unperturbed NLS. This approach is quite powerful,
because it is much easier to construct approximate solutions than exact solutions,
for instance by asymptotic expansions®®, or by omitting certain terms from an
equation that one believes to be negligible and then solving the reduced equation;
see Section 3.8 below. To give another example, while the superposition of two
solutions to a nonlinear equation will not in general yield another solution to that
equation, such a superposition is often an approzimate solution to the equation if the
two component solutions are sufficiently “separated”, either in space or frequency.
This strategy can be used for instance to construct multisoliton solutions, and is
also the main reason why the “induction on energy” strategy that we shall introduce
in Chapter 5 is so powerful.

Fortunately, any equation with a good wellposedness theory is also likely to
have a good stability theory, by modifying the arguments used to prove wellposed-
ness suitably; indeed the stability theory is in many ways the culmination of the
perturbation theory methods. The main trick (which we have already seen with the
uniqueness and continuity theory) is to look at the difference equation between the
approximate solution 7 and the exact solution?’, and then solve this difference equa-
tion using the same types of techniques and estimates used for the wellposedness
theory. Specifically, if we set @ = u + v, then v solves the difference equation

1
(353) v+ 580 = plut ol (o)~ [u ) + e olte) = o

Thus the initial datum of v is small. As for the nonlinearity, we can use Taylor
expansion to expand

plutoP = (uto) = [ul’ M) +e = O(lul"~ o) +O(julP 2 v*)+. . .+0(jv[") +O(le]).

assuming for simplicity that we are in the algebraic case where p is an odd integer.
In practice, if e and ey are both small, then we expect v to be small also, and
the dominant terms in the nonlinearity will be the terms O(|u|P~!|v|) which are
linear in v. These terms can be dealt with for short times by iterative arguments
based on the Duhamel formula, as well as estimates such as Strichartz estimates; for

391 particular, the theory of nonlinear geometric optics proceeds in this fashion, constructing
solutions to an equation by first creating an ansatz consisting of an asymptotic series with certain
amplitude and phase parameters. One then solves for these amplitudes and phases in order to
make the partial sums of this series an approximate solution to the original equation, and then uses
some stability theory to pass to an exact solution. These methods are very useful in constructing
large classes of interesting solutions to many PDE, though they tend to require the initial data to
be of a special form and are unsuited for the Cauchy problem with generic H} initial data. Due
to limitations of space we will not be able to discuss this important technique in this text.

40T his assumes that the exact solution u exists for at least as long as the approximate solution
u. In practice one can establish this by a continuity argument or by a suitable iteration of the
wellposedness theory.
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FIGURE 10. The difference scheme for an approximate perturba-
tion & = uw + v to an exact solution u. This scheme can also be
reversed to convert an approximate solution @ to an exact solution
u =10 —v (by replacing F'(u +v) — F(u) with F(a) — F(a — v)).

longer times, one can use energy methods*!', combined with tools such as Gronwall’s
inequality, to try to keep control of the solution.

To illustrate the method, we shall consider asymptotics of one-dimensional
defocusing NLS in the “short range” case p > 3. (The “critical range” case p = 3
and the “long range” case p < 3 are significantly more interesting, but also more
difficult technically.) Applying the pseudoconformal transformation as in (3.16),
we obtain the equation
[o]P~ 1o

. 1 1
(354) Zatv + gazzv = W

for 3 < p < 5, which is obtained from the one-dimensional defocusing NLS via the
pseudoconformal transformation (see (3.16)). To construct solutions near ¢t = 0,
we first omit the dispersive term %8111; (using the intuition that this term will
be dominated by the singular nonlinearity WWF’U for very small times t) and
solve the simpler equation

o 1 o
(355) Zatv = Wh}ﬁ'{).

This equation just the ODE (3.17), and can be solved explicitly as

(3.56) o(t,z) = Ee—iﬁ&|w(m)|2t(p—3)/2w(x)

4111 some cases, when the exact solution wu is an explicit form such as a soliton, one can use
more advanced spectral analysis of the linearised equation i0;v + %Av = O(|ulP~!|v|) to obtain
long-time control of the solution; this is an important tool in the theory of stability of solitons and
multisolitons. However, such spectral methods are currently unavailable for more general classes
u of solution.
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for any complex-valued function ¥ (x), and 0 < ¢ < 1 is a small parameter we have
introduced to allow @ to be small (compare with (3.18)). Thus, if € is small, we
expect the original PDE (3.54) to have solutions which are approximately of the
form (3.55). This can be established as follows.

PROPOSITION 3.34. Let ¢ € S;(R) and 0 < ¢ < 1. If € is sufficiently small
depending on 1, then we have a solution v to (3.54) on the slab (0,1) x R obeying
the bounds

[o(t) = 0@y So et
for all 0 <t < 1, where © was defined in (3.56).

PROOF. To construct v, we use the ansatz v = 0 4+ w. Subtracting (3.55) from
(3.54), we see that w needs to solve the equation

, 1 1 . - -

i0yw + 56mw = W(F(U +w) — F(D)) — Oza®
where F(z) := |z|P712. We set initial datum w(0) = 0, and write the equation in
integral form as w = ®(w), where ® is the nonlinear operator

bw) = [ PO+ wlt) = FE() - 2.0 dt.

One can use energy estimates to verify that ® is a contraction on the set {tu :
lullcom (o,1xr) Sw €}, if € is sufficiently small depending on ; we leave this as
an exercise. The claim now follows from the contraction mapping principle. O

Informally, the above proposition gives the approximation
u(t,z) = Ee_iﬁgIw(m)l%(p%)md)(x) + l.o.t.

for 0 < t < 1, where the lower order terms go to zero in a suitable sense as t — 0.
Inverting the pseudoconformal transformation, one obtains

(3.57)  w(t,z)=¢ +2 3 352|1/)(a:/t)|2t<P*3>/2)¢(a:/t) +l.o.t.

ex
A Py
for 1 < t < oo, where the lower order terms go to zero in a suitable sense as t —
+00. A similar argument applied to the linear Schrédinger equation (or using the
fundamental solution) allows one to construct a solution wji, to the linear equation
with the asymptotics
1 il ———
’U,lin(t, (E) = E(it)—d/2 exp(T)w(x/t) + l.o.t.

Because we are in the short-range case p > 3, we can thus conclude that w(t) —wuiin (%)
converges to zero in certain norms (for instance, it converges in H3(R) for any s).
This suggests that the short-range case, one has scattering, at least for certain types
of initial data. In the critical-range case p = 3 or the long-range case p > 3, it turns
out that one can still construct solutions to NLS of the form (3.57); the arguments
are similar though the singular nature of (3.54) now presents some delicate issues
(cf. Exercise 1.19); see [Oza], [GO], [HN], [CCT] for some resolutions of this issue.
These solutions fail to scatter to a solution to the linear Schrédinger equation in any
H? norm; thus long-range and critical-range equations do not exhibit scattering to
the linear solution (this was first observed in [Gla]). However one can still hope to
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establish a modified scattering result, in which the approximating solution is not a
linear solution, but rather a phase-shifted linear solution; see the above references.

Next, we illustrate how Gronwall type inequalities can be used to obtain sta-
bility for longer times than a simple iteration method (such as that given above)
would give. The time interval on which one has non-trivial control is only extended
by a logarithmic factor, but this is sometimes sufficient for applications. It would
be of great interest to derive stability estimates on even longer intervals, perhaps
by adapting the theory of Nekhoroshev stability from ODE, but this seems to be a
difficult task (see [BK]).

PROPOSITION 3.35. Let ¢ € S;(R) and let 0 < € < 1 be a small number. Then
there exists a time T ~y, logl/gé and a strong H} solution uw € CYHL([0,T] x R)
to the small dispersion NLS

(3.58) i0pu + ?(?mu = |ul®u; w(0) =1
such that |lu — @l cop1(jo,r)xr) Sy €, where
a(t,x) := e‘ilw(w)l%z/}(x)
is the explicit solution to the ODE
100 = |a)*a;  w(0) = .
PROOF. From (a rescaled version of) Proposition 3.23 we know that a strong
H} solution u to (3.58) exists globally in time*? Writing u = @ + w, we see that w

solves the equation

2

10w + £20,w = (|(@ + w)|* (@ + w) — |a|?a) — 5 el w(0) =0

which we write in Duhamel form as
2

¢
w) = [ (4w ) (58) S 0atlO) ar
0
We take H! norms of both sides, and use the fact that e (=)= is bounded in
H}, to obtain
t 2
- - ~12 ~ € -
w(®)lay < /O 1@ + w)[* (@ +w)(#') = @@ ) |y + 10t 1yt

A direct computation shows that

Gt ez <o () 100ty S ()

while a computation using the algebra property of H! (see Lemma A.8) gives

(@ +w)* (@ +w)(t") = [al*at) a2 S lw@) e (@) m + o)) @)
Putting this all together, we obtain the bound

t
lw®llm: Sv () +/0 O w2 + )3, dt.

42Tpis global wellposedness is convenient for the argument, but not absolutely necessary;
the energy bounds we obtain in the proof, combined with the local H} wellposedness theory,
are sufficient (via a standard continuity argument) to construct the solution u on the given time
interval [0, T7].
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FIGURE 11. The scheme for estimating the difference v = v — @
in Lemma 3.36; it is thus a rather complex variation of the usual
Strichartz iteration loop for this equation (see Figure 5).

If € is sufficiently small depending on ¢, a continuity argument then gives

lw®)llr Sv ()" exp(C(t)%)

forall 0 < t < 1og1/ 3% (cf. what one would obtain by Gronwall’s inequality by

dropping the nonlinear term [lw(t')||3,), and the claim follows. O

In the next section we will use this proposition to obtain some illposedness
results for NLS.

Our final example of a stability theory result comes from the defocusing energy-
critical three-dimensional NLS (d = 3,p = 5, = +1). We shall show that H}-
wellposed solutions to this equation are stable as long as the L%gc norm stays
bounded. We first state a preliminary result in which we assume that a certain
spacetime norm on the solution is small.

LEMMA 3.36 (Short-time perturbations). [CKSTT11] Let d = 3,p = 5,u =

+1. Let I be a compact interval, and let @ be a field on I x R® which is a near-
solution to NLS in the sense that

(3.59) (i0s + %A)ﬂ — i+ e
for some field e. Suppose that we also have the energy bound
lall o 11 (rxmey < E
for some E > 0. Let tg € I, and let u(to) be close to u(to) in the sense that

(3.60) [u(to) — a(to)ll g2 < E'
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FIGURE 12. The additional time decompositions necessary in or-
der to deduce Lemma 3.37 from Lemma 3.36.

for some E' > 0. Assume also that we have the smallness conditions

(3.61) Hﬂ”L}OWILSO/m(IXRS) < €0
(3.62) le" =22 (uto) — ato)l soyira 5015 (g oy < €
(3.63) lell aypzors <

for some 0 < € < €p, where € is some constant ey = eo(E, E') > 0.
We conclude that there exists a solution u to (3.1) on I x R with the specified
initial datum u(to) at tg obeying the bounds

(3.64) Hu—ﬁ”sl(lng) SE’
(3.65) lull g1 rxmey S B+ E
(3.66) flu— ﬂ”L}f)z(IXRE') S llu— aHL%OWQ}ﬁU/B(IxRa) Se
(3.67) 160% + 8) (= D] g ro gy S &

Note that u(tg) — a(to) is allowed to have large energy, albeit at the cost of
forcing € to be smaller, and worsening the bounds in (3.64). From Strichartz esti-
mates and (3.60) we see that the hypothesis (3.62) is redundant if one is willing to
take E' = O(e).

We leave the proof of Lemma 3.36 to the exercises. One can amplify this lemma
to deal with the more general situation of near-solutions with finite but arbitrarily

large L1 norms.

LEMMA 3.37 (Long-time perturbations). [CKSTT11] Let d = 3,p = 5,p =
+1. Let I be a compact interval, and let @ be a field on I x R3 which obeys the
bounds

(3.68) @l Ly, (1xmay < M
and
(3.69) lall oo g1 (1 xmey < E

for some M, E > 0. Suppose also that @ is a near-solution to NLS in the sense that
it solves (3.59) for some e. Let ty € I, and let u(ty) be close to u(to) in the sense
that

[u(to) — a(to)ll g2 < E'
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for some E' > 0. Assume also that we have the smallness conditions,

(3.70) [ =PI A72 (u(tg) — to))ll proyiza013 (1 msy < €

Hel|L$Wm1‘6/5(l><R3) s¢

for some 0 < & < g1, where €1 is a small constant e1 = e1(E, E',M) > 0. We
conclude there exists a solution u to (3.1) on I x R with the specified initial datum
u(to) at to, and furthermore

lw—ullg:(rxmra) SmpE 1
lull g1 (rxmsy Sm,E,Er 1

lu—allLo (rxmay S 1w —8ll p10y1.5018 1y gy SM.EE €
t,x t T ( )

Again, we leave the details to the exercises. This stability lemma is quite
powerful; it shows that approximate solutions can be adjusted to become exact
solutions even when the energy of both initial data and their difference are large,
as long as the approximate solution is bounded (but not necessarily small) in L%gg
norm, and the error e is very small. It will play an important role in the large
energy theory of this equation in Chapter 5.

In the preceding examples of stability theory, we approximated an exact solu-
tion u by an explicit approximate solution %. In some cases, most notably in the
stability theory of solitons and multisolitons, it is better to approximate u by a par-
tially explicit approximate solution, which involves some free parameters that one
has some freedom to choose in order to make the analysis of the error terms as easy
as possible. For instance, if considering perturbations u of a soliton solution such as
e Q(x), the ansatz u = €7 Q(z) +w turns out to not be very effective (the bounds
on w will grow exponentially in time if one applies perturbation theory naively).
Instead, a better procedure is to perform an ansatz v = " T?WQ(z — z(t)) + w,
where 6 : R — R and z : R — R? are parameters that one can choose. Typically,
one chooses these parameters in order to obtain some moment conditions on w
(for instance, one could try to force w to be orthogonal to functions such as iQ or
V@), which can improve the behaviour of the equation for w (by eliminating some
degeneracies in the linearised operator associated to @). This reflects the fact that
perturbations to a soliton can cause that soliton to move in a significant manner
along the directions given by the symmetries of the equation, namely phase rotation
and spatial translation; these are major channels of propagation for the equation as
motion in these directions does not conflict with any of the conservation laws. (In
the case of the L2-critical equation, motion in the scaling direction is also possible
as it does not contradict conservation of mass.) We will not have space to devote
attention to these tools, which are fundamental in the stability theory of solitons,
but see [Wei2] and many subsequent papers (e.g. [MR], [MR2], [MR3] and the
references therein).

EXERCISE 3.55 (Justification of energy conservation). Let d =3 and 1 < p < 5,
pw=+1,ty =0, and ug € H:(R?). For each £ > 0, show that there exists a global
H!-wellposed solution u(®) solution to the regularised NLS

i0ul® + %Au(s) - (|u(s)|2 + 52)(1071)/2“(5); u®) (0) = ug
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with a conserved energy

1 2
EO O (1 ::/ L@ @12 4 2\p+D/2 gy
O] = [ GIVuOR 4 g (R 4 )
Then show that for any compact time interval I containing 0, u(¢) converges in
S1(I x R?) to a strong H! solution u € S*(I x R?) to (3.1) with the conserved

energy
1 2

Elu(t) = | Z|Vu P+ ——|uf*! da.

[u(t)] /Rd2|Vu | +p+1|u| x

This is one way in which to justify the conservation of energy for fractional-power
NLS.

EXERCISE 3.56 (Weak solutions). Let d =3 and 1 < p < 6, u = +1, top = 0,
and ug € H1(R?). Show that for any A > 0 there exists a global Hl-wellposed
solution ©M to the tempered NLS

1
0™ + §Au(’\) = max([u™M [P~ AuM [H)u®; PN (0) =y

with a conserved mass [g. |uM|? dz and conserved energy

B O] = [ ST Vi) da,
Rd

where Vy\(y) := foy max(w?, \w®) dw. Using weak compactness, show that there
exists a sequence )\, — oo such that the solutions u(*») converges weakly in
L¥HI(R x R?) to a global weak H} solution u € L*H}(R x R?) to the NLS
(3.1). Thus for certain supercritical equations it is still possible to construct global
weak solutions. Existence or uniqueness of global strong H! solutions for these
equations is a major unsolved problem (sharing many difficulties with the notori-
ous global regularity problem for Navier-Stokes). Even energy conservation for the
global weak solution is not known (the above construction, combined with Fatou’s
lemma, only shows that the energy at time ¢ is less than or equal to the energy at
time 0). The analogous construction for global weak solutions for NLW dates back
to [Seg2].

EXERCISE 3.57. Complete the proof of Proposition 3.34. (Hint: use energy
estimates as in the proof of Proposition 3.8).

EXERCISE 3.58. [CKSTT11] Prove Lemma 3.36. (Hint: first establish L;9,

and S* control on 4, then write v := % — u and S := ||(id; + A)UHL2W1’G/5(IXR3)’
FWe

and use the Leibnitz rule, Holder’s inequality, Strichartz, and Sobolev to bound

S in terms of itself and €. Then use a continuity method argument to obtain an

unconditional bound on S. See also Figure 11.)

EXERCISE 3.59. [CKSTT11] Prove Lemma 3.37. (Hint: first establish S*
control on 4. Then divide up I into intervals where the L%OLio/ " norm of Vu is
small, and apply Lemma 3.36 inductively on these intervals. See also Figure 12.)

EXERCISE 3.60. By refining the analysis used in the proof, replace the logl/3 %

in Proposition 3.35 with log %
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EXERCISE 3.61. [CKSTT13] Let u € C?

S.(R x T?) be a classical solution
to the cubic defocusing NLS i0yu+ 3 Au = |u|?u. Using the Fourier ansatz u(t, z) =
Y ke(2nz)? ¢ikat31k*D g (1) deduce the infinite system of ODE

(3.71) Ba(t) = Ne(a(t),a(t),a(t))

loc

where a = (ar)ke(2rz)> and N is the trilinear form

— Q 2 2 2 g2
/\/t(a,b, C)k = E a/klbkgckgez(lkl‘ [k2|"+|ks|”—|kal )t'
k17k27k36(2ﬂ'z)22k1—k2+k3:kl

(Compare with (1.56)). Let K > 1 be a large number, let 0 < ¢ < 1, and let
T < ¢(0)K?log K for some small ¢(o) > 0 depending only on . Suppose we have
a system b(t) = (bi(t))ke(2rz)> of functions with b € C}1;([0,T] x (27Z)?) with
b(0) = a(0) which obeys the approximate equation

Oub(t) = Ni(b(t), (), b(t)) + e(?)
to (3.71), where e(t) and b(t) obey the I! bounds

t gt

bl (o x(2nzy2 S K71 sup / ||/ e(t') dt'llp S K77,
0<t<T Jo 0

Then if ¢(o) is sufficiently small depending on o, we have the estimate ||a —

it (o,11x (2n2)2 S K~179/2_ This lemma allows one to use near-solutions to NLS

in Fourier space to approximate actual solutions to NLS, and is a key ingredient in

establishing a certain weak turbulence result for this equation. See [CKSTT13].

3.8. Illposedness results

All happy families resemble one another; each unhappy family is
unhappy in its own way. (Leo Tolstoy, “Anna Karénina”)

In the past few sections we have developed a wellposedness theory for several
types of NLS and NLW equations, for various regularities H? (or HS x H:™1).
Despite the wide variety of equations and regularities considered, the wellposed-
ness theory for these equations are remarkably similar to each other, especially for
subcritical regularities. In such cases the time of existence depends only on the
norm of the data, and the solution map not only exists and is unique, but enjoys
very strong continuity properties; indeed, the solution map (from H? to CYHS)
is typically uniformly continuous, Lipschitz, infinitely differentiable, and even real
analytic (see for instance Exercise 3.25).

However, there are certain equations and certain regularities for which the
Cauchy problem does not agree with this picture, either locally or globally in time,
in which case we say that that particular Cauchy problem is illposed. Unlike the sit-
uation with wellposedness, the type of illposedness exhibited can vary substantially
on the equation and on the regularity. At one extreme, there are very dramatic
examples of illposedness, such as blowup - various norms going to infinity in finite
time - beyond which no reasonably strong notion of solution can be salvaged. At
the other extreme there are very mild examples of illposedness, where it may still
be that the solution map exists and could even be continuous, but that the solution
map is known to be unstable (e.g. non-uniformly-continuous or non-Lipschitz),
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non-differentiable, or at least non-analytic. Intermediate between these extremes*?
are examples of norm explosion - when data of arbitrarily small norm can lead to
solutions of arbitrarily large norm in arbitrarily small time. This is not quite as
dramatic as blowup, because a solution may still exist for each given initial datum,
but it certainly does prevent any continuous dependence of the solution map on the
initial data.

For each of the types of illposedness discussed above, there are examples of
equations and regularities that exhibit that illposedness. In contrast with the well-
posedness theory, which is largely based around the single technique of Duhamel
iteration, illposedness can be achieved by a surprisingly large number of unrelated
methods. We will not be able to discuss all of them here, but we give a represen-
tative sample. For a recent survey of techniques and results, see [Tzv].

We first discuss methods for generating blowup, by which we mean classical (or
strong) solutions which develop a significant singularity in finite time (e.g. the H?
norm goes to infinity in finite time). One way to construct these solutions is via
construction of explicit (or nearly explicit) blowup solutions. We have already seen
two examples of this - the blowup solution (3.15) for the pseudoconformal focusing
NLS and the ODE-based blowup solution (3.6) for the focusing NLW. The latter
solution has no decay in space and thus does not lie in any H? x H:~' spaces,
however this can be rectified by a finite speed of propagation; see Exercise 3.9.

In some cases, one cannot construct a blowup solution explicitly, but can cre-
ate an explicit approximate solution to the equation which blows up in finite time.
One can then hope to use perturbation theory to convert this to an exact blowup
solution. This argument can be made to work, but is extremely delicate, because
perturbation theory requires a great deal of wellposedness and stability on the
equation, which is in obvious conflict with our need to make both the exact and
approximate solution to blow up in finite time. One often needs to carefully renor-
malise the solution (usually via rescaling), and obtain stability control in one set of
norms while obtaining blowup in another. See for instance [Mer], [BW] for some
instances of this approach.

In the case of the NLS, there is another, much more indirect, way to force
blowup of a solution, namely the virial argument of Glassey [Gla2], based on the
nonlinear counterpart to (2.38). For simplicity let us consider a classical solution
u € Cf5,.S (R x RY) to an algebraic NLS. Consider the quantity

loc

V(t) ::/ |:17|2T00(t,3:) dz:/ |:17|2|u(t,:17)|2 dx.
R4 R4

43There are several other “symptoms” of illposedness which we will not have space to discuss
here, including breakdown of uniqueness (either for weak or strong solutions); failure of mass or
energy conservation; loss of regularity; or examples of approzrimate solutions to the equation which
blowup in finite time. The reader is invited to try to list several such illposedness phenomena and
rank them in approximate order of severity.
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This quantity is clearly non-negative. Applying (2.35) and integration by parts
repeatedly, we obtain the virial identity

8ttV(t) = 2/ Tjj(t,I) dCC

Rd
dip—1
(3.72) =/ 2|Vul|* + MMPH da
R4 p + 1
d(p —
=4F[u] + M/ lu(t, I)|P+1 dz
p +1 Rd
where Fu] is the conserved energy and p rz =1+ % is the pseudoconformal power.
If we are in the L2-critical or L2-supercritical focusing cases p > pr2, p = —1, we

thus conclude the bound

If the energy happens to be negative (which is possible in the focusing case p = —1),
this shows that V is a strictly concave function of ¢. Since V is also non-negative,
we conclude that the solution can only exist classically for a finite amount of time
(in either direction). This argument thus demonstrates blowup in finite time (and
even gives an upper bound on the time of existence in terms of the datum and
the energy). It can be extended to demonstrate blowup for any H} initial data ug
which has negative energy** and obeys the decay condition (z)ug € L2. The decay
condition can be removed, basically by working with spatially truncated versions of
the virial identity; see for instance [Naw]. We remark that while negative energy
is a sufficient condition for blowup, it is hardly a necessary condition; for instance,
the solution (3.15) has zero energy, and the solutions constructed in [BW] have
positive energy. The blowup phenomenon has been analyzed much further for the
L2-critical equation, in the vicinity of soliton solutions; see [MR], [MR2], [MR3].

For the focusing NLW, one can also exploit some positivity properties of the
fundamental solution to establish successively stronger lower bounds on a solution
which eventually leads to blowup. One particularly striking example of this is a
result of John [Joh], who showed that for the three-dimensional focusing NLW with
initial data u(0,x) = eug(z), Ou(0,x) = 0 for positive Schwartz vy and sufficiently
small €, one has blowup in finite time for p < /2 and global existence for p > v/2.
These results have since been generalised extensively; see for instance [GLS], [Hor].

Once one has one solution blowing up, one can use the symmetries of the
equation to generate further solutions blowing up. When the regularity s is low
enough, one can use the symmetries to create classical initial data of arbitrarily
small H? norm which blow up in arbitrarily small time, which is a very strong
demonstration of illposedness in that data class HZ; we give some examples in the
exercises.

All the known examples of blowup from classical data are for focusing equations;
for many defocusing equations (e.g. Hl-subcritical or H!-critical defocusing NLS
or NLW) we have global existence of classical solutions. The question of whether
blowup occurs from classical data for H}l-supercritical defocusing NLS or NLW
equations is a major open problem in the subject (analogous to the Navier-Stokes
global regularity problem) and remains very far from resolution. While blowup

44, put it another way, whenever the nonlinear component of the energy exceeds the linear
component, blowup occurs. Compare this with Principle 3.24.
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is not known for these equations, we can in many cases establish weaker forms
of illposedness, which are not as dramatic as blowup but do indicate that many of
the techniques discussed in earlier sections to establish wellposedness (e.g. iteration
methods) must necessarily fail. One of the mildest types of illposedness of this form
is that of analytic illposedness, in which one demonstrates that the solution map (say
from H? to CYH?), if it exists at all, is not real analytic. In fact one typically shows
the stronger statement of C* illposedness for some k > 1, which asserts that the
solution map, if it exists, is not k-times differentiable. This is basically accomplished
by the method of Taylor expansions (i.e. power series methods). Let us illustrate
this with the three-dimensional cubic defocusing NLS (d = 3,p = 3,p = +1)
with initial datum u(0) = eug for some fixed Schwartz ug, thus we are considering
solutions u(®) to the Cauchy problem

1
(3.73) idu'® + EAU(E) = [u®)2u®;  w(0) = eup.

The global existence theory of this equation (Exercise 3.38) guarantees that the
solutions u(®) exist and are smooth for all time. A refinement of this theory also
shows us that u(®) also depend smoothly on e, uniformly on any compact time
interval. In particular, we can obtain a Taylor expansion

u® (L, x) = ey (t, 2) + 2ua(t, z) + Sus(t, ) + O(e?)

for some smooth functions wuy,us,us (there is no zeroth order term since u® s
clearly zero), where the error is uniformly smooth in ¢,z on any compact time
interval. We can expand both sides of (3.73) using this expansion and compare
coeflicients. One learns that the first coefficient wu; is just the linear solution:

1
10yuq + EAUI =0; u1(0)=wug

or in other words u1(t) = e"*/?uy. The second term uy solves the equation

10sun + %Auz =0; wux(0)=0
and is hence zero. The third term us solves the equation
10su3 + %Aue, = |ui|?u1; u3(0) =0
and is hence given by a Duhamel integral

t t
ug(t) _ —i/ ei(tft’)A/2(|ul|2ul(t/)) dt’ = —i/ ei(tft’)A/2(|eit’A/2uO|2eit’A/2uO) dt’.
0 0

From the Taylor expansion of u(?) we thus have obtained the formula

d3 t - ’ 2 iyl
d_gg,u(a)(t)lazo _ _3!7;/ ez(t—t )A/2(|ezt A/2uO|2ezt A/2UO) dt'.
0

This shows that if the map ug — fot elE—t)A/2 (|t A/2q, 261 A)20,0) i is not a
bounded map from H:(R?) to CYH:([0,T] x R?), then the solution map ug +— u
will not be a C2 . map from H3(R3) to CYHZ([0,T] x R?), even for data arbitrarily

loc
close to zero in H? norm. This lack of boundedness can often be established by

direct computation; in this case, we can achieve this for supercritical regularities
s < S = % (in contrast to the critical case s = s. and subcritical cases s > s, in

which one does have analytic wellposedness); see Exercise 3.65.
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The method above is fairly general. Roughly speaking, it shows that if the
Duhamel iteration scheme used to construct solutions leaves a certain space X after
finitely many iterations, then the solution map can only have a finite amount of
differentiability in that space. This is not too surprising since the iteration scheme
is closely akin to a power series expansion of the solution in terms of the initial
datum.

Another approach for establishing illposedness is by constructing families of ex-
act solutions to the equation which are close together at time zero but far apart at
other times. In some cases one can use explicit solutions such as solitons and plane
wave solutions, possibly after various symmetries of the equation have been applied;
in other cases one needs to construct solutions by the methods of nonlinear geomet-
ric optics, or more generally by constructing an approximate solution first and then
using stability theory to perturb the approximate solution into the exact solution.
A typical result obtained by this method would be that a certain solution operator
cannot be uniformly continuous from H3 to C H? even when the size of the datum
and time of existence are set to be small. We have already seen some examples of
this in Exercise 3.5 and the discussion after (3.20), using explicit solutions. We now
briefly sketch how to achieve a similar effect using the approximate solutions of the
preceding section. For sake of concreteness let us just consider the one-dimensional
defocusing cubic NLS (d = 1,p = 3,4 = +1). Let ¢ be a Schwartz function. From
Proposition 3.35 we have constructed (for small € > 0 and 1 < a < 2) solutions we 4
to the small-dispersion equation i0;w. + éamwg = |v|?w. on the slab [0,1] x R
which has the approximate form

We o(t,x) = aefiaz‘w(z)‘zt#)(ﬁ?) + Oy (e)

for 0 <t < 1, where the error can be controlled in a suitable H; sense. One can
apply the rescaling u. (t, ) := we o(t,€x) to obtain a class of solutions u. to the
original NLS with the approximate form

Ue,a(t, ) = aeiiazw’(”)‘ztw(sx) + Oy (e)

where the error is now controlled in some rescaled H! sense. One can exploit scale
invariance (3.9) and Galilean invariance (3.10) to obtain a wider class of exact
solutions e q,x,» to NLS for A > 0 and v € R of the form

Ue ax v(t,:l?) — )\72/(p71)a8i(z-v+#7a2|¢(5(z—vt)/)\)|2t/>\2)¢(E(I_vt)/)\)+0¢(E)\72/(p71))

where the error has to be interpreted in a suitable norm. If s < 0 is a negative
regularity, then by making v large, and setting A\ ~. |v|~?=1%/2 these solutions
can become bounded in H;. By a suitable variation of the parameters €, a, A, v one
can then show that the solution operator to this equation cannot be uniformly con-
tinuous from HZ to CYHZ, even for small times and small norm, by exploiting the
phase decoherence effect arising from the a?|y(e(x —vt)/N)|?t/\? term; see [CCT2]
for details. Generally speaking, it is not difficult to create (for any equation and
regularity) large data solutions which exhibit these types of instabilities at large
times; the various symmetries are then used to create small data solutions which
are similarly unstable at small times. In order for this to work, one needs the reg-
ularity s to be supercritical with respect to at least one of the symmetries (scaling,
Galilean, or Lorentz). See [Kuk], [Leb], [BGT], [CCT], [CCT2], [CCT3] for
several examples of this technique and further discussion.
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One final type of illposedness is the high-to-low frequency cascade, in which
a solution starts off initially with Fourier transform supported primarily at high
frequencies, but quickly creates a substantial presence at low frequencies. For small
s (e.g. nmegative s), such solutions typically have small H? norm at time zero
but large H norm at later times; this norm explosion is a fairly strong form of
illposedness as it shows that the solution operator, if it exists at all, has a severe
singularity in H? near the zero solution. These cascading solutions can often be
constructed using the stability theory arising from a higher regularity H;l. See
[CCT2], [BT] for examples of this strategy.

EXERCISE 3.62. Let u be a classical solution to an NLW, and let

V(t) = /R (2 Too (1, o) — T

Establish the following analogue of the virial identity for this quantity, namely
1% d—1 P —Dy1/2
(= Ve pyye) / u(t, z)|P*! do
p +1 Rd

where p 12 =1+ ﬁ is the conformal power. (Note the shifting of the dimension

|u|? d.

d by one; compare this with Exercise 3.2.) This identity is not as useful as the NLS
virial identity because the quantity V' does not have a definite sign in general.

EXERCISE 3.63. Consider a focusing NLS with p > pr2 = 1+ %, and let
5 < 8c. Show that there exists classical data of arbitrarily small H? norm such that
the solution to the NLS blows up in arbitrarily small time. (Hint: use the virial
identity to create a classical solution with Schwartz initial data which blows up in
finite time, and then use the scaling symmetry to rescale the blowup time to be
arbitrarily small.) This illustrates the principle that one usually does not have a
wellposedness theory at supercritical regularities for focusing equations.

EXERCISE 3.64. Counsider a focusing NLW and let s < s.. Show that there
exists classical data of arbitrarily small H x H3~! norm such that the solution to
the NLW blows up in arbitrarily small time. (Hint: use Exercise 3.9. In the case
when s, is negative, you may find it convenient to enforce moment conditions on
the initial data to ensure some vanishing of the Fourier coefficients near the origin.)
A similar result holds for s < s; (using the Lorentz invariance instead of the scaling
invariance) but is a little trickier; see [Sog].

EXERCISE 3.65. Let T' > 0 be arbitrary. Use a scaling argument to show that
the map ug — fot eUU—t)A/2 (it A/2q 12018 A/20,0) d’ is not a bounded map from
H: to CYH:([0,T] x R?) when s < 1/2. Conversely, use Strichartz estimates to
show that this map is bounded for s > 1/2. (For sake of this exercise, you may use
the heuristic (A.15) as if it were rigorous. Alternatively, one may use Littlewood-

Paley decomposition.)

EXERCISE 3.66. [Kat4] Consider the rather artificial nonlinear wave equation
Ou = —|ulP for some H}-subcritical power 1 < p < 1+ ﬁ. Let u be a strong
H} x L2 solution to this equation whose initial position is supported in the ball
{]z| < 1} and whose initial velocity is zero (for simplicity). It is possible to establish
the finite speed of propagation property for such solutions, in particular you may
assume that this solution is supported on the ball {|z| < 1 + ¢} for all later times
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t > 0 for which the solution exists. Show that if the integral [g,u(0,z) dz is
sufficiently large and positive depending on d and p, then the solution u can only
exist for a finite amount of time in the forward direction (i.e. u cannot be a
strong solution on [0,400)). If p < 1+ 2, show that one only needs the integral
Jra w(0,2) dx to be strictly positive to achieve the same result (i.e. no largeness
hypothesis is required). Hints: obtain an integral inequality for the quantity m/(t) :=
fRd u(t, z) dx, using Holder’s inequality and finite speed of propagation. First show
that m(t) is convex and monotone increasing, and then obtain even better lower
bounds on this quantity. You may find the comparison principle, Exercise 1.7, to
be useful. For further variations on this theme, see [KTao3].

EXERCISE 3.67. [LSog], [Sog] Consider a focusing NLW, and let s be such

that 0 < s < 57 := % — ﬁ (so s is supercritical with respect to the Lorentz

invariance). Start with the explicit blowup solution (3.6) with ¢y = 0 and apply a
Lorentz transform to it, to create a solution which blows up at the point (0, 0) but is
smooth in the backwards light cone {(¢,) : |x| < —t}. Now work on the time slice
t = —1 and localise the initial data to a neighbourhood of the ball {|z| < 1} using
finite speed of propagation, to create smooth initial data (u(—1),du(—1)) whose
H:(RY) x H: Y(RY) norm is arbitrarily small, but which develops a singularity
at time 0. Rescaling this, we can construct data of arbitrarily small H2(R%) x
H:7'(R?%) norm with a solution that blows up in arbitrarily small time, which
defeats any hope of a reasonable wellposedness theory at this regularity.

3.9. Almost conservation laws

The Law of conservation of energy tells us we can’t get something
for nothing, but we refuse to believe it. (Isaac Asimov)

We have seen how the laws of conservation of mass and energy can be used
to obtain global wellposedness results at the L2 and H! regularities respectively;
generally speaking, they assert that these two norms stay bounded for all time. One
may then ask what happens to the other H; norms; after all, the linear Schrodinger
and wave flows preserve the H? norm and H? x H:~! norms respectively. In
particular, once one has global wellposedness for one norm, say H_}, one can ask
whether the same wellposedness occurs for other regularities also.

Generally speaking, global wellposedness in lower norms implies global well-
posedness in higher norms?*?, due to persistence of regularity; we have already seen
several examples of this phenomenon in this chapter. However, while the lower
Sobolev norms such as H} may remain bounded uniformly in time, the bounds one
obtains on higher norms such as H2? may grow faster than this; see for instance the
exponential bounds in Exercise 3.28. This reflects the fact that the persistence of
regularity arguments do not prohibit a “low-to-high frequency cascade” scenario, in
which the energy starts off concentrated in low frequencies but moves increasingly
to higher frequencies as time progresses; it is easy to envisage a scenario of this
form where the H! norm stays bounded, but higher norms such as H2 go to infin-
ity. Numerical simulations have confirmed this type of weak turbulence behaviour
for the periodic analogues of NLS and NLW, but for the non-periodic defocusing
setting it appears that such phenomena, if they exist at all, do not occur with any

45Assuming of course that the nonlinearity itself is smooth enough to support solutions at
this level of regularity.
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great strength generically. (Indeed, the solition resolution conjecture mentioned
earlier is probably not consistent with weakly turbulent behaviour.) It would be of
interest to obtain more theoretical results regarding this issue.

Somewhat dual to this is the problem of starting with a global wellposedness
result, say at H}, and trying to lower the regularity needed for global existence,
say to H? for some 0 < s < 1. This is reasonable in the H!-subcritical case with
s subcritical, since in such cases one already knows that the local wellposedness
theory can extend below H}. Indeed, the H? local wellposedness theory asserts
in this case that the only way an Hj-solution can cease to exist is if the H; norm
blows up in finite time. Thus the difficulty is to establish some upper bounds on the
growth of the H} norm in time; by limiting arguments one can restrict attention
to the global H! solutions, so long as the final bound on the H? norm growth
depends only on the H; norm of the initial datum rather than on the energy. Here,
the major difficulty is caused by the “high-to-low frequency cascade” scenario, in
which one starts initially with a very large amount of energy at high frequencies
(which may have small H? norm), but a significant fraction of this energy somehow
makes its way to low frequencies, thus causing the H norm to grow substantially.

To summarise, in order to establish good global existence results either for
s above or below the energy regularity H! one needs to control the flow of en-
ergy either from low frequencies to high frequencies or vice versa. In recent years,
two methods have been developed to achieve such a control, namely the Fourier
truncation method of Bourgain, and the subsequent method of almost conserved®
quantities or I-method of Colliander, Keel, Staffilani, Takaoka, and Tao. The two
methods are similar (indeed, the former inspired the latter) but not identical. They
both proceed by selecting a large frequency cutoff N, and declaring frequencies less
than N to be “low” and greater than N to be “high”. If the solution has regularity
H for some s < 1, then the low frequency components will have bounded energy
(but with a bound depending on N), but the high frequency components will have
unbounded or infinite energy. The strategy is then to somehow suppress the un-
bounded energy high frequency component in order that the energy conservation
law can be usefully applied. The Fourier truncation method achieves this by view-
ing the original equation as a weakly coupled system of the high and low frequency
components. Then one attempts to omit the nonlinear effects of the high frequen-
cies, so that one believes the high frequencies to evolve approximately linearly, and
the low frequencies to evolve approximately via the original equation. In particular
one expects the low frequencies to (approximately) conserve their energy (as op-
posed to exporting or importing energy with the high frequencies). On short time
intervals, one can justify this approximation using stability theory; the strategy is
then to iterate this control on short time intervals to control on long-time inter-
vals. Thus turns out to be possible by choosing NV to be large, provided that the
initial regularity H? is sufficiently close to H}, and provided that the nonlinearity
has a certain “smoothing” property (roughly speaking, one wants the effect of the
nonlinearity to be bounded in H} even when the solution is only as regular as H?).

46Wo shall use the term “almost conserved quantity” rather loosely; for us, it shall mean
a quantity whose time derivative is unexpectedly “small” or “low order” in some sense. The
monotone quantities appearing in monotonicity formulae could also be viewed as a type of almost
conserved quantity.
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FIGURE 13. The first step in the Fourier truncation method. For
a short time ¢, one evolves the high frequencies linearly and the
low frequencies nonlinearly (thus preserving the Hamiltonian of
the low frequencies). The error term v arises both from high-low
frequency interactions and high-high frequency interactions; if the
equation has enough smoothing properties, this error will be small
in energy norm and can be safely absorbed into the low frequency
component. One then iterates this scheme for as long as one has
good control on all components.

The Fourier truncation method is surveyed in [Bou9] and will not be detailed
here (but see Figure 13 and Table 2). The I-method proceeds slightly differently;
rather than omit the high frequencies completely, it merely damps them using
a Fourier multiplier I (hence the name “I-method”). This damping operator is
essentially the mildest operator that makes the high frequencies bounded in energy;
the low frequencies remain undamped by this operator. One then tries to control
the energy E[Iu(t)] of the damped solution Iu to the equation, which consists of
the unadulterated low frequencies and the damped high frequencies. This quantity
turns out to enjoy an almost conservation law, in that the quantity E[ITu(t)] does
not vary very quickly in ¢. (Note that if I is the identity then E[Iu(t)] would be
constant; thus this almost conservation nature reflects the “mild” nature of the
operator I.) One can then use this almost conserved quantity to generate long-
time control of the solution in much the same way that a genuine conservation law
can be used to ensure global wellposedness. If all goes well, the time upon which
one ultimately gets a useful control on the solution will be a positive power of N;
letting IV go to infinity will then yield the desired global wellposedness in H;. This
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method can handle slightly more general nonlinearities and regularities than the
Fourier truncation method, because no smoothing effect is required (this is due to a
certain cancellation arising from a “commutator” term in the almost conservation
law, which has no counterpart in the Fourier truncation approach), but provides
slightly less information on the solution.

TABLE 2. An oversimplified comparison between the ways the
Fourier restriction method and I-method treat different frequency
interactions in a nonlinear equation. In both cases the low-low
frequency interactions are considered large, but they do not alter
the Hamiltonian, while the high-high frequency interactions are
treated as error terms. The main difference lies in how the high-
low interactions are treated, with the I-method taking advantage
of commutator cancellations to show that these interactions ap-
proxiately conserve the damped Hamiltonian E(Iu). Also, the
Fourier restriction method takes advantage of smoothing effects
and obtains better (energy-class) control of error terms.

Interaction | Fourier restriction method | I-method

Low-low Conserves F(ug,) Conserves F(Iu)

High-low Small error in H} Approximately conserves E(Iu)
High-high | Small error in H} Small error in IH}

Let us illustrate the method with the one-dimensional quintic defocusing NLS
1
(3.74) i0yu + §8mu = |u|*u,

which one can proceed by a relatively simple “energy method” implementation
of the approach?”. Indeed for this equation one can obtain global H}-wellposed
and classical solutions without any difficulty. (On the other hand, this equation
is L2-critical, and global wellposednes of L2 solutions is unknown.) Now let u
be a classical solution and 0 < s < 1; we are interested in the behaviour of the
H: norm of u(t) as t — oo. We already have conservation of the energy E[u] :=
[ 310:u|* + §|ul® dz and mass M[u] := [ |ul? dz, but we will be reluctant to use
Elu] directly as it will not be controlled purely by the H? norm. To create some
almost conserved quantities at the regularity H;, let us introduce a large frequency
cutoff N > 1 and a spatial Fourier multiplier I defined by

Tu(€) = my (&) = m(%),

where my (§) = m(§/N) and m is a smooth function which equals 1 for |¢] < 1 and
is equal to |£[5~! for || > 2. Thus [ is the Identity operator on low frequencies |£] <
N, and is essentially an Integration operator N1=%|V|*~! on high frequencies |¢| >

47This is similar in spirit to the “energy cancellation” methods for establishing local existence
for various nonlinear equations without performing an iteration scheme, and which can exploit
certain structural cancellations arising from the nonlinearity; see for instance the high-regularity
arguments in Section 4.1, Section 4.4, or Section 6.1. Most applications of the I-method, however,
also require a modified local wellposedness statement which is obtained by standard iterative
means, in order to exploit various local smoothing effects that can only be captured by spacetime
norms.
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N; this explains why this operator is denoted “I”. We now show that the modified
energy E[Iu(t)] = [g 310-Tu(t)|? + $|Tu(t)|® dz obeys an almost conservation law.

PROPOSITION 3.38 (Almost conservation law). Let s > 1/2. Suppose t is a
time such that E[Tu(t)] < 1. Then |0;E[Tu(t)]| <s N~1/2.

The exponent 1/2 here might not be best possible. An improvement of the
exponent here will lead to a better global wellposedness result for a conclusion, as
will be clear from the remainder of this argument.

PrROOF. For a general classical field v, we have the identity
— 1
8tE[’U(t)] = —2Re/ 8{0@8{0 + §8mv — |1)|41)) dx
R

which can be easily verified by integration by parts; note that this reproves the
conservation of energy for (3.74). We now set v := Ju; by applying I to (3.74) we
see that v solves the equation

10w + %BMU = I(Jul*u)
and hence we have
O Ev(t)] = —2Re/ Tou(I(|u|*v) — |Tu|*Tu) dx.
Thus it will suffice to establish the l]jound

|/ Tora(I(|ulu) — [Tul*Tu) dz| < N~V2.
R

Splitting dyu = 30,,u — ilu|*u, we can split this further into

(3.75) |/ Tomu(I(|ul*s) — [Tu*Tu) dz| < N~1/?
R

and

(3.76) |/ T(Ju]*u)(I(Ju|*u) — |Tu*Tu) de| < N7Y2,
R

We shall just prove the top order estimate (3.75) and leave the lower order estimate
(3.76) as an exercise. To avoid technicalities we shall “cheat” somewhat by assuming
heuristics such as the fractional Leibnitz rule (A.14) as if they were rigorous; one
can justify all the cheats performed here by Littlewood-Paley theory and other
tools of Fourier analysis but we shall not do so here. We integrate one of the
partial derivatives by parts, and observe from the hypothesis E[Tu(t)] < 1 that
[[10,ul[z2 < 1. Thus it suffices to show the commutator estimate

1011 (Jul*w) — |[Tul*Iu]| 2 S N7V2/

We split w = up; + wo, where up; := Psn/100u and wg := P<yjigou. We can
then expand |u|*u and |Tu|*Iu into a large number of terms involving five factors
from up; and u;,. There are three types of terms to consider. First consider the
“low-low” terms that only involve u;,:

e [I(|u10|4ul0) - |Iul0|4lul0] ||L§

Because I is the Identity on low frequencies, we see that both I(|u;|*u;,) and
|Tuo|* Tuy, are equal to |ug,|*u;, and so the net contribution of these terms is zero.
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Next, consider any “high-high” term that involves two or more factors of up;. Here
is a typical one (we do not attempt to exploit cancellation here):

(021 (wni*ui, )| 12 -

The operator 9,1 is a pseudodifferential operator of positive order. Applying the
fractional Leibnitz rule, we can distribute this operator and end up considering
terms, of which the following is typical:

10105 Tunil [unil o ||| L2 -

Now from the Gagliardo-Nirenberg inequality and the hypothesis E[Tu(t)] < 1 we
have |[Tu| = < 1, and in particular |u, ||z < 1. Also we have already remarked
that ||0,lupil[z2 < 1, which by an easy Fourier analytic argument (exploiting the
high frequency nature of uy; and the hypothesis s > 1/2) implies that [|upil|ze Ss
N—1/2; see Exercise 3.68. The desired bound then follows from Hélder’s inequality.

Finally, we must consider “high-low” terms involving only one factor of wp;.
Here we must use® the cancellation present in (3.75). A typical term to consider
is

10 [T ([0 *uni) = |uio|* Tunil 2,

where we have used the fact that Tu;, = u;,,. The expression in brackets is the
commutator of I and |u;,|*, applied to up;. Let us write w := |uy|*. The Fourier
transform of 9, (I(wup;) — wlup;) at € can be computed to be

i [ ghm(5) = mle = oV o€ ~ ) dn
R

The integrand vanishes unless |n| < N and |£| 2 N. In such a case, an application
of the mean-value theorem gives the bound f(m(%) —m(&—nN)) = O(nm((§ —
7)/N)). On the other hand, the expression

[ (€ =)/ Nyt = n) d
is essentially the Fourier transform of (|V|w)Iup;. Thus we morally have

O [I (Jtro|*uns) — ttro|* Tups)“ <" (|V|w) Tup;

~

in some Fourier sense. Assuming this to be rigorous, we are reduced to establishing
that
(¥ |w) Tupill 2 S N2,

Now we already know that [[Tus||L < N~!/2. Also by distributing the derivative
|V| using the fractional Leibnitz rule, we can (morally) replace |V|w by an expres-
sion such as O(||V |ugo| X |u,|?). Since we already know that [|uo||ze S [[Tulle <1
and [|[Vl]ug |2 S [[VIul|z2 $ 1, the claim now follows from Holder’s inequality. O

From the above proposition and the continuity method, we conclude that if
E[Iu(0)] = O(1), then in fact E[ITu(t)] = O(1) for all |t| <, N'/2. Thus the
quantity E[Iu(t)] is stable for long periods of time. One can now apply scaling
arguments and some Fourier analysis to conclude

48An alternative would be to try to average in time and exploit bilinear refinements to
Strichartz’ inequality here; this is related to the extra smoothing effect alluded to earlier. However,
the approach given in the text demonstrates that one can use the commutator cancellation in the
I-method as a substitute for such smoothing effects.
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PROPOSITION 3.39. If [[u(0)||lms S 1, then ||u(t)||ms Ss NP7 for all |t] <
N3—20-9),

We leave the derivation of this proposition to the exercises. If s > 3/4, the
exponent of N in the bound on |¢| is positive, and so by letting N — oo we can
conclude a growth bound on the H? norm. In fact we obtain the polynomial bound

()]s S ()19 G=20-9),

This, combined with the local H; wellposedness theory, easily gives global well-
posedness for this equation in HJ for all 3/4 < s < 1. (Wellposedness for s > 1
already follows from energy conservation and persistence of regularity.)

The above strategy is rather flexible and can be adapted to a variety of sub-
critical equations; see for instance [CKSTT], [CKSTT3|, [CKSTT4], [Mat],
[Pec]|, [Pec2], [Pec3], [Car]. It also combines well with scattering theory (see
[CKSTTT7], [CKSTT10]; also see [Bou6] for an application of the Fourier re-
striction method to the scattering problem), to the growth of higher Sobolev norms
(see [CDKS], [Sta], [CKSTT8|, [Boul0]) and to the stability theory of solitons
(see [CKSTTS8], [CKSTT9]). In many cases it is not practical to obtain a point-
wise bound on the time derivative 9;F[Iu(t)] as in Proposition 3.38, but all one
really needs anyway is a bound on the integral fttol O¢E[Iu(t)] dt of this time deriv-
ative. This additional time averaging allows one to use additional spacetime norms
such as Strichartz norms, which can lead to better estimates. In such cases, one
needs an additional ingredient in the argument, namely a “modified local existence
theorem” that asserts that whenever E[Iu(t)] is bounded, then certain spacetime
norms of Ju (such as Strichartz norms) are bounded on a time interval centred at
t. This however can be achieved by a routine modification of the local existence
theory; see Figure 14 for a summary of this scheme. One can also exploit other
conservation laws (e.g. mass conservation) to try to improve the powers of N which
appear in the above argument. However, the most powerful methods for improving
the exponents here has proceeded by modifying either the Hamiltonian E[u] or the
almost conserved quantity E[Iu(t)] with additional correction terms to damp out
some “nonresonant” fluctuations; see Section 4.2. For instance, the quintic NLS
discussed above is in fact known to be globally wellposed in H? for all s > 4/9
using this technique; see [Tzi].

EXERCISE 3.68. Prove that [|upil|Le Ss [0z lunil 2 whenever up; is a Schwartz
function supported on frequencies > N/100. (Hint: use frequency decomposition
and either Bernstein’s inequality (A.6) or Sobolev embedding.)

EXERCISE 3.69. Prove (3.76). (Here one will have to make some use of the
potential energy component of E[Iu], which gives a useful bound on |[7ul|zs. This
can be combined with the bound one already has on ||Iu| e, after decomposing
into high and low frequencies.)

EXERCISE 3.70. Prove Proposition 3.39. (Hint: choose a A > 1 such that the
rescaled solution uy (¢, z) := ﬁu(%, §) obeys E[Iux(0)] < 1 (you may find taking
the Fourier transform to be helpful). Then apply the almost conservation of E[Iu,]
for a long period of time, and then undo the scaling. One can use mass conservation
to control the lower order component of the H? norm.)
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FIGURE 14. The general scheme of the I-method; compare with
Figure 7. Of course, one would usually iterate the method for more
than the two time steps indicated here. Apart from the rescaling
and the presence of the I operator, one new feature is that the
(modified) local theory plays a quantitative role rather than merely
a qualitative one, as this theory is necessary to control the error
terms in the almost conservation law. However, it is important
that the local theory does not impact the main term in that law,
otherwise the H! norm of Tu(t) could increase exponentially with
each time step.
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log || R, u |||_|1
-~ upper bound on 1

S upper bound on |

FIGURE 15. A log-log plot of the energy of the Littlewood-Paley
pieces Ppu(0) of u(0) as a function of M, when u(0) is assumed
to only lie in H for some s < 1. Note the infinite energy at
high frequencies. The operator I smooths out the energy at high
frequencies, giving ITu(0) a large but finite energy. A rescaling is
then needed to make the energy bounded by 1.
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FIGURE 16. A log-log plot of the energy of the Littlewood-Paley
pieces Ppu(t) of u(t) as a function of M, for some late time ¢ (a
power of N). The almost conservation law keeps the energy of ITu
bounded but large (because of the scaling), but we do not exclude
the possibility that energy has been moved around in the frequency
ranges M < N. Thus at each time ¢, the high frequencies still
evolve in a somewhat linear (non-interacting) fashion, but the low
and medium frequencies may share their energy with each other.
As time progresses, more and more frequencies could mix their
energy, potentially leading to a polynomial growth in the H; norm.






CHAPTER A

Appendix: tools from harmonic analysis

Every action of our lives touches on some chord that will vibrate
in eternity. (Sean O’Casey)

The nonlinear evolution equations studied here can be profitably analyzed by
viewing these equations as describing the oscillation and interaction between low,
medium, and high frequencies. To make this type of analysis rigorous, we of course
need the notation and tools of harmonic analysis, and in particular the Fourier
transform and Littlewood-Paley theory; the purpose of this appendix is to review
that material. This is only an outline of the material; for a more thorough intro-
duction to these tools from a PDE-oriented perspective, see [Tay], [Tay2].

It is convenient to work in the Schwartz class S,(R?). One particularly im-
portant operation on Schwartz functions (and hence on their dual) is the (spatial)
Fourier transform f — f, defined for f € S, (R%) by the formula'

J©) = [ fa)e dn.
Rd

As is well known, the Fourier transform f +— f is a Frechet space automorphism
on the Schwartz space S, (R?), with the inversion formula

I TP
@) = gz | FOe< e

Thus every Schwartz function can be formally viewed as a superposition of plane
waves €€, We also have the fundamental Plancherel identity

| @F o= g [ 1@ ae
as well as the closely related Parseval identity?
(A1) [ 1@ o= [ FQTE de
Rd (2m)? Jra

The Fourier transform enjoys many symmetry properties, several of which we list
in Table 1. Of particular importance to PDE is the relation lies in the fact that it

It is customary to omit the factor of 2w from the Fourier exponent in PDE, in order to
simplify the Fourier multipliers associated to any given PDE; of course, this factor then surfaces
in the Fourier inverion formula. In any event, the factors of 2w make only a negligible impact on
the theory, so much so that some authors choose to abuse notation slightly, and simply omit all
factors of 27 in their arguments.

2Some authors reverse the attribution of these two identities, which are easily shown to
be equivalent. Strictly speaking, Parseval’s original identity was for Fourier series, whereas
Plancherel’s theorem concerned Fourier integrals.

329
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diagonalises any constant coefficient operator P(V):

P(V)(€) = P(i&) f(€).

Thus differential operators amplify high frequencies and attenuate low frequencies;
integration operators of course do the reverse. Note that if P(V) is skew-adjoint,
then P(i€) is automatically skew-adjoint; this can be shown directly, and also fol-
lows from (A.1). Indeed in this case we have P(V) = ih(V /i) for some real-valued
polynomial & : R¢ — R.

TABLE 1. Some operations on functions f(z), and their Fourier
transform. Here zg,& € R, f,g S (Rd) )\ € R\{O}, P:R?—

C is a polynomial, and f * g(z) := [z. f( —y) dy.
f(z) f(&)
fla = @) | e % f(€)
et f(x) | f(€— &)
f(@) f(=¢
Fl/x) | A8
Frgl@) | F(©3()
F@)oa) | whad =910
P(V)f | P(i§)

The Fourier transform can be extended to Lebesgue spaces such as L2(RY)
using Plancherel’s theorem (where it essentially becomes an isometry), and also to
the space of tempered distributions S, (R%)*.

An important concept for us shall be that of a Fourier multiplier. If we are
given a locally integrable function m : R? — C of at most polynomial growth, we
can define the associated multiplier m(V /i) : S,(R?) — S,(R%)* via the Fourier
transform by the formula

m(V/i)f(€) = m(€)f(€)
or equivalently

; _L m ¢ e?ﬂim-
(V1@ = g [ m(@f (€ e

This notation is consistent with that of constant-coefficient differential operators
h(V/i). We also have (formally at least) the multiplier calculus

m(V/i)" =m(V/i);
mi1(V/i) + me(V/i) = (m1 + me)(V/i);
my(V/i)ma(V /i) = (mims)(V /i).
In particular, Fourier multipliers all (formally) commute with each other. The
function m(&) is known as the symbol of the operator m(V /7). Important examples

of Fourier multipliers include the constant coefficient differential operators h(V /i),
the propagators e**"(V/9) discussed in Section 2.1, and the fractional differentiation
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and integration operators |[V|* and (V) defined® for all & € R, with symbols |¢]*
and (£)® respectively. This in turn leads to the Sobolev spaces W5P(R?) and the
homogeneous Sobolev spaces W2P(R%), defined for s € R and 1 < p < oo as the
closure of the Schwartz functions under their respective norms

”f”W;”’(Rd) = H<V>SfHL£(Rd)
and
1 e e ey = NIV F L re)-

Thus these spaces generalise the Lebesgue spaces, which correspond to the cases
s = 0. In the special case p = 2, we write H? and H? for W2 and W22 respectively.
From Plancherel’s theorem we observe that

1 57
£l 2 (mey = WH@ Flzzme)

and similarly

1 s
1 s (may = WHH Flrzma)-

Using Calderén-Zygmund theory (see e.g. [Stei]), one can show the identities

1 llwz e gy ~spa [ Fllwe=1omay + 1V Fllwe-1rmas
HfHW;P(Rd) ~sp.d ”fong’l’p(Rd)

for any 1 < p < oo and s € R. Iterating the above inequalities, we obtain that
these Sobolev norms are equivalent (up to constants) to their classical counterparts,
thus

k
HfHWm’C’P(Rd) ~k,p,d Z HV]fHLQ(Rd)

j=0
and
1l bt 195 Fll 2 -

We will not define Sobolev spaces at p = 1 or p = oo to avoid the technicalities
associated with endpoint Calderén-Zygmund theory.

Another important class of Fourier multipliers are the Littlewood-Paley multi-
pliers. Let us fix a real-valued radially symmetric bump function ¢(£) adapted to
the ball {¢ € R? : [¢] < 2} which equals 1 on the ball {¢ € R? : |¢] < 1}; the
exact choice of bump function turns out in practice to not be important?. Define
a dyadic number to be any number N € 2% of the form N = 2/ where j € Z is
an integer; any sum over the dummy variable N or M is understood to be over

3For o < —d, the operator |V|?® is only defined for Schwartz functions which obey enough
moment conditions that their Fourier transform vanishes to high order at the origin. As we shall
never use integration operators of such low order, we shall ignore this technicality.

“In the classical Littlewood-Paley theory (see e.g. [Stei]), one uses the harmonic extension or
heat extension, which would correspond to the (non-compactly-supported) choices ¢(§) := e lél
or (&) = e l€l? respectively. However in the modern theory it has turned out to be more
convenient to use compactly supported bump functions (but see Section 6.4).
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dyadic numbers unless otherwise specified. For each dyadic number N, we define
the Fourier multipliers

Pon 1(€) == 0(¢/N) f(€)
PonJ(€) == (1 — p(¢/N)f(€)
Prf(€) = (p(€/N) — p(26/N)) f (€).

We similarly define Pcy and P>y. Thus Py, P<y, P~ are smoothed out projec-
tions to the regions || ~ N, [€] < 2N, |£] > N respectively. Note in particular the
telescoping identities

Panf= > Puf; Psnf= Y, Puf; f= ZPMf

M<N M>N

for all Schwartz f, where M ranges over dyadic numbers. We also define

PM<»§N = PSN_PSM: Z PN’
M<N'<N

whenever M < N are dyadic numbers. Similarly define Py/<.<n, etc.

Littlewood-Paley projections are extremely handy in the rigorous study of PDE,
because they separate (in a quantitative manner) the rough (high-frequency, oscil-
lating, low regularity) components of a solution from the smooth (low-frequency,
slowly varying, high regularity) components, thus clarifying the nature of various
components of the equation, such as derivatives and various nonlinear interactions
of the solution with itself. The following heuristics are quite useful (see Figure 1).

PRINCIPLE A.1 (Uncertainty principle). Let N be a dyadic number, and let f
be a function on R?.

e (Low frequencies) If f has Fourier transform supported on frequencies of
magnitude |§| S N (e.g. if f = P<ng for some g), then f should be ap-
prozimately constant on spatial balls of radius ¢/N for small ¢, and V* f
should be “dominated” by N*f for any s > 0. (Thus localisation at fre-
quency scales N forces a spatial uncertainty of 1/N; this is a manifestation
of the Heisenberg uncertainty principle |6z - 6¢| = 1.)

e (High frequencz'es) If f has Fourier transform supported on frequencies
of magnitude |&| 2 N (e.g. if f = P>ng for some g), then f should
have approzimate mean zero® on balls of radius C/N for large C, and
V=2 f should be “dominated” by N—°f for any s > 0. (Thus exclusion of
frequencies at scales N and below forces spatial oscillation at scale 1/N.)

o (Medium frequencies) If f has Fourier transform supported on frequencies
of magnitude €] ~ N (e.g. if f = Png for some g), then both of the above
heuristics should apply, and V?° f should be “comparable” to N*®f for both
positive and negative s.

We now present some concrete estimates that make the above intuition rigorous.
One easily verifies that P< is a convolution operator, in fact

1

Pef(@) = gz [ )@+ ) dn

5In fact, we expect higher moments to vanish as well, so that f should be approximately
orthogonal to any bounded degree polynomials on these balls.
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1/N

<N

FIGURE 1. The uncertainty principle. The low-frequency function
Py f has frequencies less than N and is thus essentially constant
at spatial scales < 1/N. The high-frequency function Psyh has
frequencies greater than N and thus oscillates (with mean essen-
tially zero) at spatial scales > 1/N. The medium-frequency func-
tion Pyg behaves in both fashions simultaneously.

Since ¢ is rapidly decreasing and has unit mass, one thus can think of P<x as an
averaging operator that “blurs” f by a spatial scale of O(1/N), and localises f in
frequency to the ball of radius O(N), which is consistent with Principle A.1. From
this identity one can easily verify (using Young’s inequality, and the commutativity
of all Fourier multipliers) that the above Littlewood-Paley operators are bounded
(uniformly in N or M) on every Lebesgue space LP(R?) with 1 < p < oo, as well
as every Sobolev space WP(R4), WsP(R%) for s € R and 1 < p < co. Further-
more, they obey the following easily verified (see Exercise A.1) and extremely useful
Bernstein inequalities for R? with s > 0 and 1 < p<q< oo

(A.2) IP>Nfllee ey Sposa N NIVIEPsN fllnemay
(A.3) I P<nIVI* fll 2 (ray Spos.d NP1 P<n fll Lz ma)
(A-4) HPN|V|iSf||L§(Rd) ~p,s,d NiS”PNfHLQ(Rd)
d_d
(A.5) [ P<n fllare) Spaga NP~ 2| P<n fllLema)
d_d
(A.6) IPN fllLeray Spag.d N# 7 a|| PN fllLe@ma)-

Thus when the frequency is localised, one can upgrade low Lebesgue integrability to
high Lebesgue integrability, at the cost of some powers of N; when the frequency
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N is very low, this cost is in fact a gain, and it becomes quite desirable to use
Bernstein’s inequality whenever the opportunity arises. These estimates can be
verified by computation of the distributional kernel of Py and P<y, and their
derivatives, followed by Young’s inequality. A deeper estimate, requiring some
Calderén-Zygmund theory, is the Littlewood-Paley inequality

(A7) £l zey ~pa 1O 1PN P2 oy
N

see for instance [Stei2]. In a similar spirit, from Plancherel’s theorem we have the
estimate

(A.8) 11l irs ety ~s.a (Z N2S||PNf||%g(Rd))l/2
N
and
(A.9) £z rey ~sia | P<ifllLzmey + (O N> PaflI72ra)) "/
N>1

As a sample application of these estimates, let us present
LEMMA A.2 (Hardy’s inequality). If 0 < s < d/2 then
= Fll 2 ey St 1711 7e -

PROOF. The case s = 0 is trivial, so suppose 0 < s < d/2. Using (A.8) it
suffices to show that

f(@)]? s
/m e 40 Sea D NPz e
N

We subdivide the left-hand side into dyadic shells and estimate

S it 2R [ @ a

|z|<R

where R ranges over dyadic numbers. Usmg Littlewood-Paley decomposition and
the triangle inequality, we have

(el a3 PP ant
lz|<R lz|<R
On the one hand we have the trivial estimate
([ IPaf@P o) < Pz
[z|<R
while on the other hand by Bernstein (A.6) and Holder we have
(/I < |Px f(2)[? dz)/? Sa RY2||Py £l e (ray Sa (NR)Y2|| Py fl 12 (o).

Combining all these estimates together, we reduce to establishing that

ZR 2 ( me (NR d/z)HPNme Rd) Ss.d ZNQSHPNJCHH(Rd)
N

Writmg cn = N°||Py f| 12 (r4), this becomes

| Z min((NR)™*, (NR)d/z_S)CN|\l§(2Z) Ss.d llenliz 2z
N
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where 2% is the space of dyadic numbers. But since 0 < s < d/2, the kernel
min(M %, M d/ 2=9) is absolutely convergent over dyadic numbers. The claim now
follows from Young’s inequality (or Minkowski’s inequality, or Schur’s test). O

In a similar spirit we have

PRrOPOSITION A.3 (Gagliardo-Nirenberg inequality). Let 1 < p < ¢ < oo and
5 >0 be such that

L_1 0
¢ p d
for some 0 < 0 < 1. Then for any u € W2P(R?) we have

—0
||u||Lg(Rd) Sdyp.g,s ”u”ng(Rd)HUHIH/‘{/;P(Rd)'

In the special case g = oo, we conclude in particular (by the usual approximation
by Schwartz function argument) that w is in fact continuous (so it lies in CO(R?)).

PROOF. We may of course assume that v is non-zero. The inequality is invari-
ant under homogeneity u(z) — Au(z) and scaling u(x) — u(xz/\) for any A > 0.
Using these invariances we may normalise ||u| 2 ®a) = [[ullyperga) = 1-

The next step is the Littlewood-Paley decomposition u =}~ \ Pyu, where N
ranges over dyadic numbers. From the triangle inequality followed by Bernstein’s
inequality we have

lull Lamay < Z [PnullLsra)
N
d_d
Sdpea Z N#v~a ”PNUHLQ(RUZ)
N

= ZNGSHPN“HLz(Rd)
N

On the other hand, from (A.4) and the boundedness of Py have
| Pnullpe ey Sap lullcpmay =15 1Pyullpemey Sdps N VIPullpgay = N7°

Inserting this into the previous estimate we obtain

JullLsme) Saps Y, N min(1, N7*) <o 1
N

and the claim follows (note that 8 is determined by d, p, ¢, s). O

Closely related to the above two inequalities is the Hardy-Littlewood-Sobolev
theorem of fractional integration, which asserts that

1
(A.10) |1 f = W”L%(Rd) Spad 1f1lzRa)
whenever 1 < p < ¢ < o0 and 0 < « < d obey the scaling condition % = % + djTo‘.
This implies the homogeneous Sobolev embedding
(A.11) 1 s mey Soant |1l g
whenever 1 < p < ¢ < oo and s > 0 obey the scaling condition % = % + 5, which in

turn implies the inhomogeneous Sobolev embedding
(A-12) HfHLi(Rd) Sp-,q-,S,d HfHWj*P(Rd)



336 A. APPENDIX: TOOLS FROM HARMONIC ANALYSIS

whenever 1 < p < ¢ < co and s > 0 is such that % < % + 5. We leave the proofs

as exercises. Note that the non-endpoint case 1—17 < % + 5 of (A.12) already follows
from Proposition A.3, and we also have an extension to the ¢ = co case, namely

| fllcomay = 1 fllLseray Sps.a I fllwermey

whenever 1 < p < co and s > 0 is such that 1—17 < 5. In particular we have

(A.13) I fllcomay = [ fllLemay Ss,a 1 f [l smay

when s > n/2.

The Sobolev embedding theorem (A.11) is sharp in the following sense: if f
is a rescaled bump function, say f = N%y(Nz) for some ¢ € S,(R?) and some
N > 0 and o € R, then one can verify that ||| are) ~y.q.a N—4aN and
I llyirzr (ray ~v.5p.d N*N~4PNe and so from the scaling condition % = % + 2
we see that both sides of (A.11) are comparable. A useful fact is that these bump
functions are in some sense the only way in which both sides of Sobolev embedding
estimate can be close to comparable. Indeed, we have

PROPOSITION A.4 (Inverse Sobolev theorem). Let 1 < p < g < oo, s > 0, and
0<n<l.

. If}—lj = %4—% and f is such that || f|yysrmay S 1 and [[f|lL2may 2 0,

then there exists a dyadic number N and a position xy € R? such that
|Pn f(20)| ~p.q.dn N7, and furthermore

4

(/ |Pn f(2)]" dff)l/r ~p,q,d,n N *
|z—z0|<C/N

for all 1 <r < oo and some large constant C = C(p,q,d,n) > 0.

o If% < %—i—% and f is such that || f|lwsrmay S 1 and || fllLamay 2 1, then
there exists a dyadic number N ~p 4540 1 and a position zo € R? such
that | Py f(z0)| ~p,q,s,d,n 1, and furthermore

(/l |<C [P f ()] dw)l/r ~pqs,dn 1
z—wo|<

for all 1 <r < oo and some large constant C = C(p, q,s,d,n) > 0.

More informally, in order for (A.11) to be close to sharp, f must contain a
large normalised bump function at some position zp and some frequency N (and
wavelength 1/N); in order for (A.12) to be sharp, we have a similar conclusion
but with the additional information that the frequency N is comparable to 1. To
put it another way, in order to come within a constant to saturating the Sobolev
embedding theorem, the function must concentrate a significant portion of its W3
“energy” in a ball. (See also Lemma B.4, which essentially asserts that if one comes
within an epsilon of the best constant in a Sobolev embedding type theorem, then
one must concentrate nearly all of one’s energy in a ball.) The implicit constants
here can be made more explicit, for instance the dependence on 7 is polynomial,
but we will not need such quantitative bounds here. See [BG] for an application
of these types of theorems to nonlinear wave equations.
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PROOF. We will just prove the (easier) second half of the theorem here, and
leave the first to Exercise A.7. We have

NS fllzrey S D IPY FllLawe)-
N

Now from (A.6), (A.4), and the hypothesis || f[|ys»®ae) S 1 we have

d4_d d4_d . —
”PNf”LZ(Rd) S;D,q,d-,s N»—a ”PNf”LQ(Rd) <p,q.,d,s N7~ min(1, N"%).

~.

The hypotheses on p, ¢, s ensure that > N+~ min(1, N7°) is geometrically de-
creasing as N — 0 or N — oo and is thus convergent. We conclude that there exists
N ~p,q,s,d,n 1 such that ||PNf||Lg(Rd) Z;D,q,s,d,n 1. Since ||PNf||L§(Rd) S;D,q,s,d,n 1,

we conclude from Hélder’s inequality that || Py f||zocr4) Zp.g,s,dn 1. Thus there

exists zg € R? such that |Py f(z0)| Zpasdn L. Writing Py f = Pyjac.canPn f,
we can express Py f(xzg) as the inner product of Py f with a rapidly decreasing ap-
proximation to the identity centred at xo. Since we also have || Px f| 1z (ra) Sdp.s 1,
an easy application of Holder’s inequality then gives

/| PRI 2
z—xo|<

for some large C = C(p, q, s,d,n). On the other hand, from Bernstein’s inequality
we have || Py f|| poo(r4) Sdps 1. The claim then follows from Holder’s inequality
again. (I

We have seen how Littlewood-Paley technology is useful for understanding lin-
ear operations such as fractional integration. It is also invaluable in understanding
nonlinear operations, such as multiplication (f, g) — fg or composition u — F(u)
for various explicit functions F'. Both of these operations arise constantly in non-
linear PDE, and there are two very useful heuristics that can be used to understand
them:

PRINCIPLE A.5 (Fractional Leibnitz rule). Let f,g be functions on R?, and
let D® be some sort of differential or pseudodifferential operator of positive order
a > 0.

o (High-low interactions) If f has significantly higher frequency than g (e.g.
if f = PNF and g = PonysG for some F,G), or is “rougher” than g (e.g.
f =Vu and g = u for some u) then fg will have comparable frequency
to f, and we expect D*(fg) ~ (D*f)g. In a similar spirit we expect
Py(fg) =~ (Pnf)g.

o (Low-high interactions) If g has significantly higher frequency or is rougher
than f, then we expect fg to have comparable frequency to g. We also
expect D*(fg) = f(D%g), and Px(fg) = f(Png).

e (High-high interactions) If f and g have comparable frequency (e.g. f =
PyF and g = PyG for some F,G) then fg should have frequency com-
parable or lower than f, and we expect D*(fg) 5 (D*f)g =~ f(D%g).

o (Full Leibnitz rule) With no frequency assumptions on f and g, we expect

(A.14) D(fg) = f(D%g) + (D f)g.

PRINCIPLE A.6 (Fractional chain rule). Let u be a function on R?, and let
F:R — R be a “reasonably smooth” function (e.g. F(u) = |u|P~1u). Then we
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have the fractional chain rule

(A.15) D*(F(u)) ~ F'(u)D%u

for any differential operator D of positive order a > 0, as well as the Littlewood-
Paley variants

and

(A16) PN(F(U)) ~ F/(P<NU)PNU.

If F is complex instead of real, we have to replace F'(u)D*u by F,(u)D*u+ FzDu,
and similarly for (A.16).

Observe that when D® is a differential operator of order k, then the heuristics
(A.14), (A.15) are accurate to top order in k (i.e. ignoring any terms which only
differentiate f,g,u k — 1 or fewer times). Indeed, the above two principles are
instances of a more general principle:

PRINCIPLE A.7 (Top order terms dominate). When distributing derivatives, the
dominant terms are usually® the terms in which all the derivatives fall on a single
factor; if the factors have unequal degrees of smoothness, the dominant term will
be the one in which all the derivatives fall on the roughest (or highest frequency)
factor.

A complete and rigorous treatment of these heuristics (sometimes called parad-
ifferential calculus) is beyond the scope of this text, and we refer the reader to
[Tay2]. We will however give some representative instances of these heuristics in
action.

LEMMA A.8 (Product lemma). If s > 0, then we have the estimate

(A.17) 1f9llmsm) Ss.a | Fllazmeallglle @ey + 1@ 9]l a2 @e)

for all f,g € H3(RY) N LX(RY). In particular, if s > d/2, we see from the Sobolev
embedding (A.13) that we have the algebra property

(A.18) 190l s (rey Ssa 11 1z (mey 191 222 (m)-

Observe that (A.17) heuristically follows from (A.14), since that latter heuristic
suggests that
(V)*(f9) = (V)* g + F((V)*g)
and the claim then (non-rigorously) follows by taking L2 norms of both sides and
then using the triangle and Holder inequalities.

PROOF. The basic strategy with these multilinear estimates is to decompose
using the Littlewood-Paley decomposition, eliminate any terms that are obviously
zero (because of impossible frequency interactions), estimate each remaining com-
ponent using the Bernstein and Holder inequalities, and then sum. Omne should
always try to apply Bernstein on the lowest frequency possible, as this gives the
most efficient estimates. In some cases one needs to apply Cauchy-Schwarz to
conclude the summation.

6In some cases, there is a special cancellation which allows one to treat the dominant terms
directly. In such cases one often then has to look at the next term in the “Taylor expansion” in
which all but one derivative falls on one term, and the remaining derivative falls on another. This
phenomenon underlies a number of commutator estimates, such as those discussed in Section 3.9.
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The claim is trivial for s = 0, so assume s > 0. From (A.9) we have
(A-19) Hfg”H;(Rd) Ss,d ||P§1(f9)||L§(Rd) + (Z NQSHPN(fg)||%§(Rd))1/2-
N>1

We shall just bound the latter term, and leave the former term to the exercises.
We split”

IPn(f9)llz2rey S IPN(Panss P2y + Y IPN((Parf)gll 2 e
M>N/8

For the first term, observe from Fourier analysis that we may freely replace g by
Pn/g<.<sng, and so by Holder’s inequality

PN (P<n/s ) 2 mey Sa |(P<nysf)Prnys<.<sngllz ma)
Sallflzema Y IPugllzz me
M~N

and so the total contribution of this term to (A.19) is Os a(||f[| L) 9]l s (R4))-
For the second term, we simply bound

S AP PuHDawey Sa Y. 1(Puf)gllrawa

M>N/8 M>N/8

Salgllezeme D 1Pl ra)
M2>N

Sas l9llzemey Y M7 Pasfll e mery
M>N

and so by Cauchy-Schwarz

NS 1P (P H)D 2 Sas 1912y S N M| Pas I e
M>N/8 M>N

Summing this in N (and using the hypothesis s > 0) we see that the total contri-
bution of this term is Os a([| f|| gz (r#)l|9]| Lo () ), and we are done. O

LEMMA A.9 (Schauder estimate). Let V' be a finite-dimensional normed vector
space, let f € HS(R? — V)N LX(RY — V) for some s > 0. Let k be the first
integer greater than s, and let F € CF_(V — V) be such that F(0) = 0. Then
F(f) € H:(RY — V) as well, with a bound of the form

Iz (rey SENFI ooy Ves.a 1 g ety

Note that when F' is real analytic, one can deduce this from Lemma A.8; but
the argument below is rather robust and extends to rougher types of function F.
For instance, when s < 1 the argument in fact only requires Lipschitz control on F.
The reader should heuristically verify that Lemma A.9 follows immediately from
Principle A.6 in much the same way that Lemma A.8 follows from Principle A.5.

"This is a basic example of a paraproduct decomposition, in which a genuine product such
as fg is split as the sum of paraproducts (combinations of products of Littlewood-Paley pieces).
Paraproducts are usually easier to estimate analytically, especially if derivatives are involved,
because they specifically identify which of the factors is high frequency and which is low frequency,
allowing one to use the flexible estimates (A.2)-(A.6) in a manner adapted to the paraproduct at
hand, instead of relying only on “one-size-fits-all” tools such as Sobolev embedding.
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The reader may also wish to verify the s = 1 case of this estimate by hand (with
F Lipschitz) in order to get some sense of why this type of estimate should hold.

PROOF. The strategy to prove nonlinear is related, though not quite the same
as, that used to prove multilinear estimates. Basically, one should try to split
F(f) using Taylor expansion into a rough error, which one estimates crudely, and
a smooth main term, which one estimates using information about its derivatives.
Again, one uses tools such as Hélder, Bernstein, and Cauchy-Schwarz to estimate
the terms that appear.

Let us write A := || f||po(®ay. Since F' is Ck_ and F(0) = 0, we see that
|F(f)] Sr.a,v |f|l. This already establishes the claim when s = 0. Applying (A.9),
it thus suffices to show that

(D NZUPNF(N)IF2ma)? Sravis |1fllmsma)-
N>1

for all s > 0.

We first throw away a “rough” portion of F/(f) in PyF(f). Fix N, s, and split
f=Pcnf+ P>nf. Note that f and Pcy f are both bounded by Oy 4(A). Now F
is OF ., hence Lipschitz on the ball of radius Oy 4(A), hence we have

loc?
F(f) = F(P<nf) + Orav,a(|P>n f1),
and thus

PN E ()2 mey SFAv.a I1PNF(P<n f)ll2®a) + 1PN fll22 (ma)-
To control the latter term, observe from the triangle inequality and Cauchy-Schwarz
that

NQS”PZNJCH%EE(Rd) Ss Z (N/)SNS”PN’JCHQLg(Rd)
N'>N

and summing this in N and using (A.9) we see that this term is acceptable. Thus
it remains to show that

(D N*|IPNF(Pen 72 ma))"? Sravis 1l mme)-
N>1

We will exploit the smoothness of P-y f and F by using (A.4) to estimate
(A.20) IPNF(Pen llr2may Sak N IVEF(Pen f)ll 22 Ra)-

Applying the chain rule repeatedly, and noting that all derivatives of F' are bounded
on the ball of radius Oy 4(A), we obtain the pointwise estimate

IVEP(Pon )| SEav.dn Lo V¥ (P ). .. IV (P )]

where r ranges over 1,...,k and kq,...,k, range over non-negative integers that
add up to k. We split this up further using Littlewood-Paley decomposition as

\VEF(Pen f)| SFavdr — sup S V@IV (P, )]
kit tke=k N TN <N

where we adopt the convention that PN := Py when N > 1 and Pl = P<;. By
giving up a factor of r! = Ok (1) we may take N3 < Na... < N,.. where k1,...,k,
range over all positive integers that add up to k. Now from (A.4) we have

V5 (Pr, ) oo Rty Sak NY

Flr=may Saka N*
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forte=1,...,r — 1, and similarly

Hva (pNTf)HL;O(Rd) Sd,k NTkTHPNTfHLg(Rd)
and hence we have
IV*F(Pen )ll2mey) SPAV.dE
sup Z lel"'NfTHPNrf”Lg(Rd)-
kit Ake=k N < <N.<N

Performing the sum in Ny, then Na, then finally N,_1, and rewriting N’ := N,., we
obtain

IV¥P(Pen fllzmey Sravae Y, (N)FIPy fllL2me).
1<N/<N
By Cauchy-Schwarz and (A.20) we conclude
1PN F(P<n )72ma) Sravar >, (NN Py fl172ma)-
1<N/<N

Summing this in N and using (A.9) we see that this term is acceptable (note that
k depends only on s, so the dependence on k is not a concern). (|

In computations involving momentum, one often encounters expressions such
as [ga uVv dz or [g, u(m)(ﬁ - V). The following lemma is useful for controlling
these quantities.

LEMMA A.10 (Momentum estimate). Let u,v € S(R?) for some d > 3, and let
K be a kernel on R® which is smooth away from the origin, and obeys the estimates

[K(2)| Sal; [VE(2)] Salal™
away from the origin. (For instance, we could have K(x) = 1, or K(x) = IQ;_JI for

some j=1,...,d.) Then we have

[ w0 @) Vo(e) dol ol ol e
for all 0 < s <1 (in particular, the estimate is true for s =1/2).

Intuitively speaking, the justification for this lemma is that we can integrate
by parts “1/2 times” to move half of the derivative from v onto u, ignoring the
mild symbol K in between. By standard limiting arguments we may now extend
the bilinear form (u,v) — [g. u(z)K(z)Vo(z) dx to all u,v € Him(Rd), dropping
the hypothesis that u, v is Schwartz.

PROOF. A standard regularisation argument (replacing K by K * ¢. for some
approximation to the identity ¢, and then letting ¢ — 0, taking advantage of the
hypothesis that u,v are Schwartz) allows us to assume that K is smooth on all of
R? (including the origin), provided of course that our estimates are uniform in K.
By real or complex interpolation it will suffice to establish the estimates

| o w(@)K(z)Vo(r) dr| S llullpzma vl g ra)
and

| [ @K @)Ve(@) el Sa llull g lvlez @
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The first estimate is immediate from Holder’s inequality (estimating u, Vv in L2 and
K in Lg°). For the second estimate, we integrate by parts (again taking advantage
of the hypothesis that u, v are Schwartz) and use the triangle inequality to estimate

| u(z)K (z)Vo(z) dz| < |/ (Vu)(z)K (z)v(z) dm|+|/ u(z)(VK)(z)v(z) dx|.
Rd Rd Rd

The first term can be estimated by Holder’s inequality as before. The second term
can be estimated by Cauchy-Schwarz (placing v in L2) followed by Lemma A.2
(with s =1 and d > 3), and we are done. O

EXERCISE A.1. Prove (A.2)-(A.6). (Hint: for each of the estimates, use Fourier
analysis to write the expression in the left-hand norm as the convolution of the
expression in the right-hand norm with some explicit kernel, and then use Young’s
inequality.) Discuss why these estimates are consistent with Principle A.1.

EXERCISE A.2. Deduce (A.13) directly from the Fourier inversion formula and
Cauchy-Schwarz, and show that it fails at the endpoint s = d/2.

EXERCISE A.3 (Lorentz characterisation of L2). [KTao] Let f € L2(R?) for
some 1 < p < oo. Show that one can decompose f = Y, ¢k Xk, where k ranges
over the integers, yj is a function bounded in magnitude by 1 and supported on a
set of measure at most 2¥, and ¢, are a sequence of non-negative reals such that
(3, 28| ek P)HP ~, I fllLp(may- (Hint: let f*(x) := inf{a : [{|f| > a}| < x} be the
(left-continuous) nondecreasing rearrangement of | f|. Set ¢, to equal f*(2¥~1), and
ckXk be the portion of f where f*(2F) < |f(z)| < f*(28°1).)

EXERCISE A.4 (Dual Lorentz characterisation of L2). Let f € L1 (R%) for some
1 < ¢ < co. Show that

190z cry ~o sup(35 2400 [ fia) dafryil
By L Ej,

where for each k, Ej, ranges over all bounded open sets of measure 2%, (Hint: use the

k
nondecreasing rearrangement again. Show that supg, |fEk f(x) dx| ~,4 foz F*() dt,
and then decompose the interval [0, 2*] dyadically.)

EXERCISE A.5. Use Exercises A.3, A.4 to prove (A.10). (Hint: first establish
the estimate
[ e | Suw min(@kk 922k ok)
B,/ ||t~
for all k, k', where Ej and xj are as in the preceding exercises.) Deduce (A.11)
and (A.12) as a consequence.

EXERCISE A.6 (Lorentz refinement of Sobolev embedding). For 1 < p,q < oo,
define the Lorentz norm

Iz sy = sup(35 2467 [ fa) dalr) /o
Ey Ey

k

where E} is as in Exercise A.4. By repeating the proof of Exercise A.5, refine the
estimate (A.11) to

HfHLi(Rd) Sp-,q-,d ”f”Li"’(Rd) Sp-,q-,d HfHW;P(Rd)

under the same hypotheses on p, q, d, s.
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EXERCISE A.7. Prove the first half of Proposition A.4. (Hint: first use Exercise
A.6 to show that | [, f(2) do| ~pq.dz 2k(1=1/9) for some k € Z and some set Ej
of measure 2¥. Then perform a Littlewood-Paley decomposition of f to conclude
that ||PNf||Lgo(Rd) >P»¢1-,d777 Qk(l_l/Q) for some N ~p.q,dn 2_k/d.)

~.

EXERCISE A.8 (Relationship between Sobolev and isoperimetric inequalities).
Let d > 1. Prove the endpoint Sobolev estimate

d/(d—1
(il

HIf(x)] = A} <a T
for any A > 0 and f € S,(R?). (Hint: estimate |f| pointwise by |V f] x Iﬂvl% Let
E = {|f(z)] > A} and obtain a pointwise bound for 1g * ‘w‘% Alternatively,
use induction on d to establish the slightly stronger estimate ||f||pa/@-1)®a) Sa
IVl ®ay.) If @ € R is a bounded domain with smooth boundary, deduce the
isoperimetric inequality
109 Za Q| ¢D/¢

where |09 is the surface area of ). (Hint: set f to be a smoothed out version
of 1g.) It is well known that among all domains with fixed volume, the ball has

the smallest surface area; comment on how this is compatible with the heuristics
supporting Proposition A.4.

EXERCISE A.9. Give a heuristic justification of Principle A.5 using the Fourier
transform and the elementary estimate (€ + )% <, (€)% + (n)® for all £, € R%.

EXERCISE A.10. Complete the proof of Lemma A.S8.

EXERCISE A.11. Generalise Lemma A.8 by replacing H with WP for some
1 < p < 00, and replacing the condition s > d/2 with s > d/p. (Hint: you will need
the Littlewood-Paley estimate (A.7).)

EXERCISE A.12. Let the assumptions and notation be as in Lemma A.9, but
suppose that F' lies in Cllf;gl rather than just in C{fm. Establish the Lipschitz
estimate

IF(F) = F@ll @) SENI g gy 190 o0 ray Vs 1 = 9llmz e

(Hint: One could repeat the proof of Lemma A.9, but a slicker proof is to use the
fundamental theorem of calculus to write F/(f)— F(g) = fol DF((1-0)f+0g)-(f—
g) df, where DF is the differential of F'; and then apply Lemma A.9 and Lemma
A8)

EXERCISE A.13 (Fractional chain rule). [CWein| Let p > 1, and let F €
CL .(C — C) be a function of p'* power type, in the sense that F(z) = O(|z|P) and
VE(z) = Op(]2|P71). Let 0 < s <1 and 1 < ¢<r < oo obey the scaling condition

g = % — (p—1)s. Show that

IPN () lwzamay Sapars 11Esr e

for all f € W2 (R?) and N > 0. (Note that this is rather easy to justify heuris-
tically from Principle A.6.) If furthermore p > 2, and F is C2_ with V2F(z) =
O,(]z|P~2), establish the stronger estimate

1P (F(f)=F(g)lwsawa) Sdpars (IFfllwer@a+glwsr@a) " I ~glwewme)
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for all f,g € W2"(R%) and N > 0. It is possible to remove the Py projections,
and obtain the stronger estimates

”F(f)HWj*q(Rd) Sd,p,q,r,s HfH;sV;’T(Rd)

and

IF(f) = F(@llwsamay Sapars IFllwer@ey + gl r@a)" 7 = gllwsrwa)

but this is quite challenging (requiring tools such as the Littlewood-Paley square
function inequality and the Fefferman-Stein vector-valued maximal inequality) and
beyond the scope of this text.

EXERCISE A.14. If I is an interval in R and 2 < ¢,r < oo, establish the
inequality

HUHL;}L;(IXRd) Sd,q,r (Z |‘PNUH%§L;(I><RL1))1/2
N

(Hint: use (A.7). To interchange the norm and square function, first consider the
extreme cases ¢q,r = 2,00 and then interpolate, for instance using the complex
method.)

EXERCISE A.15. If I is a bounded interval in R, and u,du € LZ(I), use
elementary arguments to obtain a localised Gagliardo-Nirenberg inequality

1/2 1/2
lallzgery S lull g 10l

and the Poincaré inequality
1
a7 [ ullizn S ol

EXERCISE A.16 (Hardy inequality revisited). Let u € S,(R?). Use integration
by parts to establish the identity

o (d+a)? o
[ el Vu@ de = S5 aplua) de
R4 Rd

+/ |z|¥z - Vu(z) — d—i——au(:v)|2 dx
Rd 2

for any a > —d, and use this to establish another proof of Hardy’s inequality in the
case s = 1.

EXERCISE A.17. Give another proof of Lemma A.10 which does not use inter-
polation, but relies instead on Littlewood-Paley decomposition. (Hint: you may
need to decompose K smoothly into dyadic pieces also and use arguments similar
to those used to prove Lemma A.2.) The techniques of interpolation and of dyadic
decomposition are closely related; the latter tends to be messier but more flexible.

EXERCISE A.18 (Localisation of H? functions). Let u € H3(R?) for some s > 0,
and let ¢ € S, (RY). Show that for any R > 1 we have

xr
Hu(x)'@[](ﬁ)HH;(Rd) Ss.dy [l s (may-

This very useful fact allows one to smoothly localise functions in H} to large balls,
uniformly in the size of the ball. (Hint: prove this for s a positive integer by
induction first, and then use interpolation. You may find the Hardy or Sobolev
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inequalities to be useful. An alternate approach is to perform a Fourier decompo-
sition of ¥ and work entirely in frequency space.) Similarly, if u € H.(R?) and
d > 3, establish the bound

X
HU(CCW(E)HH;(M) Svad vl g1 may-

EXERCISE A.19 (Radial Sobolev inequality). Let d > 3, and let u be a Schwartz
function on R?. Establish the inequality

d_
2=~ ulll Lo (ray Sa llull g1 (o)
for all z € R, as well as the variant
[zl lulll e (ray Sa.s [lull a2 e

for all $ —1 < s < 451 (Hint: if |[2| = R, truncate u smoothly to the region
|z| ~ R using Exercise A.18, use polar coordinates, and use the Gagliardo-Nirenberg
inequality.)

EXERCISE A.20. If f is spherically symmetric, show that one can take zg =
Os.p,q,d,n(1/N) in Proposition A.4; thus Sobolev embedding is only sharp near the
origin (using the natural length scale associated to the frequency). (Hint: if zq is
too far away from the origin, use the symmetry to find a large number of disjoint
balls, each of which absorb a significant portion of energy.)

EXERCISE A.21 (Littlewood-Paley characterisation of Holder regularity). Let
0<a<landl<p<oo. If f €S, (RY), we define the Hilder norm | f|| sz ra)
by the formula

£ = fllpeme

I fllaz mey = I fllLeme) + A
heR*:0<|h|<1 | |

where f(z) = f(z + h) is the translate of f by h. Show that

| fllaz ey ~p.ovd Il 2y + sup NP fll 2 (may-

(Hint: to control the latter by the former, express Py f as an average of functions
of the form f* — f. To control the former by the latter, obtain two bounds for
the L2 norm of Py f* — Py f, using the triangle inequality in the high frequency
case N 2 |h|~! and the fundamental theorem of calculus in the low frequency case
N < |h|71.) The latter expression is essentially an example of a Besov norm, which
often functions as a substitute for the Sobolev norm which is a little more tech-
nically convenient in several PDE applications, particularly those in which one is
concerned about controlling interactions between high and low frequencies. Con-
clude in particular that

[fllwg-=rmay Spade [fllazme Spod I llwerme

for any € > 0; thus Holder norms are “within an epsilon” of their Sobolev counter-
parts.

EXERCISE A.22 (Morrey-Sobolev inequality). If 0 < a < 1 and d < p < %,
show that

Hf”/\&’o(Rd) ,Sp.,oz,d ||f||th’p(R,d)
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for all f € S,(R?), where A2 was defined in the previous exercise. This reflects a
general principle, that if there is some “surplus” regularity in the Sobolev embed-
ding theorem that causes one to go past LZ°, this additional regularity will then
manifest itself as Holder continuity, and one can again recover endpoint estimates.

EXERCISE A.23 (Hodge decomposition). Let ¢ : H3(RY — R?) be a vector
field. Show that one has a unique decomposition ¢ = ¢°f +¢4f into a curl-free vector
field ¢°f € H3(RY — R%) and a divergence-free vector field ¢4 € H3(R? — R),
thus curlp® = V A ¢f = 0 and divgdf = V- ¢4 = 0 in the sense of distributions.
Verify the identities ¢°f = A™1V(V - ¢) and ¢¥f = A=1V=(V A ¢). If s = 0, show
that ¢! and ¢4f are orthogonal. (You may either use the Fourier transform, or
take divergences and curls of the decomposition ¢ = ¢f + ¢ to solve for ¢! and

o)
EXERCISE A.24 (Div-curl lemma). Let ¢,v : L2(R? — R%) be vector fields
such that divg = 0 and curlyy = 0. Show that fquS -1 = 0, and also that

oY € Hy 4/ 2(Rd); this is a simple example of a div-curl lemma, that exploits
a certain “high-high” frequency cancellation between divergence-free and curl-free
vector fields, and forms a key component of the theory of compensated compactness;
see for instance [CLMS]. (Note that Holder’s inequality would place ¢ - in L,
which is not enough for Sobolev embedding to place into Hy 423 To prove the
lemma, use Hodge theory to write ¢ and 1 as the curl and gradient of a H L 2-form

and scalar field respectively, then use Littlewood-Paley decomposition.)

EXERCISE A.25 (Sobolev trace lemma). Let f € S,(R?) for d > 2, and view
R~ = R?! x {0} as a subset of R? in the usual manner. Show that

1 sty Sae 1] 72 e
and
1 arzceasy Sae 1] gearo e

for all s > 0. (This can be done from the Fourier transform; it is also worthwhile to
try to prove this from Littlewood-Paley theory, following the heuristics in Principle
A.1.) Show that these estimates fail when s = 0, and also that the loss of 1/2 a
derivative cannot be reduced. One can of course generalise this lemma to other
subsets of R? of various codimension, and other Sobolev spaces, but we shall not
do so here.

EXERCISE A.26 (Agmon division lemma). Let f € S;(R) be such that f(0) = 0.
Show that || f(z)/x| gs-1(r) Ss [Ifllazmw) for all s > 1/2. (Hint: write f(z)/z =

fol f'(tx) dt, then take Fourier transforms.)
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