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Chapter 1

Introduction

We will consider certain families of sequences and analyse their distribution
modulo 1. To do this we will give certain criteria for the uniform distribution
of sequences and use these criteria to discuss the distributions of sequences.



1.1 Introduction

In this report we look at sequences of numbers and determine whether their
fractional parts are uniformly distributed in the interval [0, 1). The fractional
part of a number « (denoted by {a}) is given by a — |a]. (Note: we will
sometimes work modulo an interval [0, H). In this case, we will let {z}y
denote the remainder when x is divided by H.)

To begin we define what it means for a sequence of numbers to be uni-
formly distributed modulo H, where H € R. An infinite sequence of numbers
(cv;) is said to be uniformly distributed modulo H if and only if the corre-
sponding sequence of ({e;}x) is uniformly distributed in the interval [0, H).
Thus a sequence («;) is uniformly distributed modulo 1 if its fractional parts
are uniformly distributed in the unit interval.

Let us now define what it means to be uniformly distributed in an interval.
To do this we first define a function ¢ as follows:

Given an infinite sequence of real numbers, (a;) define ¢y (1) to be the
number of ¢’s with a; € I and m < i < n.

The sequence («;), A < o; < B is uniformly distributed in the interval

[A, B) if and only if for every 0 <a <b <1,

. oun(ab)  b—a
R (1.1)

What (1.1) is saying is that as N gets very large, the proportion of «;’s
lying in a given interval must approach the proportional length of the interval.
This is consistent with our intuitive understanding of uniform distribution.

Throughout the course of this report we will often write u.d. mod 1 to
mean uniformly distributed modulo 1.

We will consider in very limited detail the distribution of pairs of se-
quences in R?. If x = (x1,23) then we write the fractional part of x as
{x}= ({1}, {z2}). Let (x,) be a sequence of vectors in R?. We say that
(x,,) is uniformly distributed modulo (Hy, Hy) in R? if

{xn} 2
. [1N]([ab) (b; —a]
TN H H, (1:2)

J=1

for all intervals [a,b)= [a1,b;) X [ag, by) € I°.
Specific families of sequences we will consider include Y ¢,n®, Y ¢;n? log” n
and n® sinn®.
A large number of the results for non trigonometric sequences are already
known and have been included in this report for completeness. As a general



rule, it is fairly easy to analyse the behaviour of sequences with a small
derivative. Sequences with very small derivatives (e.g. logn) tend not to be
u.d. as they are too close to the constant function. The fractional parts of
these sequences are not changing quickly enough to be spread out uniformly
over the unit interval.

Sequences with slightly larger derivatives (e.g. n®, o < 1) are also fairly
easy to analyse. This is because it is quite easy to change the sum which
results from Weyl’s Criterion (section 2.1) into an integral and then evaluate
this integral.

Sequences with a larger (e.g. n® «a > 1) which can’t be dealt with
by evaluating the resulting integral can often be dealt with using Van Der
Corput’s Difference Theorem (section 2.1). This theorem essentially lets us
replace a sequence with its derivative and analyse its distribution this way.
In many cases it will be possible to evaluate the integral associated with
one of the higher order derivatives of a sequence and thus form a conclusion
about the distribution of that sequence.

Generally speaking sequences with very large derivatives are difficult to
analyse, as the fractional part of the terms in the sequences are varying
rapidly. In this report we will discuss the distribution of sequences of the form
(n®sinn?). These trigonometric functions at times have an extremely fast
derivative and so can be difficult to analyse. There has previously been little
analysis of the distributions of trigonometric sequences. In [7] we find some
analysis of the distributions of families of sequences of the form f(n)sinnzx
however this analysis is restricted to probabilistic arguments and only works
for almost every value of . The methods used in [?] cannot be used to show
the uniform distribution of such a sequence for any particular value of x. An
analysis of sequences of the form P(n)f(na) where P is a polynomial with
integer powers, f is a periodic function and « is a constant can be found
in [2]. The analysis encompasses functions of the form P(n)sinn however
the machinery used is extremely complex. As far as we know these are the
only discussions of such families of sequences. In this report an attempt is
made to give a general understanding of the behaviour of some trigonometric
sequences using less complicated machinery.

We will make a complete analysis of the distribution of sequences of the
form (n®sinn”) for 8 < 1 and o € R. The results are contained in Theorems
4.1.2,4.2.1, 4.3.1 and 4.4.9.

The restriction § < 1 slows down the derivative of the sequence as n
increases and thus makes it easier to analyse the distribution.

A partial analysis is made of the distribution of n®sinn which includes
the case when a < % and is found in Theorem 4.5.1. In this case we actually
discuss the distribution of n®sin 2ran where a is a real number less than 1.



We write a = § + 0 using a theorem due to Dirichlet, replace n by mq + r
and treat n®sin27an as a function of m instead. We then show that the
extra factor of ¢o obtained in the derivative of the sine term will be small in
size and so makes the sequence easier to analyse as it now has a (relatively)
small derivative.

As an appendix we make a partial analysis of the sequence n sinn using
the methods found in [2]. Lack of time has meant that a full analysis of this
sequence could not be made.

As far as we know, no analysis has been made for sequences with g > 1.
This case is very difficult to deal with, as the sine term is oscillating more
rapidly as n increases and so the derivative of the sequence gets very large.

Limited analysis has been made of sequences of the form (a”). Under-
standing the distribution of this family of sequences would be equivalent
to answering the question about whether the digits of 7 are uniformly dis-
tributed. As the derivative of o™ is extremely large this is a particularly hard
problem and will not be addressed in this report.

1.2 Notation

Throughout the report K will be used to represent a constant. The value of
K may vary from line to line.

For a function f and a set of intervals A = U™, [a;, b;] the notation [f(x)]a
will be used to represent f evaluated over the intervals in A. i.e.

m m

/A =@ = SO = SO0 — flan)

i=1 i=1
When writing QS‘[);,?W}(I ) we will often make the following abbreviations.

1. If it is obvious which sequence we are referring to, we will drop the
superscript from ¢.

2. If m=1 we will often not include it in the subscript of ¢. For example
8 (1) = 63 (1)

3. If I is composed of a single interval we will often not include the brackets
around the interval. For example, ¢x([a, b)) will be written as ¢y (a,b).



Chapter 2

Some Basic Theorems and
Useful Tools

This chapter will be devoted to outlining some of the theorems and tools
which will be used throughout the report. As a general rule it is both diffi-
cult and tedious to evaluate the function ¢3 (a,b) for a sequence (x,). For
this reason we look for other methods which can be used to determine the
distribution of sequences. Many of the proofs in this chapter are standard
proofs which have been taken from Chapters 2 and 3 of [6].



2.1 Theorems

2.1.1 Weyl’s Criterion

Weyl’s theorems provide necessary and sufficient conditions for sequences of
numbers to be uniformly distributed either in the unit interval or modulo 1
based on their exponential sums.

Theorem 2.1.1 If (a,) is a sequence with0 < «, < 1 forn = 1, 2,
then a necessary and sufficient condition for (o) to be uniformly distributed
in the unit interval is that

nggONZfan /f (2.1)

for every function f which is Riemann integrable in 0 < x < 1.

Theorem 2.1.2 (Weyl’s Criterion) If (§,) is a sequence not contained
in the unit interval Weyl’s Theorem becomes: (f3,) is uniformly distributed
modulo 1 iff

N

: 1 2mwihfBn __ -
lim NZe =0forh=1,2,... (2.2)

N—o0
n=1

Proof of Theorem 2.1.1

Throughout this proof we will let («,) be a sequence satisfying the hypothesis
of Theorem 2.1.1. To prove the sufficiency of (2.1) we assume that (2.1) holds
and let f(x) = X[aup be the characteristic function of [a,b). That is

(z) = 1 ifa<z<d
Xla)\ ¥ 0 otherwise

Then:

. ¢N(CL,
dm =N _Nhiﬁoﬁzx[“b )

1 (2.3)
- / X[a,b) (an)
0
=b—a (using 2.1)

Thus (ay,) is uniformly distributed in the unit interval.



To prove the necessity of (2.1) we assume that (a,,) is uniformly dis-
tributed in the unit interval. (1.1) implies that (2.1) holds for any charac-
teristic function f. Since (2.1) is a linear equation, it will also hold for any
step function f in [0,1).

For a Riemann integrable function f we can always find two step func-
tions, f; and fo with f; < f < fy and fol (fo(z) — fi(z)) dz < €. Since
f1 satisfies (2.1), we have:

lim iifl(an) _ /Olfl(x)dx > /Olf(:c)d:c y

N—oo N
n=

Hence for large enough N,

1< 1
- . do —
N 321 fi(a )>/0 f(x)dx — 2¢

and since f > f; then:

%Zf(an) > /0 f(x)dx — 2¢ (2.4)

Similarly, using f, and taking N large enough we get:

%Zf(ozn) < /0 f(x)dz + 2¢ (2.5)

Combining (2.4) and (2.5) shows that for N large enough every Riemann
integrable function f satisfies

1 — !
¥ = [

which shows the necessity of 2.1. ]

Proof of Theorem 2.1.2

For a sequence ([3,) not necessarily in the unit interval let «, denote the
fractional part of f,. The necessity of (2.2) will follow directly from (2.1).
Assume that (f,,) is uniformly distributed modulo 1 and thus (a,) is uni-
formly distributed in the unit interval and so obeys (2.1). Hence, letting
f(z) = €*™ in (2.1)where h is an integer, h # 0 we have:

| N N
lim — E e2mhbn — lim — E e?mihon
N—oo N N—oo N

1
— / 627rzhxdx
0

=0

< 2e (2.6)




Thus (2.2) is a necessary condition for a sequence (f3,) to be u.d. mod 1.
To prove the sufficiency of (2.2) will show that if (2.2) holds for every
integer h # 0 then (2.1) is satisfied and so the fractional parts of the £,,’s
are uniformly distributed in the unit interval. This means that the ,’s are
uniformly distributed modulo 1.
Firstly we observe that f(x) = 1 satisfies (2.1) since

1 & !
dm oyt == | s
Assuming (2.2) we get
| X A N
]}EI;O ~ ; p2mihfn _ ]\}1_120 N (nz:; cos 2mhay, + 1 ; sin 27rhozn> (27)

=0

Equating real and imaginary parts in (2.7) we see that fi,(z) = cos 2whx and
fon(z) = sin27mhz, both satisfy (2.1). Once again using the fact that (2.1)
is a linear equation we can deduce that (2.1) holds for any trigonometric
polynomial of the form

ag + (a1 cos 2z + by sin 27z) + - - - + ((ap, cos 2rma + by, sin 2rma) + - - -

The Weierstrass approximation theorem tells us that any continuous function
f of period 1 can be approximated by a trigonometric polynomial of the
form above. So, given € > 0 there exists a trigonometric polynomial f.
with |f — f] <e Weset fi = fo — eand fo = f. + e Thus
i < f < fyand fol(fg(llf) — fi(z))dr < 2e. Through a similar line
of argument to that used to show the necessity of (2.1) we can show that f
satisfies (2.1) and hence (2.2) is a sufficient condition for a sequence (f3,) to

be uniformly distributed modulo 1. [ ]

2.1.2 Fé¢jer’s Theorem

Theorem 2.1.3 Let f(x) be a function defined for x > 1 that is differen-
tiable for x > xo. If f'(x) — 0 monotonically as x — oo and if lim, . x| f'(z)| = oo
then (f(n)) is uniformly distributed modulo 1.

Theorem 2.1.3 actually follows as a corollary from the following theorem:



Theorem 2.1.4 If f(n) is a sequence of real numbers such that A f(n) = f(n+1) — f(n)
is monotone as n increases and in addition

lim Af(n)=0 and lim n|Af(n)| =00

n—oo n—oo

then (f(n)) is uniformly distributed modulo 1.

For a proof of this theorem see [6] page 13.

Proof of Theorem 2.1.3

The mean value theorem implies that if f satisfies the criteria of Theorem
2.1.3 then Af(n) satisfies the conditions of Theorem 2.1.4 for sufficiently
large n. The finitely many exceptional terms do not influence the uniform
distribution modulo 1 of the sequence. [ ]

2.1.3 Van der Corput’s Difference Theorem

Van der Coput’s Difference Theorem discusses the distribution of a sequence
based on the distribution of “differences” between terms of the sequence. It
essentially allows us to replace a sequence by its derivative and thus will be a
very useful tool in discussing the distribution of a sequences which have one
of their higher order derivatives being uniformly distributed.

Theorem 2.1.5 Let (x,) be a sequence of real numbers. If for every positive
integer h the sequence (Tpip — x,) i u.d. mod 1 then (x,) is uniformly
distributed modulo 1.

To prove the difference theorem we first need the following inequality.

Lemma 2.1.6 Let uy---uy be complex numbers and let H be an integer
with 1 < H < N. Then

N 2 N H-1 N—h
H*|Y up| SHN+H-1)) |u*+2(N+H=1) Y (H=R)R > uplinsn
n=1 n=1 h=1 n=1

Proof of Lemma 2.1.6
Define u,, = 0 for all n < 0 and all n > N. Then we have

N N+H-1H-1
HE Uy = E E Up—p,
n=1 p:l h=1



The Cauchy-Schwartz inequality states that

>t (Liar) (L) 29)

Letting a, = 1 and b, = S1— ' u,  in (2.8) gives:

2
N 2 IN+H-1 H-1
] - LY
n=1 p=1 an, h=1
bn
N+H-1|H-1 2
S(N+H-1) Y Zuph by (2.8)
1
N-Ii)-H 1 H-1
=(N+H-1) > (Zup ) ( up_5>
p=1 r=0 s=0
N+H—-1H-1
=(N+H-1) Y Z\up |’
1 h=0
" N+H-1 H-
+2N+H-1)R Y Z Uy Ty
p=1 7r,s=0s<r
=(N+H-1)(2Z; 4+ 2R%,)
Now ¥, = Hzgzl lu,|?. 3o contains terms of the form wu,,,, where
n=1---Nandh=r—s=1---H—1. For fixed n and h the possible choices
for the pair (7, s) are given explicitly by (h, 0),(h—1,1), -+, (H—1, H—h—1)

and for each such choice the value of p is unique. Hence there are exactly
H — h occurrences of u,t, 1, in 3y. Thus we have

H-1 N
So=> (H=h)> tnlnsn
h=1 n=1

And since u,, = 0 for n > N the summation over n can be restricted to

summation over 1 < n < N — h, and Lemma 2.1.6 follows. [}
Proof of Theorem 2.1.5
Let m be a fixed non zero integer. We apply Lemma 2.1.6 with u,, = e*™men

10



and dividing by H2N? we get:
2

N
1 - N+H-1
. TIMITn, <
N ; ‘ =THN
) SN+ H-)H-WN-R)| 1 & i)
> H2N? N_h >
h=1 n=1

(2.9)

Now since the sequence (x,15 — ) is u.d. mod 1 for every h > 1, for
such h we have

lim S e2mim(@n=Tn+n) = () (2.10)
N—voo N — h £
By (2.9) and (2.10) we get
2
lim sup e iemmn < 1 (2.11)
Nooo |N £ H?
and since (2.11) holds for every positive integer H we have:
SRS 2mima
Jim gy 2 e = 0
and thus (z,) is u.d. mod 1. u

2.1.4 Generalised Van Der Corput’s Difference Theo-
rem

Although Van der Corput’s Difference theorem is a very powerful tool, it is
not particularly useful for sequences whose differences are not u.d. mod 1.
There are sequences whose derivative is “almost” u.d. mod 1, about which
we would like to say something. We say that a sequence (x,) is “almost”
u.d. if (x,) does not satisfy Weyl’s criterion, but has the property that

N
lim — § e2rihen) )
N—oo N !

n=

as h — oo. We develop the generalised Van Der Corput’s Difference theorem
stated below to deal with sequences whose differences are “almost” uniformly
distributed modulo 1.

11



Theorem 2.1.7 Let (z,,) be a sequence of real numbers. If for every positive
integer h we have

N

]1[ Z 627rim(:cn+h —Zn)

lim sup —
N—o00
n=1

< (2.12)

=

for some o > 0 then (x,) is uniformly distributed modulo 1.

If @« > 1 replace a by o with o/ < 1. Certainly (2.12) still holds if « is
replaced by o’ and so we can restrict our proof to deal with cases when v < 1.
In order to prove the theorem we will first need the following proposition:

Proposition 2.1.8 If N > H and o < 1 then

H-1
1 (N+H—1)(H—h)(N —h) _
il <KH™“
N hz:; H2N2ho -
Proof
Firstly we observe that for a < 1
= 11 1 1 1
h _1+2_a+_a+ + T T + -+ 2 +--
3 @5 @F+)e (2%)
1 2
<2a.1 <2a.3
<14 @RIl e 1
2 ’4 '2ﬂog2Ha]—1
_ 92 (1 Lo(E-D) 4921 4.y olog Ha—n(g—l))
1
log, H3 —1
— 2% 2i(5=1)
7=0
B 2l2(é—1)10g2H°‘ -1
B 2ta=D — 1
1

o 201 ( log2H1 « o 1)

2D —1
=K (H'™*-1)
< KH'™™

(2.13)

12



Then

H-1

(N+H—1)(H—h)(N —h) - 2NHN
H2N2ha H2N2ha
h=1 h=1
H—-1
2 1
S
h=1
KH~«
< Fi (Using (2.13))
=KH™™“
(2.14)
And so the proposition is proved. ]

Proof of Theorem 2.1.7
We now re-work the proof of Van Der Corput’s Difference Theorem. Taking
lim sups as N — oo equation (2.9) becomes:

N 2

, N+H-1
lim sup — e?mmin | < Jimsup | ————
N—>oopN ; B N—>00p< HN
(N+H=DH=-DN-0] 1 E smieron
2 Z H2N?2 N —h nZ::l € o
H—-1
N+H-1 (N+H—1)(H—h)(N—h)
< limsu +2
N—>oop< HN Z:1 H2N2ha

(Using the hypothesis)
<hmsup(N—i_H_1 K)
N—oo HN H~«
(Using Proposition 2.1.8)
K
H—oz

<

(2.15)

Thus for every positive integer H we have:

N

: 1 TIMTn
lim N ;eQ

K
He/2

< (2.16)

which means that limy_,o % Zivzl e?mimen — () and so (r,) is u.d. mod 1. m

13

)

)



2.2 Tools

In this section we outline some of the tools which will be used often in the
course of this report. Generally the tools simplify the approximation of expo-
nential sums. They include estimating sums by integrals and then simplifying
these integrals (Sections 2.2.1, 2.2.2 and 2.2.3), approximating exponential
sums of sequences by exponential sums of nearby simpler sequences (Section
2.2.4) and ignoring the first few terms of a sequence (Section 2.2.5).

2.2.1 The Euler Summation Formula

Euler’s summation formula provides a method for us to change sums into
integrals. This is particularly useful as it is far easier for us to evaluate the
integrals than it is to evaluate the sums. The formula states that:

g: F(n) = /MN F(z)dz + %(F(M) + F(N)) + /MN <{a:} — %) F'(2)dx

(2.17)

For a proof of this see e.g. [6] page 25.

Given a function f(n) we let F(x) = e*™"/@)  After dividing both sides
of (2.17) by N and taking the limit as N — oo we arrive at the following
formula:

N N
- 1 , 1 . .
lim sup Z 2 — |lim sup — / ™I @) dy 4 lim sup —(e?™hf (M) 4 2mihf(N ))
N—oo Y N—oo M N—oo 2N

First Term

N
ttimsup - [ (o) = 3) @rinf @ e
M

N—oo N
ThirdvTerm
, |First Term| 1 ot "
< limsup ———"' + lim sup — |e2™f (M) | g2mihf(N)
N—>oop N N_>oop 2N | -— 4|
<2
Y |Third Term|
imsup ————
N—)oop N
I |First Term| i |Third Term)|
=lmsup ————— imsup ————
(2.18)

14



Note also that:

Third T I 1 .
lmn sup Lm0 sup v ‘/ <{$} - 5) (2mih) f'(x)e*™ M @ da
M

N—oo N N—o0
K N
glimsup—/
N—o0 N M

K N
glimsupN/ |f'(z)|dx

(o) = 5| P Je ] a

N—oo M
(2.19)
If we can show that limsupy_, MNTE’M‘ = Oand limsupy_, ., W =

this implies that

N
1 .
lim sup N E e ihf@) —
n=M

N—o0

2.2.2 Integration By Parts

We will frequently want to estimate the size of an integral of a function of the
form e?™"/() To do this we will often use the trick of integrating by parts.
Let A be the interval (or set of intervals) over which we are integrating. Then
we get

/627rihf(x)d$ _
A

d 2mihf () dx
/Adx (e ) 2mihf'(z)

1 e2m’hf(x) 1 62th(x)f”($)
- - - J g
[fwﬂA+hA Pz

eI

It will often be easier for us to approximate this new expression.

IN

(2.20)

IA

h
1
% dx

(f'(2))?

2.2.3 Integrating Functions Whose Derivative can be
Simplified

Proposition 2.2.1 If f(z) is a function whose derivative can be decomposed
into f'(x) = A(z) + B(z) with e|A(x)| > |B(x)| and S is an interval or (set
of intervals) over which we are integrating then

i omihf(z) dx 1
Lm@ ) 7

< Z
~ h

/d (€2m‘hf(m)) dx —|—€K‘S‘ (221)
S

1
h dx A(z)

15



Proof

1 i omihf(z) dx
L @) 5

h

/ da (e27hS) da
g dz A(x) + B(x)

1
h
1
h

<

1 d 2mihf(x) dx
h /S dx (¢ ) A(z)

L[4 oming@)
3 /Sd:r ( ) A T B AW

d 2mihf(x) dx
/sdx (¢ ) A(z)
1
hJs

i 2mihf(x) dx
/sdx (e ) A(x)

_°
f'(x)
+ eK|S]

omihf!(x)e*™hI (@) dx

(2.22)

And so the proposition follows. [ ]

2.2.4 Approximating Sequences by Simpler Sequences

Theorem 2.2.2 Let (v,) and (u,,) be sequences. If for every 0 < e < 1 there
1s an N, such that v,, can be written as v, = u,, + €, with €, < ¢ VYn > N,

then
1 (X N
: - 2mihvn 2mihun —
o (3o - o) <o
Proof
Firstly we observe that using Taylor Expansion gives:

‘627rih(x+5) _ 627rih:c} — ‘EQWZ-he%rih:c _ 6227T2h2627rih:c N ‘
§K16+K262+"' (223>
< Ke '
= 0(e)

16

ﬂ p2mihf (@) 1 . B(z) "
[ )<A<x> <A<x>+B<x>>A<x>)d




And thus

N N

: 1 2mihon 2mihun
R
1 2mihvn 2mihun
= |2 (e
1| & 1 &
< 1 - 2mihvn _ 2mihun : - 2mihvn, _ 2mWihup
< Jim g |2 (T = ) | Y ) [T e
n=1 - I n=DN, Olen)
=0
| XN
< lim —
- Nl—l;noo N Z_; O(En)
< O(e)
(2.24)
Since (2.24) holds V € the theorem follows. u

The following two corollaries follow as a consequence of the above theo-
rem.

Corollary 2.2.3 Let (u,) and (v,) be sequences which satisfy the hypothesis
of Theorem 2.2.2. Then

N 1 N
: 2mihv 1 2mihu
hmsupN E e mtn —hmsupN E e+ O(e)
N—oo — N—oo —
n=1 n=1
Proof
1 N 1 N N N
lim sup — § :627rihvn — lim sup — § :627rihvn o § e27rihun 4 § e27rihun
N—oco N — N—oo N _ _ _
n=1 n=1 n=1 n=1
N N 1 N
— lim — § e27rzhvn o 2 e27rzhun + lim sup — § e27rzhun
N—oo N — — Nooo IV —
n=1 n=1 n=1
~ Vv
=0
N
= lim sup — E eZmihun
N—o0 N —
n=1
(2.25)
|
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Corollary 2.2.4 Let (u,) and (v,) be sequences which satisfy the hypothesis
of Theorem 2.2.2. Then

(1) If (up) is uniformly distributed modulo 1 then (v,) is also uniformly dis-
tributed modulo 1.

(73) If (uy,) is not uniformly distributed modulo 1 then neither is (vy).

Proof
() If (uy,) is u.d. mod 1 then the lim sup on the right hand side of (2.25) can
be replaced by a limit and we get:

R N
0= lim — E e¥mihun | — lim sup — E g2mihon
n= n—

and thus (v,,) is also uniformly distributed modulo 1.

(ii) Let w, = u, — €,. By the contrapositive of (i) if (w, + €,) (= (u,)) is
not u.d. mod 1 then neither is (w,). Hence if (u,) is not u.d. mod 1, then
neither is (u, — €,) and similarly, neither is (u,, + €,) = (v,). u

2.2.5 Changing the summation limits

Proposition 2.2.5

(i) If for every € > 0 and for every h # 0, limsupy_, + SN 2T ()| —

O(e) then (f(n)) is uniformly distributed modulo 1.
(i1) Conversely, if for every e > 0 there is an h # 0 such that liminfy_,o + ZZ\, e2mihfn) oL ()
then (f(n))is not uniformly distributed modulo 1.

N
(i13) (f(n)) is uniformly distributed modulo 1 iff limpy_ o0 W = (b—a)(l—c¢).

Proof
(1) Pick € > 0 then using the hypothesis of part (i) we have

eN
Z 627rihf(n)
n=1

R
lim sup — e2mihf ()
N—o00 N ;

N
Z 627rihf(n)

n=eN

<1l ! +1i L
11m sup — 1m sup —
o N—)oop N N—)oop N

= O(e)

Since we can pick € to be arbitrarily small we conclude that

1 N
: § 2mihf(n) _
]\}1—>H<l>o N o ¢ 0
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and so (f(n)) is u.d. mod 1.
(1) Firstly we will show that if (f(n)) is u.d. mod 1 then Ve > 0

1 N
li 2mihf(n) __
dim gy 2 =0
eN
N 1 N
: 2mihf(n) | : - 2mihf(n 2mihf(n)
dim |2 € &%NZf -y Ze
2rihf(n)| _ 13 - 2mihf(n)
< Jim Z A,
=0 =0
=0
(2.26)

It should be noted that since all the limits on the right hand side of (2.26)
exist then the limit on the left hand side must also exist.

The converse of this statement proves (i).

The statements of (i) and (7i) combine to give an interesting result. They

show that if limsupy_, & |30 e2mihf (™

e = O(e) then it must necessarily

be zero.
(233) Firstly if (f(n)) is u.d. mod 1 then Ve > 0

J(n) n n
i 2@ o) o (@)
N—o00 N N—o00 N N—o0 eN (227>
=(b—a)1l—¢)
The converse of (2.27) proves the other direction. u
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Chapter 3

Non-Trigonometric Sequences

The first half of this chapter deals with the distribution of specific families of
non-trigonometric sequences such as nf, logn, n* and combinations of these.
The second half of the chapter deals with general families of sequences for
which we know something about their derivatives.

20



3.1 The distribution of né

Proposition 3.1.1 If 0 is a rational number then (nf) is not uniformly
distributed modulo 1.

Proof
Let ¢ = 2 andlet h = ¢. Then

2mwihn6 — e27rinp

e
— e27rip
for all n. Hence,
1 | 1 |
: - 2mihnb| _ 71; - 2mip
a7 (2 = e
N N
|2
# 0
And thus Weyl’s criterion fails. |

Proposition 3.1.2 If 0 is irrational then nf is uniformly distributed modulo

1.
Proof
N 1|
: - 2mhnd| _ 1; - 2mih0\n
g |2 | = i |2
" o 6_7rih9(1 _ 2mihNG)
= lim — ,
N—oo N 1 — 627rzh9
- 1 1 1 N ‘627rihN9‘
im — . .
= Nooo N\ |1 — e2mihf| |1 — e2nind|
_ oy K
TN N

Note: The above proof only works as |1 — e?™| #£ 0 for any value of h,
since 6 is irrational.

It is not too hard to prove the following Proposition as a consequence of
Propositions 3.1.1 and 3.1.2 and Van Der Corput’s difference theorem.
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Proposition 3.1.3 If P(n) = ag+an+---+an®, a; ERi=0,... & then
P(n) is uniformly distributed modulo 1 iff at least one of the a;’si=1,...,k
18 irrational.

Proof
For a proof of this see [6] Theorem 3.2 Page 27. n

3.2 The distribution of logn

Proposition 3.2.1 (logn) is not uniformly distributed modulo 1.

Proof
We will show that (2.2) does not hold for the case when h = 1. To do this
we will use Euler’s summation formula.

We look at the terms on the right hand side of equation 2.17.

firs o _ L f " gamions gy
N N Jy

1

v 1 (3.1)
K

— N (N627rilogN o 1)

— K€27ri log N

e27ri log m}

21

, | Third term)| <1 1 /N
imsup ——— imsup —
N—)oop N o N—)oopN 1
= limsup — [logx
Nl N EO8 (3.2)
i Klog N
= lim su
N—)oop N
=0

Thus the second and third terms tend to zero as N — oo, and (3.1) shows that
the first term doesn’t converge as N — oo. This means that limy_, % ZnNZI e

does not exist and so cannot be equal to zero and thus 5, = log(n) doesn’t
satisfy (2.2). By the necessity of (2.2) we conclude that (logn) is not uni-
formly distributed modulo 1. |
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3.3 The distribution of Zj cjni

In this section we will discuss the distribution of (3;¢;n®). As a result of
this discussion we will be able to conclude that (n®) is uniformly distributed
modulo 1 for any positive non-integer valued a. (Corollary 3.3.2). It should
be noted that the method used to integrate various functions in this section
is not necessarily the easiest or most efficient method, however it is the same
method as will be necessary in chapter 4. We have used this method here to
introduce the reader to arguments which will be used repeatedly later in the
report.

For m € Z define f,,(x) = ), c;z% where the sum consists of finitely
many terms, ¢; € R and a; < m. Let k be the subscript of the largest «; in
fm(z). Ensure that oy, > 0, a ¢ Z and ¢, # 0.

Proposition 3.3.1 For f,,(x) defined as above, (f.,(n)) is uniformly dis-
tributed modulo 1.

Proof

We will prove this proposition by induction on m. We first consider the case
where m = 1. Let k be chosen as above and let &’ be the subscript of the
second largest a;. DefineM = max; {|c;jo;|} and let T be the number of

1
terms in the sum of fi(x). Pick N > 1 ( MT )ak*a’“’. This will mean that

€lcpo

for x > eN we have ecpoyx® 1 < MTx% ~! which will be necessary during
the proof. Then

file) = cjaai
j

= cpoux® Tl 4 Z cjajno‘j_l
A(z) 5,37k
B(x)
And for x > eN we have
B@)| < Y lejaga® ™

J.#k
<D leayla !

J.#k
S MTZL'akl_l
< e|cpay ]zt

(Due to our choice of N)

= e|A(z)]
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We will thus be able

to apply Proposition 2.2.1.

In order to show that fi(n) is u.d. mod 1 we will consider limsup y_, . + SOV eAmikdim)

and show that this is

of order e. Invoking Proposition 2.2.5 will then give the

desired result. We now look at the terms of the Euler summation formula
given in section 2.2.1.

N

, |First Term| / orih S oig® ‘
limsup ————— = limsup — e2mih 25 e (g
N—)oop N N—)oop N eN
—1
1 . o
= limsup — / ( 2mih 35 s J) a;c;x®!
N—)oop N ; 7
K d : % ~1 eK'N
<1 - s ( 2mihy, ¢ J) ap—1 d li
<imswic|[ 7 (ancra™ ) " iy
(Using (3.3) and Proposition 2.2.1)
N
< hmsup— [ 1] —i—/ |z |dx | + eK’
N—oo QpCRT* ™ eN
. Ky _o N K _
< l _ - 1—ay e akd K/
_111\?jolip<N[x } +N :c)+e
< lim sup K (N'7o% 4 N'7o%) + eK'
T Nooo N
= limsup KN~ + eK’
N—oo
= eK'
= O(e)
(3.4)
i | Third term| ) / 1
limsup ———— = limsup — i x®T
N—)oop N N—)oop Z 7
KT v
< limsup — w1V g
N—oo eN
y K oo (3.5)
= limsup & [2%]
. KN
< limsup
N—o0
=0

Thus combining equations (3.4) and (3.5) and using the results of section
2.2.1 and Proposition 2.2.5 we can conclude that (fi(n)) is u.d. mod 1.
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Now assume that (f,(n)) is u.d. mod 1 for all b < m, and consider the
distribution of (f,(n)). Once again we let k be the subscript of the largest
a; in f,,(n). We can assume that the ¢, # 0 as otherwise we could just use
the induction hypothesis to prove the u.d. mod 1 of the sequence (f,,(n)).
Using Taylor expansion we get:

fm(n + h) - fm(n)

h2 hm—l
= hf () + S £ )+ i

ak—l
)+ O
(Where the constant in the O term depends on the value of h.)

L o
tho‘jcj” ' 1+?Z(%‘ — Dagen® =2 4 -
J J

hm—l N oy
+ W(Kn P+ lot.)+O0Mn*)
= fr_1(n)+ fr_o(n) 4+ fi(n) + O(n*")
—_————
<e
(Where we can make the last term as small as we want.)
= fm—1(n) + O(¢)
(3.6)

Now the leading co-efficient of f** ,(n) is axcy which is non-zero and the
leading power of f* ,(n) is (o — 1) & Z so f}* ;(n) satisfies the induction
hypothesis and so is u.d. mod 1. Hence by (2.1.5) (f,,(n)) is u.d. mod 1 for
all m. -

Corollary 3.3.2 If 0 < a, a ¢ Z then (n®) is uniformly distributed modulo
1.

Proof
Simply let m = [«] and the corollary follows. [ ]
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3.4 The distribution of (> ¢;n%log" n)

For k > 0 let fr(n) = > ¢;n% log™ n where 0 < o; < k, each o is unique
and at least one «; is positive. In addition we require that c¢; # 0.

Proposition 3.4.1 For fi(n) defined as above, (fr.(n) is uniformly distributed
modulo 1 for every k.

Proof

We will prove Proposition 3.4.1 by induction on k using a similar argument
to that invoked in the previous section. To deal with the distribution of f;(n)
we will invoke (Féjer’s Theorem)

file) = aje;a® ogh @ + e logh T
— 0 monotonically as z — 0

and

olfi@)] = ‘Z aje;z® log™ x + ez log” ! @

—ooasx — 0
So fi(n) satisfies the hypothesis of Theorem 2.1.3 (Féjer’s Theorem) and
Proposition 3.4.1 holds for k£ = 1.
Assume that Proposition 3.4.1 holds for all £ < m, and consider the case
when & = m + 1. Once again we let fy(n) = > ¢;n% log” n where o; < k.
Let

a=maxq; and 7= max T;
J 7,0 =0C

Finally, let » be the index such that o, = o« and 7, = 7. Using Taylor
expansion gives:

fmr1(n+h) = frii(n)
1) " @ hE :
where s < 0 and the constant in the O term depends on the value of A

m—1
= fr(n)+ Z Z Cin® " log™i n + O(n®)
=0 j

-

g

<e
where we can make the last term as small as we want
(3.7)

Now the coefficient of n®~!log™ n is non-zero and so f (n) satisfies the
induction hypothesis and thus is u.d. mod 1. Hence by (2.1.5) (> ¢;n% log™ n)
is u.d. mod 1 n
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3.5 Distribution of “slow sequences”

In this section we look at sequences which are increasing slowly. The theorem
which follows is actually proved more generally and succinctly as a corollary
to Theorem 3.6.1. The reason for including this proof is that a very different
approach to proving the theorem is used here. Generally when proving the
uniform distribution or otherwise of a sequence we try to place either a lower
or upper bound on its exponential sum, and the most common way of doing
that is by changing the sums into integrals and then integrating. In this
section we deal directly with the terms of the exponential sum, and show
that the imaginary part of the sum does not go to zero. Thus we obtain a
much better understanding of how the exponential sums are behaving.

Theorem 3.5.1 If 0 < f'(z) < 5= and f"(z) < 0 then f(n) is not uni-
formly distributed modulo 1.

3.5.1 Outline of Proof

To begin with we observe that if limy_, % ij:l e2mihf(n) — () then both the
real and 1mag1nary parts of this sum go to zero. In this proof we will show
that limpy e ~ ¥ Z _,sin27 f(n) # 0 and thus Weyl’s criterion fails for h =1
and hence the sequence is not u.d. mod 1.

To do this we will show that with each rotation about the unit circle the
sum of the imaginary terms accrued is strictly negative. This will be done
by breaking one rotation around the circle into four components, with the
kth component being when 6 € [’” (k+21) |, k=1,2,3,4.

Terms in the 1st and 2nd components have positive imaginary parts,
while terms in the 3rd and 4th components have negative imaginary parts.
We will show that the negative terms in the 3rd component cancel out with
the positive terms in the 1st component and the negative terms in the 4th
component cancel out the positive terms in the 2nd one. In addition we will
show that there are many extra negative terms left over after this cancellation
process, and so the total sum around the circle is negative. We will need to
take special care when dealing with terms whose imaginary part is very close
to 1 to ensure that they are cancelled out correctly.

Proof

Pick Ny to be large and w.l.o.g. assume f(Ng) =k for k € Z

Let Ny be the last n > Ny with f(n) — f No) <
Let Ny be the last n > Ny with f(n) — f
Let N3 be the last n > Ny with f(n) — f
Let Ny be the last n > Ny with f(n) — f

= [ QOND [ | =
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Let d = % Note: The choice of the number 3 on the numerator of d was
an arbitrary choice, we could just have easily have chosen any number less
than 7. We will now define M,’s,; i = 0,...,3 so that |f(M;) — f(My)| ~ d
and |f(Ms3) — f(Ms)| ~ d. The intervals [f(My), f(M)] and [f(Ms), f(Ms3)]
will be placed approximately in the center of the intervals [0, %] and [%, 1]
respectively.

Let My be the last n > Ny with f(n) — f(Ny) <
Let M, be the first n > Ny with f(n) — f(Ng) >
Let M, be the last n > Ny with f(n) — f(NVy) <
Let M3 be the first n > Ny with f(n) — f(Ng) >

A~ N~
ol Lo b=
+ I+ |
&22as

NSNSl

We will show that
Ny
Y e < (3.8)
n=Np

and

M3

1 .
— 3 2™ () .01 3.9
T :ZN (3.9)

and that (3.8) and (3.9) combine to give

N
: 1 2mif(n)
lim N%; e # 0 (3.10)

N—oo

0 (2.2) fails and hence (f(n)) is not uniformly distributed modulo 1.
We will need the following lemma

Lemma 3.5.2 let f be a function whcih satisfies the hypothesis of Theorem

3.5.1. Then:
(7 (s 5)) < 3@

Note: Since f’(x) > 0 Vz then f has an inverse.
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Proof
By the MVT and our assumptions about f’(z),

7 (1 + ) 2| (rw+ 5) -a
L)+ - s(a)
FiE)

(where a <& < f71(f(a)+3))

Corollary 3.5.3 If we let a; = Ny + j,j=0,1,...,M; — Ny — 1,
then for each j there are at least three points, agj, aij, az; which satisfy
CLZ'j c [Ng + 1, Mg] and f(aj) —+ % S f(aij) S f(CLj—i-l) —+ %, 1= 0,1,2.

3.5.2 Dealing with terms lying between Ny and N; — 1

Let m = f'(Ny), Then for n > Ny, |f(n) — f(n —1)] < mso, Vj > 0
ElSj > Ny such that (f(S]) — f(N(])) € [
fracl2+ jm, 2 + (j + 1)m).
Also, for Ngo <n < Ny |f(n) — f(n=1)| >m,soVj > 1,k = 1,..., (N — No—1)
if (f(No + k)= f(No)) € [(j —1)m,jm) then it is the only f(No + k)
which has this property.
Now let ji, be the j > 1 such that (f(No + k)—f(No)) € [(Jx—1)m, jxm)
and let S, satisfy No < Sy < Nyand (f(Sk) — f(No)) € [3+ jem, 2+ (ju + 1)m).
Remember that sin 27(f(n) — f(No)) = sin27f(n) and in addition
sin 2w f(Ng + k) < |sin 2w f(Sy)| so

Ni-1 N1—No—1
Z sin 27 f (n) = Z sin 27 f (No + k)
n=No+1 k=1
Ny No_1 (3.11)

< Z | sin 27 f (S},
k=1
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3.5.3 Dealing with terms lying between N; + 2 and N,

Let M = f'(N3), Then for n > N3, |f(n) — f(n —1)| < M so, Vj > 0 3R;,
R; > Nj such that (f(R;) — f(No)) € 1—(j+1)M,1—jM)

Also, for Ny <n < Ny |[f(n) — f(n—1)| > M,soVj > 1,k = 0,..., (N — N; —2)
if (f(Ne — k)—f(No)) € [r—jM, 7—(j—1)M) then it is the only f(Ny—k)
which has this property.

Now let jj, be the j > 1 such that (f(No — k)—f(No)) € [3 — jxM, 3 — (jx — 1) M).
Starting with £ = Ny — N; — 2, and decrementing the value of k by 1 each
time let Rj be chosen as follows:
If (1 — jxM) < 5(3-+d) then pick Ry so that (f(Rx)—f(No)) € [1— (ji + 1)M, 1 — j,M).
Otherwise pick Ry with My < R, < M3 and R, # R, for j > k, Ry # S;
for any 1.

Then sin 27 f(Ny — k) < |sin 27 f(Ry)| and

No No—N;—2
Z sin 2w f(n) = Z sin 27 f(Ny — k)
n=N,+2 k=0

Ny Ny 2 (3.12)

< Z | sin 27 f (Ry)|
k=0

3.5.4 Dealing with the terms N; and N; + 1

By Corollary 3.5.3 there are at least three terms a;, 1 = 0, 1,2 with
f(a;) € [+ f(N1), 5 + f(N +1)], and these a;’s do not correspond to any
Sy or Ry. Without loss of generality assume ag < a1 < as.

We need to show that

2
Z | sin 27 f (a;)| > sin 27 f(N7) + sin 27 f (N7 + 1). (3.13)
=0

If f(ap) < 2% and f(az) > 2F then (3.13) clearly holds.

We now consider the cases where (f(ag) — f(No)) > 3 or (f(az) —
f(No)) < 2. These can essentially be treated as the same case, so w.l.o.g.
assume f(ag) > 2. Then |sin27f(az)] > sin2nf(N; + 1) and it remains
to show that |sin2nf(ag)| + |sin2nwf(a1)| > sin27f(Ny).

Let D = f(Ny+1)—f(N;). Then f(a1) — f(ao) < 2 and f(az) — f(a1) < 2.
Now we know that f(N; 4+ 1) — f(Ny) < ﬁ, however we will assume that

(f(N1 +1) = f(N)) ~ 3 and thus f(ap) ~ 2 and f(a;) ~ 73 as this is
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the worst possible scenario. Even in this worst case scenario

: : 3 1
| sin 27 f (ag)| + | sin 27 f(aq)| > g + 5
> 1
> sin 27 f (V)
and so (3.13) holds.
3.5.5 Combining the results
Combining (3.11), (3.12) and (3.13) we get:
Ni—1
Z sin 27 f (n Z sin 27 f (n Z sin 27 f(n) 4 sin 27 f (Ny) + sin 27 f (N7 + 1)
n=Ny n=No+1 n=Ni+1
N1—No—1 N1—No—1 2
< Y fsin2nf(Sp)l+ Y [sin2rf(R)|+ > |sin 27 f(a;)
k=1 k=1 i=0
and so
No N1—Np—1 Ni1—Np—1 2
Z sin 27 f(n) + Z sin 27 f (Sk) + Z sin 27 f(Ry) + Zsin?wf(ai) <0
n=Np k=1 k=1 i=0
(3.14)
Now since Se2™f () < ( for M3 < n < N, then
Ny Ms
) Z 2mif(n) <3 Z e27rzf
n=DNp n=~Ng
Ny N3
= Z sin 27 f (n Z sin 27 f (n
n=Ny n=No+1
Ny Ni—No—1
< Z sin 27 f (n) + Z sin 27 f (Sk)
n=~Ny k=1
N1—No—1
+ Z sin 27 f ( Ry,) —|—Zsm27rf a;)
<0 (by (3.14))

Thus (3.8) holds.
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3.5.6 Using the remaining terms

We now let (m;) be the terms with My < m; < Mz, i = 1,2, ..., M3 — M,
and ask what fraction of the m;’s do not correspond to an Sy or R;. No m;’s
were used to compensate for terms with Ny < n < M,. By the corollary, at
most % of the m;’s were used to compensate for terms with My < n < M.
To compensate for terms with M; <n < Ny another Ny — M of the a;’s
were used

Using the M.V.T. and our assumptions about f’(x) and f”(x) we see that

1

| M3 — M,| ZMV(M?,)—]C(MM -
Z 27TM2d ( ' )
> 3M,
Using (3.15) we get
1 M,
> _ 72
37 Ms— M,
My — M,
D —
- Ms; — M,
Ny — My
= Mz — M,

and thus at most another % of the a;’s were used up here. Hence there are
at least % of the a;’s left which do not correspond to an Sj or Ry.

Hence
1 Ms 1 Ny N1—Np—1
A Z sin 27 f(n) = A (Zsin%rf(n)—l— Z sin 27 f (Sk)
3 n=No 3\ No k=1

No—N1—2 2
+ Z sin 27 f (Ry) + ZSiDQWf(CLi)>
k=1 =0

1 <L
n=Na+1,n#Sk,Ri,a;
1 <L
< A Z sin 27 f(n)
n=Mas,n#Sy,R,a;

(3.16)

Now for n’s appearing in the last term of (3.16) sin27f(n) < 0. Also, for
M, < n < Mj|sin2nf(n)] > 0.07. Finally using (3.15) again we can
deduce that % < 1. Using these facts and (3.16) we get:
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M3

A Z sin 27 f(n) = ﬁs Z | sin 27 f (n)|
n=Mas,n#Sg,Ri,a;

1 0.07

> — My — M
M 3( 3 2)

M.
> 0.02 <1 — —2) (where C'is a constant)
M

>002(1 !
' 4

> 0.01
(3.17)

Thus combining (3.16) and (3.17) gives (3.9).

3.5.7 Deriving (3.10)

We now slightly change the notation to let Ng = Nog = f(1), and let N;p = N;
and M;o = M;. Now define Ny; = Ny + 1 and take N;; and M;; to be the
N;’s and M;’s which we would have gotten if we took Ny = Ny;. Continue
on in this manner, so that we get N;; to be the IV; obtained on the ”jth”
revolution around the circle. Then

MS] M3J
\SZez’”f = — Zsm%rf
J—1 Ny Ms;
ZZsm%rf Z sin 27 f (n (3.18)
Ms, k=0 Nop, J n=No,
<0 <—0.01
< —0.01

(3.18) shows that as N increases

1 N
73 Ze2mf < —0.01

n=1

whenever N = Mj;. This happens infinitely often and thus (3.10) holds.
Hence the sequence (f(n)) is not uniformly distributed modulo 1. u
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3.6 The Distribution of u, + f(n)

Theorem 3.6.1 If (u,) is an arbitrary sequence which is uniformly dis-
tributed modulo 1 and |f'(z)| < £ then (u, + f(n)) is uniformly distributed
modulo 1.

Proof
In this proof we will use Weyl’s criterion as well as the formula below:
N
Z b — Qp— 1 = bN+1CI,N — bmam 1 — Z(bn_H — bn)an (319)

This technique is known as summation by parts, and can be verified by
expanding both sides of (3.19).

Now let .
Ay = Z e¥™ and b, = 2™/
j=1
Then
N N
e27rih(un+f(n)) _ Z e27rihun627rihf(n)
n=2 n=2

=2

2mhf (N+1) } : 2mihu; e27rih(u1+f(2))

N

_ Z < (e2mihf(n+1) _ o2mihf(n Z 27”’“‘1) (using (3.19))
n=2

S

’ (3.20)

Dividing both sides of (3.20) by N and taking the limsup as N — oo we see
that the first and second terms tend to 0.
We now consider |e?7#h/(n) _ g2mihf(n=1)|

Let g(z) = €M@ Then [¢'(z)] < £ and forn < 2 < n+1,
lg'(@)] < &= lgn+1)—gn) < T
That is

2mwihf(n) e27rihf(n—1)‘ <

S|=

(3.21)

e
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We now consider S from (3.20)

S 1 N n
lim sup u = lim sup — Z(e2ﬂihf(n+1) . 627rihf(n)) e27rihuj
N—o00 N—o0 2 =
N n
< lim sup — e2mihf(nt1) _ 2mihf(n) p2mihu;
s Z | X
< limsup amihus; using (3.21
msu Z Z (using (3.21))
N n
1 K
= lim Sup — — e2mhuJ

Now (uy) is u.d., so

3

2miu;

e —0asn— o

S|+

[y

j=

and hence for each € there is a K, such that forn > K.,

n
1 § e27riuj
n—14
Jj=1

< €.

Hence
S| K l 1 &
hm sup — = hm sup — ( Z 2mihu Z Z e27rihUj )
Voo N e VTS i=1 oo |V TS
K
< limsup — (K/—l— Z )
N—oo N K41
. K, _,
= limsup — (K] + (N — K. — 1)¢)
N—oo N

<e€

Since we can pick € to be arbitrarily small we conclude that the term S
in (3.20) tends to zero as well. This tells us that Weyl’s criterion holds for
the sequence (u, + f(n)) this sequence is uniformly distributed modulo 1. m

As a corollary to theorem 3.6.1 we get

Theorem 3.6.2 If |f'(z)| < £ then (f(n)) is not uniformly distributed mod-
ulo 1.
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This is a much stronger statement than Theorem 3.5.1.

Proof

Assume that (f(n)) was u.d. mod 1. Then (—f(n)) would also be u.d. mod
1 and hence letting u,, = — f(n) we would arrive at the conclusion that
0 is u.d. mod 1, which is clearly false. Hence (f(n)) cannot be uniformly
distributed modulo 1. ]

Corollary 3.6.3 (logn) is not uniformly distributed modulo 1.

Note: This corollary was already proven by other methods as Proposition 3.2.1.
Proof

% logx = % and so theorem 3.6.2 can be applied to f(x) = logz to yield the
desired result. n
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Chapter 4

Trigonometric Sequences

In this chapter we examine the distribution of various families of trigonomet-
ric sequences. Many of the arguments in chapter 3 relied on the fact that the
sequences we were considering had a monotonic derivative, however this is no
longer the case. As a result we have to employ slightly different techniques to
analyse the distribution of these sequences. The chapter begins by analysing
the most basic family of trigonometric sequences, K sinz,, (where z,, is u.d.
mod 27) and builds up to analyse more complicated families of sequences.
The results combine to give a comprehensive analysis of sequences of the
form (n®sinn®) for B < 1, and also include some results for more general
families, (f(n)sinn?), 8 <1 and (n®sinn), o < 1.

As a general rule trigonometric sequences are difficult to analyse as their
derivative varies wildly, making them hard to integrate. By looking at se-
quences whose trigonometric part is a function only of n”, 8 < 1 we at least
get to tame this derivative as n gets very large and so the analysis is easier.

As far as we know, there has been no analysis of sequences of the form
(n*sinn?) for 8 > 1.
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4.1 The distribution of (K sin(x,))

Theorem 4.1.1 For K > 1 and (z,) u.d. mod 2w, (K sin(z,)) is not uni-
formly distributed modulo 1.

Proof

Assume (K'sinz,) is u.d. mod 1. Pick 0 < € < 5. Now {Ksinz,} €
({K}A{K} +e) iff

K1)
{#n}er € |J ( [sin 1Z+{K} )
K] ' . . K
\ <<7T + sin! % T #) )
et <27T i +[{(K} —sin™! #))

and thus

(K1)

Ksmmn({K} {K}+€ _2 Z ¢ ( lz_l—[{(K},SlIl 1Z+{[I§}+€)

+2Z¢xn ( SR U8 Sl g M)

K ’ K
_K—Eﬂ'
> 207" ( ! e ,5)

| K—1] .
K} — K
+22¢ ( _1z+{K} e’sin_lz+{K}+e
(4.1)
Since () is uniformly distributed modulo 27 we know that limy_, N S[Va’b)) = 5’2‘—7:”

If we divide both sides of (4.1) by N and try to take limits as N — oo we
see that all the limits on the right hand side exist and thus so must the limit
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on the left hand side. Hence we get:

: 1 Ksinzy, 1 ™ . _1K—€
dim o (K 1K)+ > 2 (5 s )

K

>1 T .1 K —e€
— | = —sin
T\ 2 K

S € d (. [ K—e
K dx i K

(By the MVT)

€ 1
- 1K /K2 — (K —¢)?
€ 1

TK 2Ke — €
€

1K 3/ 2

However if (K sinx,) is u.d. mod 1 then

: 1 sin Ty
Jim ORI (K K} +6) =

Thus (4.2) and (4.3) combine to give:

1
m™>
K3v/2¢
but
1 1
3 >
K>\V2e j /2K

2K372

=T

K-1 .
(sin_l i+{K}+e
1

sin~?! %))

(4.4)

(4.5)

Which is a contradiction. Thus for K > 1 (K sinx,) cannot be uniformly

distributed modulo 1.

The following theorem follows as a corollary from Theorem 4.1.1.

Theorem 4.1.2 (sinn”) is not uniformly distributed modulo 1.
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Proof

The proof of this Theorem breaks into three cases.

Case 1l: >0

Proposition 3.3.1 proved that (27n”) is uniformly distributed modulo 1. Thus
(n?) is uniformly distributed modulo 27 and the result follows from Theo-
rem 4.1.1.

Case 2: =0

This case is trivial as we are talking about a constant sequence which cannot
be u.d. mod 1.

Case 3: <0

In this case lim, o sinn® = 0 and so all the terms of the sequence are
positive and tending towards zero and hence their fractional parts are also
tending to zero. Thus the sequence cannot be u.d. mod 1. [ ]

4.2 The distribution of n~“sinn®

Theorem 4.2.1 Ifa > 0 then (n=%sinn?) is not uniformly distributed mod-
ulo 1.

Proof

In this case lim,_,.cn ®sinn® = 0 and so all the terms of the sequence
are tending towards zero. This means that their fractional parts are either
very close to zero or very close to one. Thus the fractional parts cannot be
uniformly distributed in the unit interval and so (n~=®sin n”) will not be u.d.
mod 1. [ ]

4.3 The distribution of n®sinn—"

Theorem 4.3.1 For 3 >0

(i) If a > B and (o — B) & Z (n*sinn=P) is uniformly distributed modulo 1.
(ii) If « > B and (o — B) € Z Then (n®sinn=") is uniformly distributed
modulo 1 iff B is not a multiple of %

(i17) If a < B (n®sinn=") is not uniformly distributed modulo 1.

Proof
We consider the “Taylor” series expansion of n®sinn™". We know that

0 2k+1

sinz = Z(—l)kh (4.6)

k=0
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Substituting # = n~? into (4.6) and multiplying by n® we get:

o0 a—B(2k+1)
o s -8 _ Z(_l)kn
n-simn _—
|
£ 2k + 1)!
00 n—2k8
=n*F Z (4.7)
prt (2k +1)!
a8 n_*
o ]; 2k + 1)!

(¢) Define v = (= ). Then v > 0 and 1 is not an integer. Let T"= | 5.
We can re-write (4.7) as

T 2kB 00 —2k8
o B B n’- n
nsinn ™’ =n' 4 ) (1) (2k:+1 Z 2k+1)
=1

- -
Vo '

f(n) en

(4.8)

Then f(z) satisfies the hypothesis for Proposition 3.3.1 and is thus uniformly
distributed modulo 1. In addition ¢, — 0 as N — oo and so using Corollary
2.2.4 we can conclude that (n®sinn=") is uniformly distributed modulo 1 for
the conditions given in part (7).

(12) Define m = (v — f). Then m > 0 and m € Z. Let T' = [35]. Thus
(4.7) can be written as:

nm- 2kB > ny— 2kB

T
a -3 _ ., m m—203 o
n“sinn " =n"+n —l—;( 2k+1 Z 2k+1)!

£(n)

where €, — 0 as N — oo. Since the fractional part of n™ is always zero
the n™ term in (4.9) does not affect the distribution of the sequence. Thus
(n®sinn=#) is distributed in the same manner as (f(n) + €,). We now have
two cases.

Case 1: (8 is not a multiple of %

The leading term of f(n) is n™ 2. Since S is not a multiple of 1 then
(m—28) ¢ Z and so f(n) obeys the hypothesis of Proposition 3.3.1 and so is
u.d. mod 1. Using this fact and Corollary 2.2.4 we conclude that the reverse
direction of (ii) holds.

Case 2: ( is a multiple of %

In this case the powers of n in f(n) are of the form m — 2k € Z and so
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f(n) is a polynomial with no irrational coefficients and by Proposition 3.1.3
is not uniformly distributed modulo 1. Combining this with Corollary 2.2.4
we conclude that the forward direction of (¢7) holds.

(ii7) In this case we have a < 3, and so n®# < 1. In addition the terms
in the summation of 4.7 are all approaching zero as n increases. Pick € > 0.
Then for large enough n the second term on the right hand side of (4.7) less
than e. We are now left with two cases. Either a =  and we get

n“sinn~" =1+ O(e) (4.10)
or o < /3 and choosing n large enough we can make n®~# < ¢ and thus
n“sinn~" = O(e) (4.11)

Either way (n®sinn~") cannot be uniformly distributed modulo 1 as it’s
fractional parts are all O(e). Thus part (ii7) of the theorem is proved. |

4.4 The distribution of n®sinn”

The main result of this section is contained in Theorem 4.4.9 and states
that for # < 1 and o > 0 then n®sinn? is uniformly distributed modulo 1.
Different methods are needed to analyse the sequence depending on whether
« is a multiple of 1 — 3 or not. For this reason we break the discussion up into
two parts. The first part (section 4.4.1) deals with the case when « is not
a multiple of 1 — 8 and the second part (section 4.4.2) deals with sequences
where « is a multiple of 1 — .

Throughout this section we will make repeated use of the following two
lemmas.

Lemma 4.4.1 If f(z) and g(x) are increasing functions with ¢'(x) < K and
Apre is the set defined by Apye = {x | eM < x < M, |cosg(x)| > €} then

|[f(@)]a,,. | < KF(M)g(M)

Proof
We begin by observing that Ay is broken up into 7" intervals, where T is
the number of times that cos g(z) crosses the x-axis. Let us denote these
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intervals by I, = (a;, b;) where t = 0...T. Then certainly

< D1 0) — flan)] (4.12)

(Since f is an increasing function.)

It remains for us to show how many times cos g(z) crosses the x-axis. If
cos g(z) = 0 then g(z) = (2t +1)%, t € Z. In addition, 2 < M so we must
have
T

g ((2t +1)3

) <M (4.13)
Note that since g is increasing, g~! exists. It is easy to solve (4.13) to get
t < Kg(M). Thus we can conclude that T' < K¢g(M) and thus the lemma is
proved. [

Lemma 4.4.2 If f, Ay are defined as in Lemma 4.4.1 and g(x) = 2° + ¢
for B <1 and Bye = [eM, M]\ Apse then

) 1
lim sup —

27rihf(x)d
e T
M—oo M /BME

Proof

We can define By, alternatively as By = {z | eM < 2 < M,|cosa” +¢| < €}.
As was the case with A, this set is divided up into T intervals where once
again T' is the number of times which cos (2 + ¢) crosses the x-axis. From
above we have that 7' < KM?. We now ask what the length of each one of
these intervals is. This time we denote the intervals of By by J; = (ay, by).
It is not too hard to see that [bf —a’| < 2sin~' e and thus a; > ((b;)? — 2sin~'€)?.
Thus the length of an interval J; of By, is given by:

= 0(e)

|-

|| < b — (b)) — 2sin"" )7
~ (bf)%_l sin~te + Lot
(Using the M.V.T. since b} > sin"'¢) (4.14)
< K(M'"Psinte+lo.t.)

(Since 2” is an increasing function)
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Thus we get

1 1| M
lim sup — / 2™ f (@) ol < lim sup — / dx
M—>oop M Boe M—)oop M eM XBae
KMPBM»“Bgin™! l.o.t.
< lim sup n_ e+ Lo (4.15)
M—o0 M
= Ksin e
= O(e)
]

441 a#k(1-58)

Theorem 4.4.3 For 3 < 1, a & Z(1—f3) (n®sinn®) is uniformly distributed
modulo 1.

In order to prove Theorem 4.4.3 we first define f,5(z) = 3°, ¢;z% sin (27 4 ¢;)
where the sum consists of finitely many terms, ¢; € R and o; < m(1 — f).
Let k be the subscript of the largest a; in f,,5(x). Ensure that a; > 0 and
ap ¢ Z(1 — B) and that the «;’s are all different. In addition ensure that
cp #0and —m < ¢; < 7.

Proposition 4.4.4 (f,,5(n)) is uniformly distributed modulo 1.

Theorem 4.4.3 will then follow directly from Proposition 4.4.4.
Proof
We will prove Proposition 4.4.4 by induction on m. The proof will follow
a similar line of argument to that used to prove Proposition 3.3.1 however
extra care will need to be taken due to the additional sine term.

Choose  with 0 < 8 < 1. Pick € > 0. We now consider the distribution
of fiz. Let k be chosen as above and let k' be the subscript of the second
largest ov;. Let M be max(max;{c;fBe}, max;{c;a;}) and let T' be the number
of terms in the sum of fi3.

1. Pick Ny > ¢ Eh (So that for x > eNy, 2% > ¢).

(So that for x > €Ny, and cos (2? + ¢y) >
+ ér)| > 2|agz®~Lsin (2 + ¢p)|)

9. PlckN2>—<

(93
/3_
74 cos (o
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1
3. Pick Ny > 1 (Z2) %77 (S0 that for # > eN,

cray

|cpopx®™ L sin (2 + ¢p)| > 2T Ko =P~

Z c;(Bx® P cos (27 + ¢) + a;x% sin (27 4 ¢5))])
7,7k

>

Pick N > max(Ny, Ny, N3). We will consider limsupy_, o, & S0y €715
and show that this goes to zero by bounding the terms of the Euler summa-
tion formula. Let the set Ay, and By, be defined by
Aye={z | eN <z < N,|cos (2° + ¢p)| > €}
BNE = [17N] \ANe
Let us consider the size of the first term in the Euler summation formula.
We denote this term by

; 2% sin (2P L ; 2% sin (2Bt
/ 627”th cjxzI sin (x +¢])dx + / e27rzhzj cjxzI sin (x +¢J)dl’
ApNe Bne

(. J/ J
~~ ~~

Ta Ip

|First Term| <

(4.16)

We begin by simplifying this integral using some of the tricks from sec-
tion 2.2.

Let
A(z) = B P cos (2P + ¢)
and
B(z) = cpapa® " sin (2 + o)+ Z c; (Bt cos (27 + ¢;)+ayz® sin (2 + ¢;))
JJ#k
Then
d o
g (Z c;x§ sin (z° + ¢j)> = A(z) + B(x)
J
We have:

e|A(z)| = ecpB|lz TP cos (2P 4 ¢p)|
> 2cpa|x®  sin (27 + )|
(Since N > Ny)

> ez sin (2 4 dp)| + Z c; (Bt cos (27 + ¢;) + ayz® ' sin (2 + ¢;))

J,i#k

(Since N > Nj)
> |B(z)|
(4.17)
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so we will be able to apply Proposition 2.2.1. We now use (2.20) to bound
|14| from (4.16).

d 627rih Z]‘ cJ':c‘J?‘ sin (x*B—i-qu)
|IA| = / A ; X
ANE L 27T/Lh
~1
<Z Cj(ﬂ[lj’aj‘f‘ﬁ—l CcOoS (1’6 + ¢]) + ajxaj—l sin (:176 + ¢]))) dr
J
d . I du
< K . ( 2mih 3 ¢z sin (@ —i—qu)) K'N
- /ANe dw \* J crBrortBP=1 cos (28 + ¢p) e

(Using 2.21)

K
= {\Ckﬁxaﬁﬁ‘lws (z + ¢k)|hm
(ap + B — 1)z T2 cos (f + ¢p,) + Bx 252 sin (2f + ¢y,)
Ane e Br2ont26-2 cos? (2f + ¢y,)
(Using 2.20)
[ K Kiex®st8=2 4 [(opont26-2
|

+ K dr + eK'N

+ dr + eK'N

2200+28—2¢2

ap+6—1
T 6|_ ANe ANe

7

’ (4.18)

Now

K _ KN N
Ear P
(Using Lemma 4.4.1 with M = N and g(z) = 2° + ¢y
KN'-o

€

(4.19)
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We now consider |J| which was deferred from above.

Kiex® 182 4 [(opont26-2
|J] = dx

2a,+28—2 2
Ane Xz €

Kxak+2ﬁ—2

< ———dx
= Ja x2ont26-2¢2

Ne
(Since N > Ny)

K
<= | aorde (4.20)
€ ANe
K —«
2 [xl k]ANE
1N
S 2 [z177]
S Ele—ak

Thus combining (4.18), (4.19) and (4.20) gives

) 1
lim sup —
N—oo

/ p2mih >, cja® sin ($B+d)j)dx
ANe

< lim sup

Nesoo € €2

—Qyp I N —Qy,
G
= O(e)

(4.21)

Now let By. = [eN, N] \ Aye. Then using Lemma 4.4.2 with M = N we
get

) 1
lim sup —
N—oo

— 0(e) (4.22)

/ e2mih >, ¢’ sin (w5+¢j)dx
Bne

Substituting (4.21) and (4.22) into (4.16) shows us that lim sup y_, . ‘FILNT““I' = Ofe).
We now look at the third term in the Euler summation formula.
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N
| Third term| < / ch (K1j|z% %P cos (2 + ¢p)| + Koj|z® ' sin (27 + ¢y)|) da
eN j

N N
< Z Cj <K1j /N S(Zaj—l—ﬁ_ldl’ + ng/ LL’aj_ldLL’)
j € €

N
N

: [Z ¢j a7 + Koja™)

J

eN
<Y (KN 4 Ky N
J
(4.23)
And since a; < (1 — ) for all j Then (a; + ) < 1 and dividing by N
and taking the limsup as N — oo we see that the third term of the Euler
summation formula goes to 0 as N — co. Making use of (2.17) we have

2mihfig(n

O(e)

lim sup
N—oo

and using Proposition 2.2.5 (flﬁ(n)) is u.d. mod 1.

Now let us assume that (fys(n)) is uniformly distributed modulo 1 for all
b < 'm and consider the distribution of (f(;n41)s(n)). Using Taylor expansion
gives:

Frp(n 4 R) = fus(n) = B 50 )+ fm+1 (n)+--+0(n™)
(Where 5 > 0 and the constant in the
O term depends on h)

* h2 * —
= hns(n) + 5 fiwens () + -+ O(n ™)
<e

= fms(n) + €
(4.24)

Now the leading coefficient fr5(n) is ¢z # 0 and the leading power of
fos(n) is a — (1= B) ¢ Z(1 — B). Thus [}, 5 ) 5(n) satisfies the induc-

tion hypothesis and thus is u.d. mod 1. Hence by the difference theorem
Proposition 4.4.4 holds. ]

Thus if o and 3 satisfy the hypothesis of Theorem 4.4.3 then (n® sinn?)
is uniformly distributed modulo 1.
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4.42 a=k1-7)

Theorem 4.4.5 If0 < 8 < 1 and k € Z then (n*3=9 sinn®) is uniformly
distributed modulo 1.

We let gis(n) = cxnf=F sin (nf + ¢)+ frs(n) where fi1_p)s(n) is defined
as above and ¢ is as above. Theorem 4.4.5 will follow as a direct result of
the following Proposition.

Proposition 4.4.6 (gis(n)) is uniformly distributed modulo 1.

Proof
We will prove Proposition 4.4.6 by induction on k. We will also need a
number of other propositions.

Proposition 4.4.7

N
lim i Z e2ﬂim(glﬁ(n+h)—g15(n) = lim — Z e2mmthos (nP+9)

N—oo N—oo N
n=1 n=1

Proof
Using Taylor Expansion gives:

g1a(n +h) — gip(n) =
crhfB cos (n? + @) + crhn ™ sin (n” + ¢)

~~

<€

+ clh2( “Lsin (n” 4 ¢) — An P sm( B+ ¢)+ pntsin (n” + ¢)) +

<e
+hZ (cjamn® ™ sin (n? + @) + ;00 cos (n? + ¢)) +

-

g

<e
(4.25)
and so by Corollary 2.2.4
lim 1 i 2mim(g18(n+h)=915(n)) — i 1 i p2mimiKheos (nP+9) O(e)
N—oo N vt N—voo N &~

and since we can choose € to be as small as we want Proposition 4.4.7 follows.
|
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Proposition 4.4.8

1 N K
li E 2mimK h cos (nP+¢) <
IJI\?ﬁsooup N |~ ‘ h1/3

Proof
Once again we use Euler’'s summation formula. We let
Anp, = {z|1 <2 < N,|cosz?| > h~1/3}
Byy = [1,N]/Ann

First T 1 ,
lim sup [First Term| < limsup — / p2mimKhcos (z7+4¢) 4.
N—oo N—oo Ann
e (4.26)
+ lim sup — / e27rimKh cos (wﬁ +¢) dx
N—oo J: Byn
Ip
Now
i |[A| =1 d 2mimKh cos z8 . B—1 g\—1
limsup —— = limsup — — (e (27rmehﬁx COS T ) dx
N—o0 N—oo N ANn dx
<1 1 N
imsup —
= N N ([P T eos (27 1 9)]] 4y,
' 1 | K122 sin (2 + ¢) — K" ? cos (2 + ¢
lim sup — —
Nosoo Nh Ja,, |z cos? (2P + ¢)|

(Using 2.20)
< limsu £ li} + lim su ﬁ/
- N_mp Nh |cos(zf + )], . N—)oop Nh Jap

) KN'-BNB K,
< limsup ———— + limsup dx
AN

sin (2 + ¢)
cos? (28 + ¢)

' +l.0t. dx

Nooo Nh.h=1/3 Nooo Nh.h=2/3
(Using Lemma 4.4.1 with )M = N and g(z) = 2° + ¢)

) ( KN KlN)
= lim sup +

Vo \Nh2/3 T NRL/3
< Kh_1/3
(4.27)
and using Lemma 4.4.2 with M = N gives
I
lim sup Hz| = O(h™13) (4.28)
N—oo N
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Finally

Third Ty K (N
lim sup w < limsup — / ‘xﬁ_l cos (xﬁ + qb)‘ dz
N—oo N Nooo N Jp

K N
< lim sup N/ 2PV dx (4.29)
1

N—oo

< limsup K N?~!

N—o00
=0
Combining equations (4.26) - (4.29) proves the proposition. u
Using Propositions 4.4.7 and 4.4.8 we see that

N
Z e27rih(g15 (n+h)—g15(n))

eN

. K
lim sup — < TG

N—oo N

and so we can use the generalised Van Der Corput’s Difference Theorem to
deduce that (g15(n)) is u.d. mod 1.

Now assume that (g,,3(n)) is u.d. mod 1 for all m < k. Using Taylor
expansion gives:

h? _
gia(n +h) = gia(n) = hgig (n) + g3 () + -+ O(n ™)
(Where 6 > 0 and the constant in the O term depends on h)

h2
=gl _ans(n) + =0 _aq_gns(n) + -+ 00
Jk—1 /3))5( ) 2g(k 2(1 5))/3( ) (n™)
<€
= 9i-a-pns(n) + e
(4.30)

Now the leading coefficient gy ;_g))5(n) is ¢t # 0 and the leading
power of g5t g 5(n) is (k—1)(1 — B). Thus g;5(n) satisfies the induction
hypothesis and so is u.d. mod 1. Hence by the difference theorem Proposition
4.4.6 holds. ]

Theorem 4.4.9 For 0 < 8 < 1 and 0 < «, (n“sinn®) is uniformly dis-
tributed modulo 1.

Proof
Combining Theorems 4.4.3 and 4.4.5 proves the theorem. ]
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4.5 The distribution of n“sinn
Theorem 4.5.1 Ifa < % then (n®sinn) is uniformly distributed modulo 1.

In order to prove the Theorem 4.5.1 we will actually prove the following
more general theorem.

Theorem 4.5.2 If a < % and a € R then n®sin2man is uniformly dis-
tributed modulo 1.

Proof
We will make use of the following theorem due to Dirichlet.

Theorem 4.5.3 For any number a and integer M 3 a rational & with |q| <

_bp 1
Mand’a | < 2

Proof
It suffices to find a non-zero integer ¢ such that || < M and |lag|| <
where ||ag|| is the distance from ag to the nearest integer.

Consider the numbers {na}, n =1,--- M These are M numbers in the
interval [0,1]. By the pigeonhole principle, there must be a pair of them,
say {ia} and {ja} with [{ia} — {ja}| < ;. Setting ¢ = |i — j| proves the
theorem. ]

Pick g with a < § <
follows

%, pick € > 0 and let N;, © = 1,2 be chosen as

1. Pick Ny > 15

_1
2. Pick Ny > (5%) 77, so that for > e(N'"P¢ + r) we have 27e?z® >

Oél'a_l

_o
2me3

Pick N > max(Ny, Ny) and pick M ~ N¥.
Using Theorem 4.5.2 we write a = § + 6 noting that 1 < ¢ < NP,

g6 < N=% and make the change of variables n = mq+r, m€Z,0<r < q.
We then have

N q—1 L%J
Z 627rihna sin 2mwan < Z 627Tih(m4+7‘)a sin (2ma(mq+r)) (431)
n=eN =0 =[]
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But

sin 2a(ing + 1)) = sin (21 (2 46 (mg 1))

= sin (27r (mp -+ mqd + % + 7“5)) (4.32)

= sin (27r (mq5 + % + 7’5))

(Since mp € Z)

and substituting (4.32) into (4.31) gives

N q—1 [N/q]
Z 627rihna sin 2ran j : 2 : 27rzh(mq+r sin (2n(mq6+%+r6)) + O(q)
n=eN r=0 m=[eN/q]|

(4.33)

The advantage of this change of variables is that it is now easier for us
to apply the Euler summation formula. This is because when differentiating
the exponent we now either reduce the power of n out the front or we pull
down a ¢d which is of size ~ N5,

We now look at the inner sum of (4.33). Given our choice of M this sum

becomes:
N/q
z : 627rih(mq+r)asin(27r(mq5+%—I—r&))

m=eq/q
As we have done previously we will estimate the size of the sum by examining
the Euler summation formula. Now let g(z) = 27 (52: + %), C(z) = 2mdz™
and D(z) = az® !, Define the sets Ay, and By, as follows:

Aner = {z | eN <z < N,|C(z) cos g(x)+D(z) sin g(x)| > ey/C(x) (x)?}

Using the fact that Asinz + Bcosz = vV A2 + B2sinx + tan™! B/A we
see that Ay, corresponds to the set of x where

VC(2)? + D(x)?|sin g(x) + 0() + D(x)| > e/C(x)? + D(x)?

Where 0(z) = tan™! ggj)) = tan~! 27“5“’” This is the same as the set of © where

|sing(z) + 0(x)| > e. Thus an equvalent definition of the set Ay, is:

Ane={x | eN <z < N,|sing(z) 4+ 0(x)| > €}

53



BNer = [€N7 N] \ANET

We will soon show the sum over r of the size of all the By, sets is small.
The first term of the Euler summation formula is given by:

N/g . .
|Fi1"St Term| _ / e2mh(tq+r)a sin (27r(tq6+7p+r6))dt
eN/q

IN

1N 2miha® sin (2m(dx+12))
_/ eT('Z T Sin T(o0X 7 dx
q Jen

(letting = =tq+ 1)

1 / 627rihma sin (27 (dz+ %)) dx
ANe’r

+O(1)

IN

; +0(1)

1 o
+ '_/ 627r2hm sm(27r(5w+7))dx
\q BNer

I Ip

J/

(4.34)

1Al =

/ % (627rih:na sing(w)) (Oﬂ;a—l sin g(x) + 2mdx® cos g(x)) - dzx

ANer

2= ==

1
L\/(axa—l)2 + (27‘(‘51’0‘)2] Ay

K N d -
+ 2 / e2mhx sing(z) “ ((OASL’a_l sin g(;(;) + 2mex® cos g(:b“)) 1) dx
q ANe'r dx

-~

g

’ (4.35)

We now attempt to invoke as similar argument to Lemma 4.4.1 to evaluate
the first term of (4.35). 77 So for each = € Ay, we have

1
V(aze=1)2 + (2mdae)? =

We now ask how many intervals there are in the set Ay... We are concerned
with the set where |sing(z) + 6(z)| > e. Let the number of intervals in
this set be T' As in Lemma 4.4.1 we find that if |sing(z) 4+ 6(z)| = 0 then
g(z) +0(x) = tr, t € Z. Now 0(x) is positive, and is no bigger than 7, and
the % term of g(x) can be treated as a constant. Thus we are essentially
concerned with how many times 2wdxr = tr. In addition x < N. Thus we
solve the inequality

k(N) < N~

7t

— < N
2w
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to find that ¢ < 26 N and can thus conclude that 7" < KéN. Thus we find
that

K

q

1
L\/(axo‘_l)2 + (2%5za)2]

We now look at the integral J.

<2 /
ANe'r

KSNN—@
< — (4.36)
qe

ANsr'

dx

~'sin g(x) + 2mex® cos g(z)) _1)

(a — 1)z* 2 sin g(z) + 4ndax® ! cos g(z) + 4?62 sin g(z) i

q Aner (ax*=1sin g(z) + 2mex® cos g(z))?
< 5 K272 + K020~ + K58%0072 dr
>~ q Ja,. €2 (62:1:2(1 + $2a_2>

(4.37)

Now by the arithmetic mean, geometric mean inequality we have

521.(1 xa—2
St <=
! 2 T2
And so we can further bound |J| by:
K lea 2—|—K 52 a—2

J| < —
‘ | (52x2a+x2a 2)

< _/ (4.38)

KNI e
<
q

Our next aim is to show that Y ?_, |Bye| = O(eNg). We fix z and let
Cnez ={r|1 <7 <gq,|sin (27r (51’ + %) + 9(:)3)) | < e} ask how big Cly,, is.
Let e; = %:E Now if sin (27y + ¢) < € then we must have {y} € (K, K+¢;)
for some K € [0,1).

Letting y = “Z above we find that the size of Cy, is given by qﬁq?p (K, K+

€1). Now {kqp } takes on ¢ evenly spaced values in the interval [0,1). Thus

there will be approximately €;¢ of them in the interval [K, K + €;). So the
size of Cye, 18 O(ger) = O(qe).
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Now using Fubini’s theorem we can conclude that

q N
|BNET‘| - |CN5x|
2 2 (4.39)
= O(eNg)

Thus combining (4.35), (4.37) and (4.39) gives:

1 & KgN' 1

— First Term| < — + —0O(eN

N ;' | Nq qN (Na) (4.40)
< KN4 0(e)

We now consider the third term.

q(tq +r)* 'sin (271’ (tq5 2y 7‘5))
q

+qd(tq + )% cos (2% <tq5 + % + 7’5)) ' dt

N/q
|Third term| = K
eN/q

N/q
<K (q(tq +7r)*" +qd(tq+ 7)) dt
eN/q

K20
= K [(tg + )"0, + Zq [(tq + )]

eN/q
Kyqd
< KlNa + 2_qN0c+l
q

(Since r < ¢ < N” the r gets absorbed in the constant.)

N KoN
< 2D (gNeTY %(@N“)

(N+0)-1 4 No=b)
(4.41)

Note that since & < 8 < 3 we have (o — ) < 0 and (a + ) —1 < 0. Now
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combining (4.33), (4.40) and (4.41) gives

1 | Y o 1< g LN/al ' - .
lim sup — Z e27r2hn°‘ sin 2mran S lim sup — Z 9 Z e27rzh(mq+r) sin (27r(mq5+7+7"5))
N—oo N N—oo (¢ —0 m=[eN/q]
1 q
<limsup— Y (KN~ 4 K’ (N1 1 N“#) 4 O(c))
N—ooo ( —0
< limsup K (N~ + N@HO=1 4 No=F) 1 O(e)
N—o00
=0(e)
(4.42)
Thus n®sin2man is u.d. mod 1. for 0 < a < 1 and a irrational. ]

Proof of Theorem 4.5.1 Letting a = % in Theorem 4.5.2 proves this
theorem. ]

4.6 The distribution of (f(n)sinn”)

For a sufficiently slow function f we find that we can extend the results of
Theorem 4.4.3 to include more general families of sequences.

Theorem 4.6.1 For 0 < § < 1, if f(x) is a function such that f'(x) < %
with v > 1 — B and f(z) — oo, then (f(n)sinn?) is uniformly distributed
modulo 1.

Proof
Pick 0 < # < 1 and assume f(x) meets the conditions above. Pick 0 < e < 1
and choose N;, 1 = 1,2 as follows:

1. Vy (SO that f(ENg) > 1)

2. Ny > Nyand N3 > 1 (g) 7571 (So that eBx? L f(x)e > 277 > f/(x)sinaP.)

Then choose N > Nj.
Once again we use the Euler summation formula and define
Ane = {z|eN <2 < N, |cos2”| > €}
BNe = [EN, ]\7]/14]\/6
We look at the size fo the first term.

2mihf(x) sin :(:Bd / 27ihf(z) sinz?
e x|+ e dz
/ANs Bne (443)

(. J/ (. J/
-~ -~

I Ip

|First Term| <

o7



Al =K

/ a (e%"hf(x) Si”B> (f'(x)sina® + B2~ f () cos %) Lda
ANE

dx

<K +eK'N

dx

d . .
/ _627rzhf(x)smx*3(Qﬁxﬁ—lf(x) COSLEﬁ)_ldQE‘
ANe

(Since N > N3 we can apply (2.21))
1 ] N
T @ eos e o,
/ K 2?72 f(x) sina? + Koz 72 f(x) cos 2P + Kz2P~1 f'(x) cos 2°
ANE

x28-2 f2(x) cos? xf
Now observe that since f'(x) < Kz~ < Kx’~! then
| K 2% 72 f(x) sin2® + Ky2? 2 f(x) cos2” + K3z~ f'(2) cos 2|
< B2 72 f ()| + [Koa” 2 f ()] + | Kaa” f ()]
< Ko7 f(a)| + K'2*72
< K272\ f(z)| (Since N > Ny)

x|

dr + eK'N

(Using (2.20))
(4.44)

Thus we have:
KN 1
1< ——+4+ K ——d l.ot. K'N
|A|_€f(N>—|— /ANE f(:c)cos2x5\ r + l.ot. + €
(Using Lemma 4.4.1 with M = N and g(z) = 2”)
KN K" dzx (4.45)
< + — ——+ lot. + eK'N
ef(N) € Ja,. f(z)
< KN N K'"N
~ef(N) e f(eN)

Once again using Lemma 4.4.2 with M = N we have

+lot.+eK'N

I 1 , .
lim sup @ = limsup — / e?mihf (@) Smxﬁdx‘
N—oo N—oo N Bye (446)
= O(e)
Combining equations 4.43, 4.45 and 4.46 gives:
. |First Term| <1 K N K" +O0(e) + Lot
imsup ———— < limsu € 0.t
N N T NG\ f(N) T Ef(eN) =) (447)

= 0()
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Third T K (N
limsupM Slimsup—/ |27~ f(x) cos 2| da
N—oo N N—oo N eN

K N
< lim — A
N—oo N eN
K N
_ 1 B—
= lim = [2777] (4.48)
| K NB—
< 1
< lim N

Combining equations (4.47) and (4.48) and using Proposition 2.2.5 we see

that
N

1 2mih f(z) sin 2
N2

lim sup —
n=1

N—o00
and so (f(z)sinz”) is u.d. mod 1. |

= 0(e)
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Chapter 5

Applying functions to
sequences

In the previous chapters we have analysed the distribution of particular fam-
ilies of sequences. In this chapter we take a different approach and attempt
to apply functions to families of sequences about which we already know
something. We have already seen an attempt at this in section 4.1 when
we discussed the distribution of sin x, where (z,) was uniformly distributed
modulo 27. Most of the time however we will not be able to arrive at par-
ticularly conclusive results about the distribution of such sequences. This is
because we can generally find fairly contrived yet valid sequences which serve
as a counter example to anything we would like to conclude.
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5.1 Adding and multiplying uniformly distributed
sequences

Let (u,) and (v,) be sequences which are uniformly distributed modulo 1 and
consider the distribution of (u, + v,). Very little can be can be said about
the above sequence. In some situations it will be u.d. and in others it will
not. To illustrate the first of these two cases, let u,, = v2n and v, = V3n
then u, + v, = (V2 + v/3) n which is u.d. since v/2 + /3 is irrational.

To illustrate the second case, let u, be as above, and let v, = — /2n.
Then uw, + v, = 0 Vn and hence is clearly not u.d.

Similarly we consider the distribution of (u,v,) and again arrive at in-
conclusive results.

When u, = v, = +/2n then u,v, = 2n? which is clearly not u.d.
mod 1 However if u,, is as above and v,, = +/3n Then u,v, = +/6n? which
is u.d. mod 1 using Proposition 3.1.3.

5.2 The distribution of log u,

We now ask whether the distribution of (logu,) is related to the distribution

of (uy).

Certainly if (u,,) is not u.d. mod 1, then we can have (log u,,) not u.d. mod 1.
To see this simply let u, = n.

Now let u,, = n# where 0 is irrational. Then u,, is u.d. mod 1 and

N

§ 27r2 logn® __ § e27rz(log n—+log0)
n=1
27rz log 6 § e27rz logn

However dividing by N and attempting to take the limit as N approaches
infinity we find that the limit on the right hand side does not exist (see proof
of Proposition 3.2.1) and thus the limit on the left hand side does not exist
and therefore is certainly not zero, hence logn# is not u.d. mod 1. Thus if
(uy,) is u.d. mod 1, then we can have (logu,) not u.d. mod 1.

Now suppose that 0 < logu, < 1 and that (logu,) is uniformly dis-
tributed in the unit interval and so (log u,) isu.d. mod 1. Then1 < wu, < e.
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Let v, = {u,} and consider the distribution of v,

: 111\7;(0’6_2) 1 7\;(1,6—1)—|—¢7\?(2,6)
TN Al N
. 8 (0, log (e — 1)) + ¢85 (log 2, log e)
= lim
N—o0 N

=log(e—1)+1—1log2

~ 0.848

>e—2

Hence (v,) = ({u,}) does not satisfy (1.1) and so is not uniformly dis-

tributed in the unit interval. Hence (u,,) is not uniformly distributed modulo
1.
It is thus possible to have (logu,) u.d. mod 1, and (u,) not u.d. mod 1.
Finally we let u, = e"VZ — {&"2} + {ny/2}. Then {u,} = {nyv/2} and
SO u,, is uniformly distributed modulo 1. We now consider the distribution of
(log uy,). To do this we will use the following fact: Pick € > 0 and let no = L.
If ny < a,band |b —a| <1 using the mean value theorem we have:

|logb —logal <€ (5.1)

Pick Ny so that eNov2 > ny + 1. Then since |u, — ¢™?| < 1 we can

use (5.1) to show that for n > Ny
| log u,, — log e"V?| < ¢

This means that for n > N, logu, = nv2 + €, where le,| < € Since € can
be chosen to be arbitrarily small we can conclude that for n > Ny (logu,)
is uniformly distributed modulo 1. This means that (logu,) is uniformly
distributed modulo 1 and so it is possible to have both (u,) and (logu,) u.d.
mod 1.

. From the above analysis we can conclude that the distribution of (log w,,)
is not at all dependent on the distribution of (u,).

5.3 The distribution of u, + sinv,

Proposition 5.3.1 If (u,,v,) is u.d. mod (1,27) then (u, + sinwv,) is uni-
formly distributed modulo 1.

Proof
Let yx = ugp+sin vy Now {y.} € [0, h) iff 2, = {ug}+{sinv,} € [0,A)U[1, 1+h).
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Our aim is to show that limpy_, o3 (Oh) = h In order to do this we will
first consider the joint distribution of ({u,}, {sinv,}).

For ¢ > 0, a,b € [0,1) let 6, = sin'b, 7v = sin ' (b + e),
Oy = sin' (1 — b)andyy = sin"' (1 — (b + ¢)). Ifr, = ({u,}, {sinv,}) €
(a, a + €) x (b, b + ¢€) then

= ({un}, {vn}or)
6 (a,a+¢€) x [(01,71) U (m —y1,m—61) U
(7 + Y2, ™+ 02) U (21 — b4, 21 — 75)]

And so we have

Nh_r)n N¢ ((a,a+€) x (byb+¢€))

— lim (G ((aa+€) x (0r,7)) + (@, a+ ) x (x— 7,7 6))

+63 ((a,a+€) X (T + 72,7+ 62)) + 63 ((a,a 4 €) X (27 — 0,27 — 7))
=)+ =0 —7+y)+ (T +0—7—7)+ (27 — 72 — 27 + 05

=(a+e—a) -
(Since (uy,v,) is u.d. mod (1, 27))
= 22—; ((sin™" (b+€) —sin'b) + (sin™" (1 — (b+¢€)) —sin~"' (1 —b)))

€2 1 1 5
:_< -5 \/1—1—b> ol€)

(by Taylor expansion)
(5.2)

We now consider qu{é’k}(o, h) for N large.

N—oco
1 11+h51
_ 5.3
~ iy (> S ) 53

B= Oa———ﬁ 1

where E,p. = (ea,e(a+ 1)) x (ef,e(8+ 1))
1 B , Fage Then 2 is in (0, h)U(1,1+
1y Lth
h) and whenever zj is in (0, h) U (1,1+ h) then ry is in ZB 222

Now when ever 7y, is in Zﬁ . Z

1_3 anﬁs
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and so we can evaluate limy_, %qﬁ}{é”“}(o, h) by evaluating the integral asso-
ciated with the right hand side of (5.3), making use of (5.2). We get:

lim —gH0, h) / / o ! dad
Nooo NN L \/1—y \/1—(1—y)2 y

-2l (m*m)

h . —1 -1 1
= [sin™"y —sin (l—y)}o
hm T
Fr oy
=h
(5.4)
and so (yx) is u.d. mod 1. u

5.4 The distribution of {u,}sinwv,

Proposition 5.4.1 If (u,) is uniformly distributed modulo 1 and (v,) is uni-
formly distributed modulo 27 then ({u,}sinv,) is not uniformly distributed
modulo 1.

Proof
Let Siy = {n:n < N, {u,} < €} and Soy = {n : n < N,0 < sinv, < €}
Now assume that ({u,}sinv,) is u.d. mod 1, then

;{\qfﬁn} sin vy, (O E)

€= N
. |Siv U Son|
> gm Ty (5.5)
lim |Sin| + |San| — |Sin N San|
_N—>oo N
> e+ f(e) — €

Where f(e) = limy_o0 "9 And thus from (5.5) we get

fle)<é (5.6)
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Now let v = sin™! € then

(0, 6)

f(e) = lim

N—o00
— lim 1]}\;1(07/7)+¢an(71-_7771->
N—oo N
(y=0)+(r—m+7) (5.7)
2m
(Since (v,,) is u.d. mod 27.)

SHS

Taking ¢ = 0.1 we get f(¢) = 0.032 > €2 = 0.01 which contradicts (5.6).
Thus ({u,} sinv,) cannot be u.d. mod 1. |

—~
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Appendix A

The distribution of nsinn

In this appendix we attempt simplify a proof given in [2] to show the uniform
distribution of the sequence (nsinn). The proof of [2] actually falls down in
one particular case. While an attempt was made to understand this case,
lack of time meant that we could not write it up in time for this report.

Theorem A.0.2 For a € R\ Q the sequence (nsin2mwan) is uniformly dis-
tributed modulo 1.

In the course of the proof we will make use of the following Lemma which
is known as Van Der Corput’s estimate.

Lemma A.0.3 Let g € C?*[X;, Xy and assume that 0 < A < ¢"(z) < % then

X2
Z e27rig(x)

r=X1

< % (XA% + A—%) (A.1)

where X = X9 — X;.

Proof
(See [9])
If A > 1 then we just estimate the left-hand side trivially by X. So we may
assume that A < 1.
We shall shortly show the estimate

B
D et — g\t (A.2)
n=A

whenever there exists an integer M such that

1 1
M_§§gl(n)§M+§
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forall A<n<B.

Assume (A.2) for the moment. From the hypotheses on ¢” we see that
¢’ is increasing and that ¢'(Xs) — ¢'(X;) < % Thus we can partition the
left-hand side of (A.1) into 2L summations of the form (A.2), so that we
can estimate the left-hand side of (A.1) by

(XA+ DAY ]

= < ST

as desired.
Now we prove (A.2). We may set M = 0 by the trick of by replacing g(n)
by g(n) — nM (note that this does not affect (A.2)). Thus we have

forall A<n<B.

By dividing the sum into three smaller sums if necessary, we can assume
that one of the following three statements is true:

Case 1: —1/2<g'(n) < =A% for all A <n < B.

Case 2: —AY2 < ¢'(n) < A\Y/2 for all A <n < B.

Case 3: A2 < ¢/(n) <1/2for all A<n < B.

We will not consider Case 1 as it is very similar to Case 3.

Consider Case 2. By the hypothesis on ¢” there are at most 2A\~'/2 terms
in the sum, so we may trivially bound this sum by 2A~'/2, which is OK.

Now consider Case 3. We shall use a summation by parts trick.

(From the MVT we have

gn+1) = g(n) +g'(n +0,)

for some 0 < 6,, < 1. Thus

, . . 1
2mig(n) __ 2mig(n+1) _ 2mig(n)
€ =€ € e2mig'(ntbn) _ 1°
Since ”
1 le+1 1 4 1
e L ot (9)2) — -
G—1 " gen—1 2 2023
we have
B B-1
Z e27rig(n) _ e27rig(n) + O(l)
n=A n=A
= omi o [ 1
= <e27”g("+1) — 2mig(n) <§ cot(rg' (n+0,)) — 5)) + O(1).
n=A
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By the summation by parts formula previously seen as (3.19) we can rewrite
this as

- ' 1 ’ ] 1
e?mi9(B) (% cot (mg'(B—140p_1)) — 5) — 2mig(4) (% cot (mg'(A+64)) — 5)
B-1

B Z o2mig(n) <% cot (g’ (n +6,)) — % cot (mg'(n — 1+ Hn_l)) +0(1)
1

n=A+

The first two terms are no bigger than A~/ since we are in Case 3 and

cot(d) = % for 0 < # < Z. Now look at the third term. The absolute value
of this term is less than

B-1

Z | cot(mg’(n + 6,)) — cot(mg'(n — 1+ 6,_1)|.

n=A+1
But in Case 3, the sequence cot(mg'(n + 6,)) is decreasing in n, so we can
telescope this series as

cot(mg' (A4+1+60411)) — cot(rg’(B—1+6p_1)

1/2

which is no bigger than A\™"/“ since we are in Case 3. ]

Lemma A.0.3 can actually be generalised to work for all deriavtives of g.
It’s general form is stated below:

Lemma A.0.4 Let g € C*[X1, Xo] and assume that 0 < \; < gU)(z) < K\,
then lettign J = 27 we have

Xo
Z e27rig(x)

=X

where X = Xy — X;.

S K (X)\l/(Z—J) + 1 +X1_2/J+X()\X4_8/J)_2/J) (Ag)

We will use this Lemma for the case when j = 3 without proof.
Proof of Theorem A.0.2
As usual we pick € > 0. Let €5 = sin" !¢ and pick b € Z with b # 0. We
now choose N to be “large enough” depending on b and €. Let M ~ Ns
and invoke Theorem 4.5.3 to write o = § + % with ¢ < N% and % < N7¥.
Without loss of generality let us assume that @), q > 0.

Throughout the proof we let

N
S = Z 627ribn sin 2wan (A4)
N
n=yg

68



Our aim will be to show that S < KNe. This will mean that dividing
by N and taking the limsup as N — oo will give limsupy_, % = 0
and so making use of Proposition 2.2.5 we can conclude that (nsin2mwan) is
uniformly distributed modulo 1.

The proof now breaks into two cases, the first where ) > % and so «v is
close to a rational, and the second where ) < g and so « is far from being
a rational.

Case 1: @ > g
We now write n = mq + k with 0 < k < ¢q . Then

sin 2ran = sin (27r (g + %) (mq + k)) — sin (27r (g + %) (mq + k:))

For fixed k let f(m) = 27 (% + m‘gk) and g(m) = b(mg + k) sin f(m)
and note that

2 2
g"(m) = K% cos f(m) + K’ (%) (mq + k) sin f(m)

Let us now denote by By the set of k’s for which either sin f(m) < € or

cos f(m) < e and so one of the terms of ¢” is very small. These are k’s for

which either

0< {M} <sinle or cosle< {M} <1

2T 2T

Now 2eth « N ¢) — sin™'e and so if 0 < {%} < 2sin!e then sine
condition is satisfied, and a similar argument works for the cosine condi-

tion. Hence for ¢ large enough the size of By can be approximated by
2kp 2kp

gbt{l a }(0, 2¢9) —I—gbé a }(1 —2€9,1). Now {%} takes on ¢ evenly spaced values

in the interval [0,1). Thus for large enough ¢ there will be approximately

2¢5q of them in the interval [0,2e¢2) and the interval [1 — 2e9,1). Thus the

size of By, is O(qe). Let Ay denote the set of all other k’s. Then we have

N N
q q
S < Z e27rig(m) + Z e27rig(m)
N
q ) N
< Z e2mg(m) + qu L — (A5)
Ak m=1 q

2|z

S Z e27rig(m) + K Ne
A

3
Il
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Now for k € A, we have:

2
lg"(m)| = K%; cos f(m) + K’ (%) (mq + k) sinf(m)‘
2 2
< K% + Kez% (A.6)
2
L
=10

In addition,

2

" — KL cos f(m (4 2m sin f(m
9 <m>|—'KQ 17 >+K(Q) (mq + k)sin f( >‘

2 2
> Kq—62 - K (2) (mq + k)es

Q@ Q@ (A7)
2 2

Z K%Eg — K%Eg

> quﬁz

This case now splits into three subcases.
5/4
Case la: 0 < Q < €2€2N?

2.2
€°€5

In this case we can apply Lemma A.0.3 with A\ = ¢ €5 . Note that:(‘i—z) <

5/4 2
N <@so < €2, We get:

Q|

(O

Case 1b: @ < ]27255/24
2
In this case we are required to look at the third deriavtive of g and use the
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general form of Van Der Corput’s estimate. We have:
I

) = K sin o) + K (%)3cosf(m)

As previously we can bound ¢® form above and below via:

3

() = sin f(m (L 2m cos f(m
9 0m)] = | sin >+K(Q) (mq + k) cos f( >i

7 ¢
A9
q
Q2
and
7

= (4 3m cos f(m
199 ()| = ‘ Lo s >+K(Q) (1mq + k) cos £( >‘

¢ q 3
—62 K(—) (mq + k)es

Q? Q (A.10)
Ve qs
> K@eg @eg
e
> K@Eg

We can apply Lemma A.0.4 with \3 = g— Observe that q le/s = N8,
We get:

—1/4
N 3\ 1/6 N 3/4 N 2 /N 3
HORNGREIE
qg \Q q g \ ¢ \q
KN [ q g\3/1 [\ !
_ BNV 4 (_) &
q ( Ty \w M

—1/48 —-3/8 —-9/32 N 8/

2mig(m)

q €6
KNN-Y%#
Lo (For N large enough)
q
KN
< ¢ (For N large enough)

q
(A.11)
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We noe joinc Cases la and 1b together and show that we can put an
appropriate bound on S.

Using (A.4) and (A.8) we get

S < Z Ze2wzg(m + Z Z 2mig(m)

m

(A.12)

This is the appropriate bound for S and so if % < @, €eN? then the sequence
is u.d. mod 1.

Case lc: Q > eN

The proof of this case in [2] actually falls down for this case when considering
the sequence (nsin2man). It is possible to find a proof that S = O(Ne¢) in
this case, however limited time meant that we could not write it up.

Case 2: Q < g
We begin by setting H = ¢3¢5). We now break the sum from (A.4) up into
smaller but overlapping sums of length H and sum these up. The result is

that each term from (A.4) gets summed H times, and in addition a few extra
terms at the end are added. We find that

N
§ ! Z Z ?rib(nth)sin2ra(nth) _ oxtra terms which are added at the end
n=4 g h=H <H
.
< ﬁ Z Z e27rzb(n+h) sin 2ra(n+h) + Ne
:ﬂ_ 3H |h=H

(Since H < €65Q < ce’e,N < Ne)
(A.13)

We now write h = mq + k and observe that:
sin 2wa(n + h) = sin (27rom + 27 (g + %) (mgq + k‘)) = sin (27rom + 27 (%p + %))

For fixed n, k let f(m) = 2man + 27 (%” + %Hﬂ and let
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g(m) = b(n 4+ mq + k) sin f(m). We see that

2 2
g"(m)=K (%) (n+ h)sin f(m) + K’% cos f(m) (A.14)
In addition we can now write S as:
S < %Z Ze%ig(m) + Ne (A.15)
nk | m

Where n ranges from 1 to N, k ranges from 1 to ¢ and m ranges from % to

%. We would like to examine the size of the inner sum of (A.15). In order
to to this we will attempt to find a A such that A < |¢”| < K\ and then
invoke Lemma A.0.3. Unfortunately there are problem values of (n, k) for
which ¢”(m) is very small or even vanishes. In order to avoid this we will
break the set of (n,k) pairs up into the “good” set and the “problem” set
and show that the “problem” set is not particularly large.

There are now two sub cases. Either () < K Ne and so the dominant term
in the second derivative is the first one, or () > K Ne in which case the two
terms of the second derivative are of roughly the same size. We will consider
these two cases separately.

Case 2a: () < KNe
Let us denote by B, the set of pairs (n, k) which have sin f(m) < €; and
by A, the remaining pairs. Now %Jrk < % = %¢5 and so this term of f(m)

makes very little difference to sin f(m). Thus the size of B,y is essentially
no @
the same as Y 1_, qb;{v T }(0, €). And since (na) is uniformly distributed

modulo 1, for N large enough this is about g/Ne. Thus we get

% 3OS eriatm)
Bpr | m

1 H
< — .gNe.—
H q (A.16)

= Ne

Now over the set A, we have e, < sin f(m) < 1 and so since the first
term of ¢" is the dominant one and since (n+h) > & —3H = O(N) we have:

2 2
K (%) Ney < |¢"(m)] < K (%) N and we can apply Lemma A.0.3 with

A= (%)2N.

Case 2b: ) > KNe¢

73



In this case we rewrite the ¢” as follows.

g"(m)=K (%) V(n+ h)?2 + K'Q%sin (f(m) + 276(n)) (A.17)
Where §(n) = 5= tan™ (%)

Let us denote by By the set of pairs (n, k) which have sin (f(m) + 276(n)) <
€2 and by A,; the remaining pairs. As before the m‘”k term of f(m) makes

very little difference to sin f(m) + 6(n). Thus the 81ze of B, is essentially
{n*+72+0(n)}

the same as ¢ (0,€). Now 6#(n) is a decreasing function rang-
ing over the domain [1, ] We can break this domain up into subintervals
I = [n_,my],i=1...+ Wlthl—no <np<-o-<ma such that for n € I;

we have 0(n) = 0(n;) + O( ). Now for |I;| > M, where M, depends only on
epsilon, we certainly have

{n*+42 10(n)) {n+2246(n;)+0(e)}

Ppnirm (06 = Bpu_y g (0,¢) (A.18)
< Ke(n; —ni_1)
and for |[;| < M, then we at least have

{n*+72+0(n)}
QS[m L nl] (0, 6) < My (Alg)

Combining (A.18) and (A.19) we get

{n®+2240(n {n°+2246(n)}
¢N Z ¢ ”z 1, nz O 6)

i
< Z (Ke(n; —ny_1) + M)
i=1

!/

:KN€—|—KMO

< KNe
(For N large enough since My does not depend on N)
(A.20)

Thus the size of B, is essentially the same as it was above and we find that
(A.16) holds in this case as well.

Now over the set A, we have €5 < sin f(m) < 1. In addition we observe
that KNe < Q < v/(n+h)2+ K'Q* < N and so

2 2
K <%) Nees < |¢"(m)| < K (%) N
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2
and as in the first sub case we can apply Lemma A.0.3 with \ = (%) N.

We now join both sub cases back together and apply Lemma A.0.3 over
the good k’s. Observe that

and
5
q q N7s 1
= < =O(N
H Q6 (N72)
We get
N ermiam| < K <E>\5 F14A 2)
-~ q
KH [ 1 q q
S )
q ( \E)" HA%)
< E (N—i +N‘% + %&)
1 “alqVN (A.21)
KHN~1
<
q
(For N large enough)
KHe
<
q
(For N large enough)
And using (A.15), (A.16) and (A.21) we get
1 2mig(m) 1 2mig(m)
Sﬁﬁz 26 g ‘I—EZ Ze g ‘I—KNE
Ank m Bk m
1 He
Sﬁ;:?—f‘KNE (A.QQ)
nk
1 He
<—.Ng.—+ KN
Sy q p + €
= K Ne

This is the bound we were after, and so we can conclude that for () < g
then the sequence is uniformly distributed modulo 1. [ ]
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