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A basic problem that occurs in many areas of analysis,
combinatorics, PDE, and applied mathematics is the following:

The space of all objects in a given class is usually very
high (or infinite) dimensional.

Examples: subsets of N points; graphs on N vertices; functions on
N values; systems with N degrees of freedom.

• The “curse of dimensionality” (large data is expensive to
analyse)

• Failure of compactness (local control does not imply global
control; lack of convergent subsequences)

• Inequivalence of norms (control in norm X does not imply
control in norm Y )

• Unbounded complexity (objects have no usable structure)

2



But in many cases, this basic problem can be resolved by the
following phenomenon:

One can often reduce the analysis to the space of ef-
fective objects in a given class, which is typically low-
dimensional, compact, or classifiable.

Examples:

• Parabolic theory (Compact attractors, Littlewood-Paley,
Hamilton/Perelman, . . .)

• Concentration-compactness (Lions, . . .)

• Graph structure theorems (Szemerédi, . . .)

• Ergodic structure theorems (von Neumann, Furstenberg, . . .)

• Additive structure theorems (Freiman,
Balog-Szemerédi-Gowers, Gowers, . . .)

• Signal processing (compression, denoising, homogenisation, . . .)
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Structure vs. randomness

To understand this phenomenon one must consider two opposing
types of mathematical objects, which are analysed by very different
tools:

• Structured objects (e.g. periodic or low-frequency functions or
sets; low-complexity graphs; compact dynamical systems;
solitary waves); and

• Pseudorandom objects (e.g. random or high-frequency
functions, sets, or graphs; mixing dynamical systems; radiating
waves).

Defining these classes precisely is an important and nontrivial
challenge, and depends heavily on the context.
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Structured Pseudorandom

Compact Generic

Periodic (self-correlated) Mixing (discorrelated)

Low complexity/entropy High complexity/entropy

Coarse-scaled (smooth) Fine-scaled (rough)

Predictable (signal) Unpredictable (noise)

Measurable (E(f |B) = f) Martingale (E(f |B) = 0)

Concentrated (solitons) Dispersed (radiation)

Discrete spectrum Continuous spectrum

Major arc (rational) Minor arc (Diophantine)

Eigenfunctions (elliptic) Spectral gap (dynamic)

Algebra (=) Analysis (<)

Geometry Probability
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0. Negligibility: For the purposes of statistics (e.g.
averages, integrals, sums), the pseudorandom compo-
nents of an object are asymptotically negligible.

• Generalised von Neumann theorems: Functions which are
sufficiently mixing have no impact on asymptotic multiple
averages. (Furstenberg, . . .)

• Perturbation theory: Perturbations which are sufficiently
dispersed have negligible impact on nonlinear PDE.

• Counting lemmas: Graphs which are sufficiently regular have
statistics which are a proportional fraction of the statistics of
the complete graph.

These negligibility results are typically proven using harmonic
analysis methods, ranging from the humble Cauchy-Schwarz
inequality to more advanced estimates.
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Because of this negligibility, we would like to be able to easily
locate the structured and pseudorandom components of a given
object.

Typical conjecture: “Natural” objects behave pseu-
dorandomly after accounting for all the obvious struc-
tures.

These conjectures can be extremely hard to prove!

• The primes should behave randomly after accounting for
“local” (mod p) obstructions. (Hardy-Littlewood prime tuples
conjecture; Riemann hypothesis; . . .)

• Solutions to highly nonlinear systems should behave randomly
after accounting for conservation laws etc. (Rigorous statistical
mechanics; ?Navier-Stokes global regularity?; . . .)

• There should exist “describable” algorithms which behave
“unpredictably”. (P = BPP ; ?P 6= NP?; . . .)
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• With current technology, we often cannot distinguish structure
from pseudorandomness directly.

• However, we are often fortunate to possess four weaker, but
still very useful, principles concerning structure and
pseudorandomness...
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1. Dichotomy: An object is not pseudorandom if
and only if correlates with a structured object (or vice
versa).

• Lack of uniform distribution can often be traced to a large
Fourier coefficient. (Weyl, Erdős-Turán, Hardy-Littlewood,
Roth, Gowers, . . .)

• Lack of mixing can often be traced to an eigenfunction.
(Koopman-von Neumann, . . .)

• Lack of dispersion can often be traced to a bound state or large
wavelet coefficient.

Such dichotomies are often established via some kind of spectral
theory or Fourier analysis (or generalisation thereof).
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2. Structure theorem: Every object is a superposi-
tion of a structured object and a pseudorandom error.

• Spectral decomposition: Objects decompose into almost
periodic (discrete spectrum) and mixing (continuous spectrum)
components.

• Littlewood-Paley decomposition: Objects decompose into
low-frequency (coarse-scale) and high-frequency (fine-scale)
components.

• Szemerédi regularity lemma: Graphs decompose into
low-complexity partitions and regular graphs between partition
classes.

Structure theorems are often established via a stopping time
argument based on iterating a dichotomy. They combine well
with the negligibility of the pseudorandom error.
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3. Rigidity: If an object is approximately structured,
then it is close to an object which is perfectly struc-
tured.

• Additive inverse theorems: If a set A is approximately closed
under addition, then it is close to a group, convex body, an
arithmetic progression, or a combination thereof. (Freiman, . . .)

• Compactness of minimising sequences: Approximate
minimisers of a functional tend to be close to exact minimisers.
(Palais-Smale, . . .)

• Property testing: If random samples of a graph or function
satisfy certain types of properties locally, then it is likely to be
close to a graph or function which satisfies the property
globally.

Rigidity theorems are often quite deep; for instance structure
theorems are often used in the proof.
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4. Classification: Perfectly structured objects can be
described explicitly and algebraically/geometrically.

• Simple examples: the classification of finitely generated abelian
groups, linear transformations, or quadratic forms via suitable
choices of basis.

• A more advanced example: the algebro-geometric description
of soliton or multisoliton solutions to completely integrable
equations (such as the Korteweg-de Vries equation).

• A recent example: description of the minimal characteristic
factor for multiple recurrence via nilsystems. (Host-Kra 2002,
Ziegler 2004)

Classification results tend to rely more on algebra and geometry
than on analysis, and can be very difficult to establish.
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Model example: Szemerédi’s theorem

Every subset A of the integers of positive (upper) den-
sity δ[A] > 0 contains arbitrarily long arithmetic pro-
gressions.

• Many deep and important proofs: Szemerédi (1975),
Furstenberg (1977), Gowers (1998), . . .

• Main difficulty: A could be very structured, very
pseudorandom, or a hybrid of both. The set A always has long
arithmetic progressions, but for different reasons in each case.
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What does structure mean here? Some examples:

• Periodic sets: A = {100n : n ∈ Z};

• Quasiperiodic sets: A = {n : dist(
√

2n, Z) ≤ 1
200};

• Quadratically quasiperiodic sets:
A = {n : dist(

√
2n2, Z) ≤ 1

200}.

The precise definition of structure depends on the length of the
progression one is seeking.

Key observation: If many terms in an arithmetic progression lie in
a structured set A, then the next term in the progression is very
likely to lie in A (i.e. strong positive correlation).

Thus progressions are created in this case by algebraic structures,
such as periodicity.
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What does pseudorandomness mean here? Some examples:

• Random sets: P(n ∈ A) = 1
100 for each n, independently at

random.

• Discorrelated sets: Sets with small correlations, e.g.
δ(A ∩ (A + k)) ≈ δ(A)δ(A + k) for most k.

The precise definition of pseudorandomness depends on the length
of the progression one is seeking.

Probability theory lets one place long progressions in A with
positive probability provided one has sufficiently strong control on
correlations (Gowers uniformity). Thus progressions are created in
this case by discorrelation.
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What does hybrid mean here? Some examples:

• Pseudorandom subsets of structured sets: 1
50 of the even

numbers, chosen independently at random.

• Pseudorandom subsets of structured partitions: P(n ∈ A) = p1

when n is even and P(n ∈ A) = p2 when n is odd, for some
probabilities 0 ≤ p1, p2 ≤ 1.

Since structured sets are already known to have progressions, a
pseudorandom subset of such sets will have a proportional number
of such progressions. Thus progressions are created in this case by
a combination of algebraic structure and discorrelation.
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How to generalise the above arguments to arbitrary sets? This
requires

Structure theorem: An arbitrary dense set A will
always contain a large component which is a pseudo-
random subset of a structured set.

This in turn follows from

Dichotomy: If a set does not behave pseudoran-
domly, then it correlates with a nontrivial structured
object (e.g. it has increased density on a long sub-
progression).
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A variant: the Green-Tao theorem (2004)

The primes contain arbitrarily long progressions.

• The primes are conjectured to behave pseudorandomly after
accounting for local obstructions (Hardy-Littlewood prime
tuples conjecture). This conjecture would imply the above
theorem (as well as many other conjectures concerning the
primes).

• It is known that the primes behave Fourier-pseudorandomly
after accounting for local obstructions (Vinogradov’s method).
This already gives infinitely many progressions of primes of
length 3 (Hardy-Littlewood circle method). Unfortunately, it
does not say much about higher length progressions.
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• The primes are too sparse for Szemerédi’s theorem to apply
directly.

• However, the primes are a dense subset of the almost primes
(numbers with few prime factors), which were known to be
very pseudorandomly distributed after accounting for local
obstructions (sieve theory). We can exploit this by using

Relative Szemerédi theorem: Every subset of
a pseudorandom set of integers of positive relative
density contains arbitrarily long arithmetic progres-
sions.

• This lets us finesse the question of whether the primes are
pseudorandom or not; they merely need to be a dense subset of
a pseudorandom set.
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To prove the relative Szemerédi theorem, we need to combine
the ordinary Szemerédi theorem with two facts:

Structure theorem: Dense subsets of sparse pseu-
dorandom sets contain a large component which is a
sparse pseudorandom subset of a dense set.

Negligibility: Sparse pseudorandom subsets of a set
will contain a proportional number of arithmetic pro-
gressions.

The Structure theorem in turn follows from iterating

Dichotomy: If a dense subsets of pseudorandom sets
is not pseudorandom, it correlates with a dense struc-
tured set.

20



More precise asymptotics

• Szemerédi’s theorem and the Green-Tao theorem show
that certain sets contain many progressions of any given length.
But they do not quantify exactly how many progressions there
are, for instance:

Question: How many progressions of length k are
there among the prime numbers less than N , as
N →∞?

• The precise number of progressions depends on the exact
decomposition of the set into structured and pseudorandom
components. No matter what the decomposition, one always
has some progressions, but different decompositions can lead to
different numbers of progressions.
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• To answer the above question (and when counting more
general types of additive patterns within the primes), it is not
enough to know abstractly that the primes decompose into
structured and pseudorandom components; one needs to know
precisely what these components are.

• To do this one needs to use some deeper facts about structure
and pseudorandomness, such as the classification of perfectly
structured objects.
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van der Corput’s theorem (1927): The number of
progressions of length 3 in the primes less than N is1

2

∏
p≥3

(1− 2
p
)(

p

p− 1
)2 + o(1)

 N2

log3 N
.

• To prove this, it suffices by the Hardy-Littlewood circle method
to show that the primes are Fourier-pseudorandom after
accounting for local obstructions (major arcs); this allows us to
neglect the contribution of the minor arcs.

• In the Fourier-analytic case, the structured objects are
completely classified: they are characters.

• By the dichotomy, we thus need to show that the primes do
not correlate with minor arc characters. This can be done by
Vinogradov’s method.

23



More recently, asymptotics have become available for other additive
patterns in the primes, such as arithmetic progressions of length 4.

• For these more complex patterns, Fourier-pseudorandomness is
not enough; one needs to establish Gowers uniformity of the
primes (after accounting for local obstructions) in order to
neglect all non-local effects.

• The corresponding structured objects have been recently
classified as nilsequences arising from flows on a quotient of a
nilpotent Lie group.

• By the dichotomy, we thus need to show that the primes do
not correlate with “minor arc” nilsequences. This can be done
by a refined version of Vinogradov’s method.

(For details, see the lecture of Ben Green.) �
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