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Abstract. We present Furstenberg’s correspondence principle in the context

of additive, and not-quite-additive, weights on the cube {0, 1}Z, and show how
this can be used to prove a weak version of the transference principle used in
the establishment of long arithmetic progressions in the primes. It turns out
that one can deduce this principle without any appeal to the axiom of choice.

1. The doubly infinite cube

Consider the doubly infinite discrete cube {0, 1}Z. One can think of {0, 1}Z as
the space of all doubly infinite sequences (an)n∈Z which are binary (i.e. they take

values in {0, 1}). For any disjoint finite subsets A,B ⊂ Z, define the cylinder

C(A,B) ⊂ {0, 1}Z to be the space of all sequences (an)n∈Z which equal 1 on A
and 0 on B; thus for instance

C(∅, ∅) = {0, 1}Z (1)

and we have the decomposition identity

C(A,B) = C(A ∪ {n}, B) ⊎ C(A,B ∪ {n}) (2)

for all n 6∈ A∪B, where ⊎ denotes disjoint union. Also observe that the intersection
of two cylinders is again a cylinder or the empty set. Furthermore, if A∪B ⊂ A′∪B′,
then C(A′, B′) is either disjoint from, or contained in C(A,B).

The cube {0, 1}Z has the usual product topology generated by the cylinders (thus
an open set is nothing more than an arbitrary union of cylinders), and then it has
the Borel σ-algebra B generated by the open sets. Inside B, we also have A, the
set of finite unions of cylinders; this is an algebra but not a σ-algebra. Let us call
the elements in A elementary sets; these are the sets which can be described using
only finitely many elements of the sequence (an)n∈Z. Every elementary set in A is
both open and closed. Every element is also compact:

Theorem 1.1 (Tychonoff’s theorem for {0, 1}Z). Suppose that an elementary set

E ⊂ A is covered by a family E ⊂ A of other elementary sets. Then it is in fact

covered by a finite sub-family of E.

Proof This follows immediately from the general Tychonoff’s theorem, but we
give a proof here to emphasize that for this specific application of Tychonoff, we do

1991 Mathematics Subject Classification. ???

1



2 TERENCE TAO

not need the axiom of choice1. Since E is the finite union of cylinders, it suffices to
verify the claim when E is a cylinder, say E = C(A0, B0). Similarly, by breaking
up all the elementary sets in E into cylinders, it suffices to verify the claim when E
also consists entirely of cylinders2. For any integer N ≥ 1, let EN be the set

EN := E\
⋃

{C(A,B) ∈ E : A ∪B ⊆ {−N, . . . , N}}

thus EN is the set formed by deleting all the cylinders arising solely from the
positions between −N, . . . , N . Then we have

E ⊇ E1 ⊇ E2 ⊇ . . .

and
⋂∞

N=1 EN = ∅, by hypothesis.

Call a cylinder C(A,B) intersective if it has a non-empty intersection with infinitely
many EN . If the set E = C(A0, B0) is not intersective, then at least one of the
EN is empty, which means that E can be covered by finitely many cylinders from
E , as desired. Thus we may assume for sake of contradiction that C(A0, B0) is
intersective. Next, observe from (2) that if C(A,B) is intersective and n 6∈ A ∪B,
then at least one of C(A ∪ {n}, B) or C(A,B ∪ {n}) is also intersective. Thus by a
recursive construction, we can construct a nested sequence of intersective cylinders

C(A0, B0) ⊃ C(A1, B1) ⊃ C(A2, B2) ⊃ . . .

where each C(Aj , Bj) is formed from C(Aj−1, Bj−1) by adding another integer n
to either3 Aj−1 or Bj−1. We can also ensure (again without axiom of choice) that
every integer n gets eventually added to either Aj or Bj , thus the sets A∞ :=

⋃

j Aj

and B∞ :=
⋃

j Bj partition Z. Now let a = (an)n∈Z be the sequence which equals

1 on A∞ and 0 on B∞, thus a lies inside all the intersective cylinders C(Aj , Bj) and
in particular lies in E. Since E covers E, there must be a cylinder C(A′, B′) in E
which contains a. But then this entire cylinder will lie outside EN for all sufficiently
large N . On the other hand, for sufficiently large j, Aj ∪ Bj will contain A′ ∪ B′,
and so C(Aj , Bj), since it shares the common element a with C(A′, B′), must be
entirely contained in C(A′, B′). But this means that C(Aj , Bj) is not intersective,
a contradiction.

We now consider how the cube {0, 1}Z can be interpreted as a dynamical system.
We already have a Borel σ-algebra B on the cube, but we also need a notion of a

shift T : {0, 1}Z → {0, 1}Z, and some sort of measure (or something resembling
a measure) on B. The shift is easy to define, we shall take the right-shift T :

{0, 1}Z → {0, 1}Z, defined by T (an)n∈Z := (an−1)n∈Z. This right-shift induces a
map on the σ-algebra B, for instance we have

TC(A,B) = C(A+ 1, B + 1). (3)

1The point is that we have an obvious way to choose between 0 and 1; to paraphrase Bertrand
Russell, we have here infinitely many pairs of shoes, as opposed to infinitely many pairs of socks.

2It is easy to well-order the space of elementary sets without using the axiom of choice, so one
can assign to each cylinder in the new E, an elementary set in the original E which contains the
cylinder, without using choice.

3Again, one can do this without the axiom of choice, for instance by always choosing C(A ∪
{n}, B) in favour of C(A,B ∪ {n}) whenever there is a choice.
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We can define integer powers T h of T in the usual manner. Note that the σ-
algebra B can now be generated by a single cylinder, e.g. the standard cylinder
E0 := C({0}, ∅), together with the shift T , indeed we have

C(A,B) =
⋂

h∈A

T hE0 ∩
⋂

l∈B

T hEc
0 (4)

where of course we use Ec
0 to denote the complement of E0.

The remaining question is how to build a measure. It turns out to be convenient
to have a rather weak notion of measure.

Definition 1.2. A weight on the cube {0, 1}Z is any function µ : C(A,B) →
R+ from the cylinders to the non-negative reals. We define a sequence of weights

to be any collection (µN )N∈I , where N ranges over an infinite set I of natural
numbers. We give the space of weights the pointwise (i.e. product) topology,
thus µN converges to µ if and only if µN (C(A,B)) converges to µ(C(A,B)) for all
cylinders C(A,B).

• We say that a weight µ is additive if we have

µ(C(A,B)) = µ(C(A ∪ {n}, B)) + µ(C(A,B ∪ {n}) (5)

for all disjoint finite A,B ∈ Z and all n 6∈ A ∪B.
• We say that a weight µ is shift-invariant if we have

µ(C(A + 1, B + 1)) = µ(C(A,B)) (6)

for all cylinders C(A,B).
• We say that a sequence (µN )N∈I of weights is asymptotically finite if we
have lim supN→∞ µN (C(A,B)) < ∞ for all cylinders C(A,B). In this case,
we define the weight µ = lim supN→∞ µN by the formula µ(C(A,B)) :=
lim supN→∞ µN (C(A,B)).

• We say that a sequence (µN )N∈I of weights is asymptotically additive if we
have

lim
N→∞

[µN (C(A,B)) − µN (C(A ∪ {n}, B))− µN (C(A,B ∪ {n})] = 0 (7)

for all disjoint finite A,B ∈ Z and all n 6∈ A ∪B.
• We say that a sequence (µN )N∈I of weights is asymptotically shift-invariant

if we have

lim
N→∞

[µN (C(A + 1, B + 1))− µN (C(A,B))] = 0. (8)

Example 1.3. Let (X ′,B′, µ′) be a finite measure space, let T ′ : X ′ → X ′ be a
measurable map whose inverse (T ′)−1 is also measurable, and let E′ be a measurable
set in X ′. Then we can define the additive weight

µ(C(A,B)) := µ′(
⋂

h∈A

(T ′)hE′ ∩
⋂

l∈B

(T ′)h(E′)c).

Observe that if the shift T ′ preserves the measure µ′, then the weight µ is also
shift-invariant.
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Example 1.4. Let E be a set of integers. Then we can define the sequence of weights

µN (C(A,B)) :=
1

[−N,N ]
|
⋂

h∈A

(E + h) ∩
⋂

l∈B

(Ec + l) ∩ [−N,N ]|

where [−N,N ] := {−N, . . . , N}. This sequence is asymptotically finite, asymptot-
ically additive, and asymptotically shift-invariant. Observe that

µ(C(A,B)) = d(
⋂

h∈A

(E + h) ∩
⋂

l∈B

(Ec + l))

where d(E) is the upper density of a set E. One can of course generalize this
example to other groups than Z, with Folner sequences playing the role of the
intervals [−N,N ].

Example 1.5. Suppose that we have a sequence N of integers going to infinity, and
for each N we have a set EN ⊂ Z/NZ. We can then define the sequence of weights

µN (C(A,B)) :=
1

N
|
⋂

h∈A

(EN + h) ∩
⋂

l∈B

(Ec
N + l)|.

This sequence is asymptotically finite, asymptotically additive, and asymptotically
shift-invariant (in fact each individual µN is additive and shift-invariant.

Example 1.6. Suppose that we have a sequence N of integers going to infinity, and
for each N we have functions fN , gN : Z/NZ → R+. We can then define the
sequence of weights

µN (C(A,B)) := E((
∏

h∈A

fN (x+ h))(
∏

l∈B

gN(x+ l))|x ∈ ZN );

this generalizes the preceding example, which corresponds to the case fN := 1EN

and gN := 1 − 1EN
. Here we are using the averaging notation E(f(x)|x ∈ A) :=

1
|A|

∑

x∈A f(x) from [3]. Later we will consider the case fN := 1EN
νN and gN :=

(1− 1EN
)νN , where νN : Z/NZ → R+ is a pseudorandom measure. This sequence

of weights is asymptotically shift-invariant (indeed each individual µN is shift-
invariant), and if in addition we have fN + gN = 1 then it is also asymptotically
additive and asymptotically finite. Later we shall see that we still can recover
asymptotic additivity and finiteness (after a dilation) if fN + gN is not equal to 1,
but instead is equal to a sufficiently pseudorandom measure.

Observe that if µN converges to µ, then the µN are asymptotically additive if and
only if µ is additive, and the µN are asymptotically shift-invariant if and only if µ
is shift-invariant. They are also automatically asymptotically finite. Of course, not
all sequences converge; however, we have

Lemma 1.7 (Arzela-Ascoli theorem). Every asymptotically finite sequence µN con-

tains a convergent subsequence.

Proof For any given cylinder C(A,B), the sequence µN (C(A,B)) of non-negative
real numbers is bounded and thus has a convergent subsequence. Since the number
of cylinders is countable, the claim then follows from the standard Arzela-Ascoli
argument. Note that this argument is completely constructive and does not require
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the axiom of choice; one could also proceed using choice-dependent tools such as
ultrafilters or the Banach-Alaoglu theorem.

We also observe that asymptotic finiteness is easy to verify if one has asymptotic
additivity:

Lemma 1.8. Let µN be asympotically additive. Then µN is asymptotically finite

if and only if lim supN→∞ µN (C(∅, ∅)) is finite.

Proof From multiple applications of asymptotic additivity and positivity we see
that

lim sup
N→∞

µN (C(A,B)) ≤ lim sup
N→∞

µN (C(∅, ∅))

for all cylinders C(A,B), and the claim follows.

If a weight is shift-invariant, then it is easy to see that one has the more general
statement

µ(C(A+ h,B + h)) = µ(C(A,B))

for all h ∈ Z. Similarly, if a weight is additive, one sees that
∑

C(A,B)∈C

µ(C(A,B)) =
∑

C(A,B)∈C′

µ(C(A,B)) (9)

whenever C and C′ are two partitions of the same elementary set E into cylinders;
this is easiest to see by comparing both C and C′ to some common refinement
C′′. One can thus extend an additive weight uniquely to elementary sets E. By
Theorem 1.1 this weight is not only additive, it is a premeasure (i.e. we have µ(E) =
∑

n µ(En) whenever the elementary set E is partitioned into at most countably
many elementary sets En). Applying Carathéodory’s theorem, we thus conclude

Theorem 1.9 (Kolmogorov extension theorem). Let µ be a weight. Then µ extends

to a finite Borel measure on {0, 1}Z if and only if µ is additive. Furthermore this

extension is unique, and will be shift-invariant if and only if the original weight µ
was shift invariant.

Note that Carathéodory’s theorem is completely constructive, and thus this theorem
does not require the axiom of choice. Combining the Kolmogorov extension theorem
with the Arzela-Ascoli theorem, we obtain

Theorem 1.10 (Furstenberg correspondence principle). Let (µN )N∈I be an as-

ymptotically finite, asymptotically additive, asymptotically shift-invariant sequence

of weights. Let µ := lim supN→∞ µN be the limit superior of the µN . Then there

exists a shift-invariant finite Borel measure µ on {0, 1}Z such that

µ(C({0}, ∅)) = µ(C({0}, ∅))

and

µ(C(A,B)) ≤ µ(C(A,B))

for all cylinders C(A,B).



6 TERENCE TAO

Proof By passing to a subsequence of N if necessary, we may reduce to the case
where µN (C({0}, ∅)) actually converges to the limit superior µ(C({0}, ∅)) (note
that this passage to a subsequence may lower some of the other limit superiors, but
this will not harm us). Applying the Arzela-Ascoli theorem, we may then assume
that the µN converge to a weight µ, which is then additive and shift-invariant. The
claim then follows from the Kolmogorov extension theorem.

Again, observe that the Furstenberg correspondence principle does not actually
require the axiom of choice (though it is often proved using this axiom in the
literature). Next, we recall the deep multiple recurrence theorem of Furstenberg:

Theorem 1.11 (Furstenberg recurrence theorem). [1], [2] Let µ be a shift-invariant

finite Borel measure on {0, 1}Z such that µ(C(0, ∅)) > 0, and let k ≥ 1. Then we

have

µ(C({0, h, . . . , (k − 1)h}, ∅)) > 0

for all h in a set of integers of positive upper density.

This theorem is only stated for the cube {0, 1}Z, but extends automatically to all
other measure-preserving systems thanks to Example 1.3. Again, while the proof
in [2] uses the axiom of choice, the original proof in [1] does not.

Combining this with the correspondence principle and Lemma 1.8, we obtain

Theorem 1.12 (Szemerédi’s theorem). Let (µN )N∈I be an asymptotically additive,

asymptotically shift-invariant sequence of weights with limit superior µ such that

µ(C(∅, ∅)) < ∞

and

µ(C({0}, ∅)) > 0,

and let k ≥ 1. Then we have

µ(C({0, h, . . . , (k − 1)h}, ∅)) > 0

for all h in a set of integers of positive upper density.

Combining this with Example 1.4 we obtain the standard formulation of Szemerédi’s
theorem, namely that any subset of integers of positive density contains arbitrarily
long arithmetic progressions (and that these progressions in fact have “positive
density” in a certain sense). However this is not the only class of asymptotically
additive, asymptotically shift-invariant weights available, and we will later apply
this theorem to another setting involving a pseudorandom measure.

The Furstenberg recurrence theorem has many extensions, generalizations, and
refinements, which can then be converted via the correspondence principle to Sze-
merédi type theorems, which we will not discuss here.
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2. The Varnavides averaging trick

In the ergodic approach to recurrence and Szemerédi theorems, the shift h is often
held fixed while the discretization parameter N goes to infinity, and then only after
taking limits as N → ∞ does one allow h to go to infinity. Thus, the ergodic
regime occurs when N is extremely large compared with h. In contrast, in the
combinatorial and Fourier-analytic approach to Szemerédi’s theorem is typically
located in the cyclic group Z/NZ, and the shift h is often of comparable size with
N .

Thus the two asymptotic regimes of the ergodic approach and the combinatorial
approach are genuinely different. Fortunately, there is a simple averaging argument
of Varnavides [4] which (partially) connects the two. The idea is that if an ensemble
of weights has a nice property on the average, then one can select a representative
of that weight which exhibits that property without averaging. We give an abstract
formulation of this argument as follows.

Lemma 2.1 (Abstract Varnavides argument). Let Σ be a countable index set, I be

a set of positive integers, and for each N ∈ I let ΛN be a finite non-empty index

set. Suppose for each σ ∈ Σ, N ∈ I, and λ ∈ ΛN we are given a non-negative

number cσ,N,λ, which is asymptotically zero on the average in the sense that

lim
N→∞

E(cσ,N,λ|λ ∈ ΛN ) = 0 for all σ ∈ Σ. (10)

Then we can choose a λN ∈ ΛN for all N ∈ I such that

lim
N→∞

cσ,N,λN
= 0 for all σ ∈ Σ. (11)

Proof Without loss of generality we may take Σ to be the natural numbers Σ =
{1, 2, . . .}. From (10) and linearity of expectation we see that

lim
N→∞

E(
∑

N≤w

cσ,N,λ|λ ∈ ΛN) = 0

for all w ≥ 0. Thus if we choose w(N) to be an integer-valued function of N which
goes to infinity sufficiently slowly, we have

lim
N→∞

E(
∑

σ≤w(N)

cσ,N,λ|λ ∈ ΛN ) = 0.

By the pigeonhole principle4 we can thus find a λN for each N such that

lim
N→∞

∑

σ≤w(N)

cσ,N,λN
= 0.

Since the cσ,N,λN
are non-negative, and w(N) will eventually exceed any given σ

for N large enough, we obtain (11).

As an immediate corollary of this abstract principle, we obtain

4Note that one will not need the axiom of choice here, if each ΛN comes with a well-ordering,
which will be the case for our application.
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Corollary 2.2. Let I be a set of numbers, and for each N ∈ I and each λ ∈ Z/NZ

let µN,λ be a weight. Suppose also that the µN,λ are asymptotically shift-invariant

on the average, in the sense that

lim
N→∞

E(|µN,λ(C(A+ 1, B + 1))− µN,λ(C(A,B))|
∣

∣λ ∈ Z/NZ) = 0

for all cylinders C(A,B), and also asymptotically additive on the average, in the

sense that

lim
N→∞

E(|µN,λ(C(A,B))−µN,λ(C(A∪{n}, B)−µN,λ(C(A,B∪{n}))|
∣

∣λ ∈ Z/NZ) = 0

Suppose furthermore that there were a collection Ω of cylinders which were asymp-

totically measure zero on the average, in the sense that

lim
N→∞

E(|µN,λ(C(A,B))|
∣

∣λ ∈ Z/NZ) = 0

for all C(A,B) ∈ Ω. Then there is an element λN ∈ Z/NZ for each N with the

property that the sequence (µN,λN
) is asymptotically shift-invariant and asymptot-

ically additive. Furthermore, we have the property

lim
N→∞

µN,λN
(C(A,B)) = 0

for all C(A,B) ∈ Ω.

Indeed, there are only countably many properties that the λN need to satisfy, and
so Lemma 2.1 can indeed be invoked.

Let us now give a concrete application of this corollary (which was essentially
Varnavides’ original application).

Theorem 2.3 (Finitary Szemerédi theorem). For every k ≥ 1 and δ > 0 there

exists c(k, δ) > 0 such that

E(f(x)f(x + r) . . . f(x+ (k − 1)r)|x, r ∈ Z/NZ) ≥ c(k, δ)− oN→∞;k,δ(1)

for all prime numbers N and all functions f : Z/NZ → [0, 1] such that E(f(x)|x ∈
Z/NZ) ≥ δ.

Proof Fix k ≥ 1 and δ > 0, and suppose for contradiction that the theorem failed.
Then we could find a sequence of prime numbers N tending to infinity, together
with functions fN : Z/NZ → [0, 1] such that E(fN(x)|x ∈ Z/NZ) ≥ δ but

lim
N→∞

E(fN (x)fN (x+ r) . . . fN(x+ (k − 1)r)|x, r ∈ Z/NZ) = 0.

For any h > 0, we may then make the change of variables r = λh if N is larger
than h, and conclude

lim
N→∞

E(fN (x)fN (x+ λh) . . . fN (x+ (k − 1)λh)|x ∈ Z/NZ;λ ∈ Z/NZ) = 0.

If we now set gN := 1− fN and let µN,λ be the weight

µN,λ(C(A,B)) := E((
∏

h∈A

fN (x+ hλ))(
∏

l∈B

gN(x + lλ))|x ∈ ZN )

then we see that

lim
N→∞

E(µN,λ({0, h, . . . , (k − 1)h}, ∅)|λ ∈ Z/NZ) = 0.
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Also, by construction each µN,λ is shift-invariant and additive. Applying Corollary
2.2 we can then find a sequence (µN,λN

) which is asymptotically shift-invariant,
asymptotically additive, and whose limit superior µ is such that

µ({0, h, . . . , (k − 1)h}, ∅) = 0.

On the other hand, observe that

µ(C(∅, ∅)) = lim sup
N→∞

µN,λN
(C(∅, ∅)) = 1

so (µN,λN
is asymptotically finite by Lemma 1.8. Similarly

µ(C({0}, ∅)) = lim sup
N→∞

µN,λN
(C({0}, ∅))

= E(fN (x)|x ∈ Z/NZ)

≥ δ.

Since δ > 0, we contradict Szemerédi’s theorem. The claim follows.

A simple extension of the above argument gives

Theorem 2.4 (Relative finitary Szemerédi theorem). For every k ≥ 1 and δ > 0
there exists c(k, δ) > 0 such that

E(f(x)f(x + r) . . . f(x+ (k − 1)r)|x, r ∈ Z/NZ) ≥ c(k, δ)− oN→∞;k,δ(1)

for all prime numbers N and all functions E(f(x)|x ∈ Z/NZ) ≥ δ obeying the

pointwise bound 0 ≤ f ≤ ν, whenever ν : Z/NZ → R+ obeys a generalized von

Neumann theorem

E((ν(x) − 1)(ν(y)− 1)
∏

h∈A

Fh(x+ hλ)Fh(y + hλ)
∣

∣x, y, λ ∈ Z/NZ) = oN→∞;A(1)
(12)

for all finite sets A ∈ Z\{0}, and all functions Fh bounded in magnitude by ν.

Proof Fix k, δ, and suppose for contradiction that the theorem failed. Then as
before we can find a sequence of primesN and functions fN : Z/NZ → R+ bounded
by functions νN obeying (12). This property can be rewritten as

E(

∣

∣

∣

∣

∣

E((νN (x)− 1)
∏

h∈A

Fh(x+ hλ)|x ∈ Z/NZ)

∣

∣

∣

∣

∣

2

|λ ∈ Z/NZ) = oN→∞;A(1)

and hence by Cauchy-Schwarz

E(

∣

∣

∣

∣

∣

E((νN (x)− 1)
∏

h∈A

Fh(x+ hλ)|x ∈ Z/NZ)

∣

∣

∣

∣

∣

|λ ∈ Z/NZ) = oN→∞;A(1).

Translating x by nλ, we thus have

E(

∣

∣

∣

∣

∣

E((νN (x + nλ)− 1)
∏

h∈A

Fh(x+ hλ)|x ∈ Z/NZ)

∣

∣

∣

∣

∣

|λ ∈ Z/NZ) = oN→∞;A(1)

whenever A is a finite subset of Z and n 6∈ A.
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If we write gN := νN − fN , and let µN,λ be the weight

µN,λ(C(A,B)) := E((
∏

h∈A

fN (x+ hλ))(
∏

l∈B

gN(x + lλ))|x ∈ ZN )

as before, then we have

µN,λ(C(A,B)) − µN,λ(C(A ∪ {n}, B))− µN,λ(C(A,B ∪ {n}))

= E((1− νN(x + nλ))
∏

h∈A

fN(x + hλ)
∏

h∈A

gN (xlλ)|x ∈ Z/NZ).

By the preceding discussion, we thus see that the µN,λ are asymptotically additive
on the average:

lim
N→∞

|µN,λ(C(A,B)) − µN,λ(C(A ∪ {n}, B))− µN,λ(C(A,B ∪ {n}))| = 0.

The µN,λ are also shift-invariant. We can now argue exactly as in Theorem 2.3 to
obtain the desired contradiction.

Of course, to apply this theorem one would need to verify (12). In the language of
[3], this condition can be verified assuming that ν obeys the linear forms condition to
arbitrary order; this can be achieved by a repetition of the proof of the generalized
von Neumann theorem in [3, Proposition 5.3], which is a tediously large number of
applications of the Cauchy-Schwarz inequality.

This can be used for instance to deduce that if one chooses a random model E
for the primes by selecting any integer N to lie in E with independent probability
1/ logN , then one almost surely has a relative Szemerédi theorem for this model,
in that every subset of E of positive relative density will contain arbitrarily long
arithmetic progressions. However, it is unfortunately not quite strong enough to
obtain arbitrarily long progressions in the primes. The reason is that we only know
how to contain the primes inside a weight ν (concentrated on almost primes) which
obeys the linear forms condition to any specified finite order, but if one increases
the order of correlations that one desires, the density of the primes inside the almost
primes will decay to zero. This setting was enough to make the more complicated
transference arguments in [3] go through, but if one uses that hypothesis here,
one only ends up (after using Arzela-Ascoli to take limits) with a weight which is
shift-invariant, but is only additive up to a certain point, or more precisely it is
only additive as long as the complexity |A| + |B| of the cylinders C(A,B) are all
bounded by some universal bound K < ∞, which has to be selected in advance. It
is not clear to what extent the Furstenberg recurrence theorem can be salvaged in
such a restrictive setting; a major difficulty is that K is not permitted to depend
on the density δ = µ(C({0}, ∅)). It may be that one may also be able to obtain
some other cases of (9), or perhaps some monotonicity properties (e.g. analogues
of the Bonferroni inequalities) which may serve as some sort of substitute. We do
not know how to proceed beyond this point, but would be very interested to hear
any ideas on this topic.

We thank Bryna Kra for useful discussions regarding this note and for some cor-
rections, and Nikos Frantzinakis for pointing out that the Kolmogorov extension
theorem does not require the axiom of choice.
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