THE REAL INTERPOLATION OF LORENTZ SPACES

TERENCE TAO

ABSTRACT. We discuss the real interpolation of Lorentz spaces.

1. LORENTZ SPACES

Let X be a measure space. For any integer k, we define $F_k(X)$ to be the space of all functions f on X which are supported on a set of measure at most 2^k and which satisfy $||f||_{\infty} \leq 1$.

Definition 1.1. For any $0 and <math>1 \le q \le \infty$, we define the Lorentz space $L^{p,q}(X)$ to be the space of all functions f of the form

$$f = \sum_{k} c_k 2^{-k/p} f_k$$

where $f_k \in F_k(X)$ and non-negative $c_k \in l^q$, with the $L^{p,q}$ norm being the infimum of the set of all possible $||c||_q$.

For a proof that this definition corresponds to the usual definition of $L^{p,q}$, see [1]. The space $L^{p,p}$ is strong L^p , the space $L^{p,\infty}$ is weak L^p , and the space $L^{p,1}$ has a unit ball which is the convex hull of the normalized characteristic functions $|E|^{-1/p}\chi_E$, if $p \geq 1$. Note that $L^{p,q_1} \subset L^{p,q_2}$ when $q_1 \leq q_2$.

Exercise: if $1 < p, q < \infty$ then the spaces $L^{p,q}$ and $L^{p',q'}$ are dual.

2. FROM RESTRICTED WEAK-TYPE TO STRONG TYPE

Let T be a linear operator from functions on X to functions on Y; let us make the a priori assumption that T is bounded from every L^p to every L^q , but with possibly a large constant; our bounds below will not depend on this constant.

We say that T is of strong type (p,q) if T maps L^p to L^q , and is of restricted weak-type (p,q) if T maps $L^{p,1}$ to $L^{q,\infty}$. Suppose $1 < p, q < \infty$. By duality, the former statement is equivalent to

$$|\Lambda(f,g)| \lesssim \|f\|_p \|g\|_{q'}$$

and the latter is equivalent to

$$|\Lambda(f,g)| \lesssim \|f\|_{p,1} \|g\|_{q',1} \tag{1}$$

where Λ is the bilinear form

$$\Lambda(f,g) = \langle Tf,g \rangle.$$

Since $L^{p,1}$ and $L^{q',1}$ are atomic spaces, (1) is equivalent to the statement that

$$|\Lambda(f_k, g_l)| \lesssim 2^{k/p} 2^{l/q'} \tag{2}$$

for all integers k, l and all $f_k \in F_k(X), g_l = F_l(Y)$.

We now show how restricted weak-type estimates can be bootstrapped to strong type estimates.

Proposition 2.1 (Special case of Marcinkiewicz interpolation). Let $1 < p_0 < \infty$, and suppose T is of restricted weak-type (p, p) for all p in a neighbourhood of p_0 . Then T is of strong type (p_0, p_0) .

Proof We have to show that

$$|\Lambda(f,g)| \lesssim ||f||_{p_0} ||g||_{p'_0}.$$

By our characterization of L^{p_0} , it suffices to show that

$$|\Lambda(\sum_k c_k 2^{-k/p_0} f_k, \sum_l d_l 2^{-l/p_0'} g_l\rangle| \lesssim 1$$

where $f_k \in F_k(X)$, $g_l = F_l(Y)$, $||c||_{p_0} \leq 1$ and $||d||_{p'_0} \leq 1$. By linearity we may estimate the left-hand side by

$$\sum_{k} \sum_{l} c_k d_l 2^{-k/p_0} 2^{-l/p_0'} |\Lambda(f_k, g_l)|,$$

which by (2) and our hypothesis is estimated by

$$\sum_{k} \sum_{l} c_k d_l 2^{-k/p_0} 2^{-l/p'_0} \inf_{p} 2^{k/p} 2^{l/p'}.$$

Optimizing this in p, we estimate this by

$$\sum_{k} \sum_{l} c_k d_l 2^{-\varepsilon|k-l|}$$

We re-arrange this as

$$\sum_{s} 2^{-\varepsilon|s|} \sum_{k} c_k d_{k+s}.$$

Using Hölder and our normalization on c, d, this is bounded by

$$\sum_{s} 2^{-\varepsilon|s|} \lesssim 1$$

as desired.

Interpolating from one restricted weak-type estimate to another is even easier: if T is of restricted weak-type (p_i, q_i) for i = 0, 1 and $1 < p_i, q_i < \infty$ then it is also of restricted weak-type (p_{θ}, q_{θ}) for all $0 \le \theta \le 1$ where $1/p_{\theta} = (1 - \theta)/p_0 + \theta/p_1$ and similarly for q_{θ} ; this follows simply by taking various geometric means of (2) applied to $(p, q) = (p_0, q_0)$ and $(p, q) = (p_1, q_1)$.

3. Interpolation below L^1 .

When $q \leq 1$ the equivalence between restricted weak-type and (1) breaks down, however there is an acceptable substitute.

Lemma 3.1. Suppose $1 \le p \le \infty$ and $0 < q \le \infty$, and T is of restricted weak-type (p,q). Then for every pair of integers k, l and all $f_k \in F_k(X)$, $g_l \in F_l(Y)$, we can find $g'_l \in F_{l-1}(Y)$ such that

$$|\Lambda(f_k, g_l - g'_l)| \lesssim 2^{k/p} 2^{l/q'}.$$
(3)

 $\mathbf{2}$

-		-	

If q > 1 then one could simply telescope this to obtain (1), but for $q \le 1$ this is not possible as q' is non-positive. The implication is not quite reversible for q < 1, but it is very close. (In practice, the definition (3) seems to be a better notion to use than restricted weak-type in any event).

Proof Let f_k , g_l be as above. Since $||Tf_k||_{q,\infty} \leq ||f_k||_p \leq 2^{k/p}$ by hypothesis, we have

$$|\{|Tf_k| > C2^{-l/q}2^{k/p}\}| \le \frac{1}{2}2^l$$

for sufficiently large C. The claim then follows by letting g'_l be the restriction of g_l to the above set.

Using this, we can now interpolate below L^1 . A representative result is as follows.

Proposition 3.2. Let T be an operator such that both T and T^* is of weak-type (1,1). Then T is bounded on L^p for every 1 .

Proof It suffices to show that T is of restricted weak-type (p, p) for all such p, i.e. that

$$\Lambda(f_k, g_l) | \lesssim 2^{k/p} 2^{l/p'}$$

for all $f_k \in F_k(X)$, $g_l \in F_l(Y)$.

Fix p, and let A be the best constant such that

$$|\Lambda(f_k, g_l)| \le A2^{k/p} 2^{l/p'} \tag{4}$$

for all k, l, f_k, g_l . By our a priori assumption A is finite.

Now suppose $k \leq l$, so $2^k \leq 2^{k/p} 2^{l/p'}$. Since T is of restricted weak-type (1,1), we can find g_{l-1} such that

$$|\Lambda(f_k, g_l - g_{l-1})| \lesssim 2^k \le C 2^{k/p} 2^{l/p'}$$

Combining this with (4) with g_l replaced by g_{l-1} , we obtain

$$|\Lambda(f_k, g_l)| \le (A2^{-1/p'} + C)2^{k/p}2^{l/p'}.$$

Applying the same type of reasoning when k > l, but using T^* instead of T, we see that the above estimate holds for all k, l. Taking suprema we obtain

$$A \le A2^{-1/p'} + C.$$

Thus A is finite, and the claim follows.

Thanks to Loukas Grafakos for helpful comments.

References

[1] M. Keel, T. Tao, Endpoint Strichartz Estimates, Amer. Math. J. 120 (1998), 955–980.

DEPARTMENT OF MATHEMATICS, UCLA, LOS ANGELES, CA 90024 *E-mail address*: tao@math.ucla.edu