
LECTURE NOTES 4 FOR 247A

TERENCE TAO

1. The Hilbert transform

In this set of notes we begin the theory of singular integral operators - operators
which are almost integral operators, except that their kernel K(x, y) just barely
fails to be integrable near the diagonal x = y. (This is in contrast to, say, fractional
integral operators such as Tf(y) :=

∫
Rd

1
|x−y|d−s f(x) dx, whose kernels go to infinity

at the diagonal but remain locally integrable.) These operators arise naturally in
complex analysis, Fourier analysis, and also in PDE (in particular, they include
the zeroth order pseudodifferential operators as a special case, about which more
will be said later). It is here for the first time that we must make essential use of
cancellation: cruder tools such as Schur’s test which do not take advantage of the
sign of the kernel will not be effective here.

Before we turn to the general theory, let us study the prototypical singular integral
operator1, the Hilbert transform

Hf(x) := p.v.
1

π

∫

R

f(x− t)

t
dt := lim

ε→0

1

π

∫

|t|>ε

f(x− t)

t
dt. (1)

It is not immediately obvious that Hf(x) is well-defined even for nice functions
f . But if f is C1 and compactly supported, then we can restrict the integral to a
compact interval t ∈ [−R,R] for some large R (depending on x and f), and use
symmetry to write

∫

|t|>ε

f(x− t)

t
dt =

∫

ε<|t|<R

f(x− t)− f(x)

t
dt.

The mean-value theorem then shows that f(x−t)−f(x)
t is uniformly bounded on

the interval t ∈ [−R,R] for fixed f, x, and so the limit actually exists from the
dominated convergence theorem. A variant of this argument shows that Hf is also
well-defined for f in the Schwartz class, though it does not map the Schwartz class
to itself. Indeed it is not hard to see that we have the asymptotic

lim
|x|→∞

xHf(x) =
1

π

∫

R

f

for such functions, and so if f has non-zero mean then Hf only decays like 1/|x| at
infinity. In particular, we already see that H is not bounded on L1. However, we
do see that H at least maps the Schwartz class to L2(R).

1The other prototypical operator would be the identity operator Tf = f , but that is too trivial
to be worth studying.
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Let us first make comment on some algebraic properties of the Hilbert transform.
It commutes with translations and dilations (but not modulations):

HTransx0 = Transx0H ; DilpλH = HDilpλ. (2)

In fact, it is essentially the only such operator (see Q1). It is also formally skew-
adjoint, in that for C1, compactly supported f, g:∫

R

Hf(x)g(x) dx = −

∫

R

f(x)Hg(x) dx;

we leave the verification as an exercise.

The Hilbert transform is connected to complex analysis (and in particular to Cauchy
integrals) by the following identities.

Proposition 1.1 (Plemelj formulae). Let f ∈ C1(R) obey a qualitative decay bound
f(x) = Of (〈x〉

−1) (say - these conditions are needed just to make Hf well-defined).
Then for any x ∈ R

1

2πi
lim
ε→0

∫

R

f(y)

y − (x± iε)
dy =

±f(x) + iHf(x)

2
.

Proof By translation invariance we can take x = 0. By taking complex conjugates
we may assume that the ± sign is +. Our task is then to show that

lim
ε→0

1

2πi

∫

R

f(y)

y − iε
dy −

1

2
f(0)−

i

2π

∫

|y|>ε

f(y)

−y
dy = 0.

Multiplying by 2πi and making the change of variables y = εw, we reduce to
showing

lim
ε→0

∫

R

f(εw)(
1

w − i
− 1|w|>1

1

w
) dw − πif(0) = 0.

Direct computation shows that the expression in parentheses is absolutely integrable
and ∫

R

(
1

w − i
− 1|w|>1

1

w
) = πi.

So we reduce to showing that

lim
ε→0

∫

R

(f(εw)− f(0))(
1

w − i
− 1|w|>1

1

w
) dw = 0.

The claim then follows from dominated convergence.

Now suppose that f not only obeys the hypotheses of the Plemelj formulae, but
also extends holomorphically to the upper half-plane {z ∈ C : Im(z) ≥ 0} and
obeys the decay bound f(z) = Of (〈z〉

−1) in this region. Then Cauchy’s theorem
gives

1

2πi
lim
ε→0

∫

R

f(y)

y − (x+ iε)
dy = f(x+ iε)

and
1

2πi
lim
ε→0

∫

R

f(y)

y − (x− iε)
dy = 0

and thus by either of the Plemelj formulae we see that Hf = −if in this case. In
particular, comparing real and imaginary parts we conclude that Im(f) = HRe(f)
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and Re(f) = −HIm(f). Thus for reasonably decaying holomorphic functions on the
upper half-plane, the real and imaginary parts of the boundary value are connected
via the Hilbert transform. In particular this shows that such functions are uniquely
determined by just the real part of the boundary value.

The above discussion also strongly suggests the identity H2 = −1. This can be
made more manifest by the following Fourier representation of the Hilbert trans-
form.

Proposition 1.2. If f ∈ S(R), then

Ĥf(ξ) = −isgn(ξ)f̂(ξ) (3)

for (almost every) ξ ∈ R. (Recall that Hf lies in L2 and so its Fourier transform
is defined via density by Plancherel’s theorem.)

Proof Let us first give a non-rigorous proof of this identity. Morally speaking we
have

Hf = f ∗
1

πx
and so since Fourier transforms ought to interchange convolution and product

Ĥf(ξ) = f̂(ξ)
1̂

πx
(ξ).

On the other hand we have

1̂(ξ) = δ(ξ)

so on integrating this (using the relationship between differentiation and multipli-
cation) we get

1̂

−2πix
(ξ) =

1

2
sgn(ξ)

and the claim follows.

Now we turn to the rigorous proof. As the Hilbert transform is odd, a symmetry
argument allows one to reduce to the case ξ > 0. It then suffices to show that
−f+iHf

2 has vanishing Fourier transform in this half-line. Define the Cauchy integral
operator

Cεf(x) =
1

2πi

∫

R

f(y)

y − (x− iε)
dy.

The Plemelj formulae show that these converge pointwise to −f+iHf
2 as ε → 0;

since f is Schwartz, it is also not hard to show via dominated convergence that
they also converge in L2. Thus by the L2 boundedness of the Fourier transform it
suffices to show that each of the Cεf also have vanishing Fourier transform on the
half-line2. Fix ε > 0 (we could rescale ε to be, say, 1, but we will not have need of

2This is part of a more general phenomenon, that functions which extend holomorphically to

the upper half-space in a controlled manner tend to have vanishing Fourier transform on R
−, while

those which extend to the lower half-space have vanishing Fourier transform on R
+. Thus there

is a close relationship between holomorphic extension and distribution of the Fourier transform.
More on this later.



4 TERENCE TAO

this normalisation). We can truncate and define

Cε,Rf(x) =
1

2πi

∫

R

f(y)

y − (x− iε)
1|y−x|<R dy;

more dominated convergence shows that Cε,Rf converges to Cεf in L2 as R → +∞
and so it will suffice to show that the Fourier coefficients of Cε,Rf converge pointwise
to zero as R→ +∞ on the half-line ξ > 0. From Fubini’s theorem we easily compute

Ĉε,Rf(ξ) =
1

2πi
f̂(ξ)

∫

R

e−2πiyξ

−(y − iε)
1|y|<R dy;

but then by shifting the contour to the lower semicircle of radius R and then letting
R→ ∞ we obtain the claim.

From this proposition and Plancherel’s theorem we conclude that H is an isometry:

‖Hf‖L2(R) = ‖f‖L2(R) for all f ∈ S(R).

Because of this, H has a unique dense extension to L2(R), and (by another appli-
cation of Plancherel’s theorem to justify taking the limit) the formula (3) is valid
for all f ∈ L2(R). There is still the question of whether the original definition is
valid for f ∈ L2(R), or in other words whether the sequence of functions

1

π

∫

|t|>ε

f(x− t)

t
dt

(note that Cauchy-Schwarz ensures that the integrand is absolutely integrable)
converges as ε→ 0 to Hf for f ∈ L2(R), and in what sense this convergence holds.
It turns out that the convergence is true both pointwise almost everywhere and
in the L2(R) metric sense, and in fact it follows from variants of the Calderón-
Zygmund theory presented in this notes, but we shall not do so here (as it may be
covered in the participating student seminar).

From (3) we also see that we do indeed have the identity H2 = −1 on L2(R), and
that H is indeed skew-adjoint on L2(R) (H∗ = −H); in particular, H is unitary.

Let us briefly mention why the Hilbert transform is also connected to the theory of
partial Fourier integrals.

Proposition 1.3. Let f ∈ L2(R) and N+, N− ∈ R. Then
∫ N+

−N−

f̂(ξ)e2πixξ dξ =
i

2
(ModN+HMod−N+f −Mod−N−

HModN−
f).

Proof By limiting arguments (and because everything is continuous on L2(R))
it suffices to verify this identity for f in the Schwartz class. But then the claim
follows by taking the Fourier transform of both sides and using (3).

It is thus clear that in order to address the question of the extent to which the

partial Fourier integrals
∫ N+

−N−
f̂(ξ)e2πixξ dξ actually converges back to f , we will

need to understand the properties of the Hilbert transform, and in particular its
boundedness properties.
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The formula (3) suggests that H behaves “like” multiplication by ±i in some sense;
informally, H behaves like −i for positive frequency functions and +i for negative
frequency functions. Now multiplication by ±i is a fairly harmless operation - it
is bounded on every normed vector space - so one might expect H to similarly
be bounded on more normed spaces than just L2(R); in particular, it might be
bounded on Lp(R). This is indeed the case for 1 < p <∞, and we now turn to the
theory which will generate such bounds.

Problem 1.4. Demonstrate by example that the Hilbert transform is not bounded
on L1(R) or L∞(R).

2. Calderón-Zygmund theory

In the Hilbert transform, we have an operator which is bounded on L2(R), and we
wish to extend this boundedness to other Lp(R) spaces as well. This is of course not
automatic - the “enemy” is that the operator might map a broad shallow function
into a tall narrow function of comparable L2 norm (which will increase the Lp

norms markedly for all p > 2), or conversely map a tall narrow function down to a
broad shallow function of comparable L2 norm (which will increase the Lp norms
markedly for p < 2). It turns out that these two phenomena are more or less dual
to each other, and so when working with an operator which is “comparable” to
its adjoint (which is for instance the case with the skew-adjoint Hilbert transform,
H∗ = −H) eliminating one of these enemies will automatically remove the other.

For operators such as the Hilbert transform, there are basically two approaches3 to
exclude these scenarios. One is to exploit the phenomenon that if f is not too large
locally, then Hf also doesn’t fluctuate too much locally; this prevents the “broad
shallow to tall narrow” enemy which blocks boundedness for large p. The dual
approach is to show that if f is localised and fluctuating, then Hf is also localised;
this prevents the “tall narrow to broad shallow” enemy which blocks boundedness
for small p.

We shall first discuss the latter approach, which is the traditional approach to the
subject, and return to the former approach later. We shall generalise from the
Hilbert transform to a useful wider class of operators, which are integral operators
“away from the diagonal”. To motivate this concept, observe that if f ∈ L2(R) is
compactly supported and y lies outside of the support of f , then

Hf(y) =

∫

R

1

π(y − x)
f(x) dx,

the point being that the integral is now absolutely convergent, Thus while H is not,
strictly speaking, an integral operator of the type studied in preceding sections, it
can be described as such as long as one avoids the diagonal x = y.

3There are also more algebraic methods, relying on explicit formulae for things like the L4

norm of Hf , or of the size of level sets of H1E for various sets E, but we will not discuss those
here as they do not extend well to the more general class of singular kernels considered here.
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Definition 2.1 (Singular kernels). A singular kernel is a functionK : Rd×Rd → C

(defined away from the diagonal x = y) which obeys the decay estimate

|K(x, y)| . |x− y|−d (4)

for x 6= y and the Hölder-type regularity estimates

K(x, y′) = K(x, y) +O(
|y − y′|σ

|x− y|d+σ
) whenever |y − y′| ≤

1

2
|x− y| (5)

and

K(x′, y) = K(x, y) +O(
|x− x′|σ

|x− y|d+σ
) whenever |x− x′| ≤

1

2
|x− y| (6)

for some Hölder exponent 0 < σ ≤ 1.

Example 2.2. In one dimension, 1
x−y and 1

|x−y| are both singular kernels. In

higher dimensions, the kernel K(x, y) := Ω( x−y
|x−y|)/|x − y|d is a singular kernel

whenever Ω : Sd−1 → C is a Hölder-continuous function.

Remarks 2.3. The regularity estimates may seem strange at first sight, although
the fundamental theorem of calculus shows that these estimates would follow (with
σ = 1) from the estimates

∇xK(x, y),∇yK(x, y) = O(|x − y|−d−1);

given that the gradient of |x − y|−d is O(|x − y|d−1), these estimates are then
consistent with (4) but of course do not follow from it. In most applications one
can take σ = 1 (in which case the Hölder type conditions become Lipschitz type
conditions). It is more desirable (5), (6) for large σ than for small σ (note in
particular that the σ = 0 version of the estimate already follows from (4)). It is
possible to weaken the Hölder type conditions further, but there are few applications
that require such a weakening and so we shall stay with the Hölder condition. The
factor 1

2 is not significant; it is not hard to show that the regularity conditions are

equivalent to the condition in which 1
2 is replaced by any other constant strictly

between zero and one.

Definition 2.4 (Calderón-Zygmund operators). A Calderón-Zygmund operator
(CZO) is a linear operator T : L2(Rd) → L2(Rd) which is bounded on L2(Rd),

‖Tf‖L2(Rd) . ‖f‖L2(Rd),

and such that there exists a singular kernel K for which

Tf(y) =

∫

Rd

K(x, y)f(x) dx

whenever f ∈ L2(Rd) is compactly supported, and y lies outside of the support of
f .

Remarks 2.5. It is not hard to see that T uniquely determines K. However the
converse is not true; for instance, given any bounded function b : Rd → C, the
physical space multiplier Tf := bf is a CZO with kernel 0. However, this is the only
source of ambiguity (Q2). A CZO is an example of a singular integral operator ;
the kernel K just barely fails to be locally integrable (Schur’s test, for instance,
encounters a logarithmic divergence), and so there is a singularity in the integration
which must be understood in order to analyse T correctly. In particular, not all
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singular kernels K lead to an CZO, due to possible failure of L2 boundedness. We
will return to the question of working out which kernels do give CZOs later.

Remark 2.6. As with the theory of the Hardy-Littlewood maximal function, one
can define CZOs on more general homogeneous spaces than Rd, but we will not do
so here for sake of concreteness.

By convention, we allow all implied constants in what follows to depend on the
Hölder exponent σ and on the implied constants in (4), (5), (6) and the operator
norm bound on T . (One could try to formalise things by imposing a norm on CZOs
with a given exponent σ, but this gets a bit confusing and is largely unnecessary
since one mostly deals with just a single CZO at a time.)

The Hilbert transform is thus a CZO, with kernel K(x, y) = 1
π(y−x) . We will

discuss other examples of CZOs, such as the Riesz transforms, Hörmander-Mikhlin
multipliers, and pseudodifferential operators of order zero, later on.

The Hilbert transform was skew-adjoint, translation-invariant, and scale-invariant.
In general, CZOs are neither. However, the class of CZOs is self-adjoint (and skew-
adjoint), translation-invariant, and scale-invariant; if T is a CZO then so is T ∗,
and the translates Transx0TTrans−x0 and dilates Dilp1/λTDilpλ of T are also CZOs

uniformly in λ > 0 and x0 ∈ Rd. (What happens to the kernels K in each case?)

Now we formalise the key phenomenon alluded to earlier, that CZOs map fluctu-
ating localised functions to nearly localised functions.

Lemma 2.7. Let B = B(x0, r) be a ball in Rd, let T be a CZO, and let f ∈ L1(B)
have mean zero, thus

∫
B f = 0. Then we have the pointwise bound

|Tf(y)| .d
rσ

|y − x0|d+σ

∫

B

|f | for all y 6∈ 2B.

In particular, we have
‖Tf‖L1(Rd\2B) .d ‖f‖L1(B).

Proof We remark that we could use the translation and scaling symmetries of
CZOs to normalise (x0, r) = (0, 1), but we shall not do so here. For y 6∈ 2B we can
use the mean zero hypothesis to obtain

Tf(y) =

∫

B

K(x, y)f(x) dx =

∫

B

[K(x, y)−K(x0, y)]f(y) dy,

and the first claim then follows from (5) and the triangle inequality. The second
claim of course follows from the first (recall we allow our implied constants to
depend on σ and d).

Remark 2.8. Observe that the argument also gives the slightly more general esti-
mate

Tf(y) = K(x0, y)

∫

B

f +O(
rσ

|y − x0|d+σ

∫

B

|f |) for all y 6∈ 2B (7)

when the mean zero condition
∫
B f = 0 is dropped.
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This lemma asserts that T is sort of bounded on L1 - but only when the input
function is localised and mean zero, and as long as one doesn’t look too closely
at the region near the support of the function. This extremely conditional L1

boundedness is a far cry from true L1 boundedness; indeed, it is not hard to show
that L1 boundedness can fail. However, Lemma 2.7, combined with the Calderón-
Zygmund decomposition from the previous section (which decomposes any function
into a bounded part and a lot of localised, fluctuating parts) is strong enough to
obtain the weak-type boundedness instead.

Corollary 2.9. All CZOs are of weak type (1, 1), with an operator norm of Od(1).

Proof Let f ∈ L1(Rd)∩L2(Rd) (the L2 condition ensuring that T is well-defined),
let T be a CZO, and let λ > 0. Our task is to show that

|{|Tf | ≥ λ}| .d

‖f‖L1(Rd)

λ
.

We spend scaling and homogeneity symmetries to normalise ‖f‖L1(Rd) and λ to
both be 1; this avoids a certain amount of book-keeping regarding these factors later.
Applying the Calderón-Zygmund decomposition, we can split f = g +

∑
Q∈Q bQ,

where the “good” function g obeys the bounds

‖g‖L1(Rd), ‖g‖L∞(Rd) .d 1,

each bQ is supported on Q, has mean zero, and has the L1 bound

‖bQ‖L1(Rd) .d |Q|,

and ∑

Q∈Q

|Q| .d 1.

Now since Tf = Tg +
∑

QQ TbQ, we can split

|{|Tf | ≥ 1}| ≤ |{|Tg| ≥ 1/2}|+ |{
∑

Q∈Q

|TbQ| ≥ 1/2}|.

For the first term, we exploit the L2 boundedness of T via Chebyshev’s inequality
and log-convexity of Hölder norms:

|{|Tg| ≥ 1/2}| .d ‖Tg‖2L2(Rd) .d ‖g‖2L2(Rd) .d ‖g‖L1(Rd)‖g‖L∞(Rd) .d 1.

For the second term, we cannot rely on L2 bounds because the bQ have no reason
to be bounded in L2. But the mean zero condition, combined with Lemma 2.7,
shows that each TbQ has L1 bounds outside of a dilate CQ of Q (for some fixed
constant4 C depending only on d);

‖TbQ‖L1(Rd\CQ) .d ‖bQ‖L1(Q) .d |Q|.

Restricting to the common domain Rd\
⋃

Q∈Q CQ and summing in Q using the
triangle inequality we obtain

‖
∑

Q∈Q

TbQ‖L1(Rd\
⋃

Q∈Q
CQ) .d

∑

Q∈Q

|Q| .d 1

4Actually one could take C arbitrarily close to 1 by iterating (5), (6) to obtain a variant of
Lemma 2.7, but we will not do so here.
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and hence by Chebyshev

|{x ∈ Rd\
⋃

Q∈Q

CQ : |
∑

Q∈Q

TbQ| ≥
1

2
}| .d 1.

This still leaves the question of what happens in the exceptional set
⋃

Q∈QCQ.
But here is the great advantage of weak-type estimates: we can tolerate arbitrarily
bad behaviour as long as it is localised to small sets. Indeed we have

|
⋃

Q∈Q

CQ| ≤
∑

Q∈Q

|CQ| .d

∑

Q∈Q

|Q| .d 1.

Putting it all together, we obtain

|{|Tf | ≥ 1}| .d 1

as desired.

Combining this with Marcinkiewicz interpolation and the L2 boundedness hypoth-
esis gives that all CZOs are of strong-type (p, p) for 1 < p ≤ 2. The self-adjointness
of the CZOs as a class then gives the same statement for 2 ≤ p <∞, thus we have
proven

Corollary 2.10. CZOs are of strong type (p, p) for all 1 < p <∞, with an operator
norm of Od,p(1).

Remark 2.11. We thus see that the localising properties of the singular kernel
K allow one to automatically leverage L2 boundedness into Lp boundedness for
1 < p < ∞. In fact there is nothing particularly special about L2 here (Q3). But
in practice L2 boundedness is easier to obtain than other types of boundedness.

In particular, we see that the Hilbert transform is bounded on Lp(R) for 1 < p <∞
(or more precisely, it is bounded on a dense subclass, and thus has a unique bounded
extension). This does not by itself directly settle the question of whether the
formula (1) makes sense for Lp functions in a norm or pointwise convergence sense
(for that, one needs bounds on the truncated Hilbert transforms and the maximal
truncated maximal Hilbert transforms), though it does lend confidence that this is
the case. However, we can now easily conclude an analogous claim for the inversion
formula.

Theorem 2.12. Let 1 < p < ∞, and for every N > 0 let SN be the Dirichlet
summation operator, defined on Schwartz functions f ∈ S(R) by

SNf(x) :=

∫ N

−N

f̂(ξ)e2πixξ dξ.

Then SN extends uniquely to a bounded operator on Lp(R), and SNf converges in
Lp norm to f as N → ∞ for all f ∈ Lp(R).

Proof From Proposition 1.3 we obtain the identity

SN =
i

2
(ModNHMod−Nf −Mod−NHModNf)
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and so the SN are uniformly bounded on Lp(R) as desired. (Note however that the
SN are not CZOs, since modulation does not preserve the CZO class.) Since SNf
converges in Lp norm to f for Schwartz functions (by dominated convergence), the
claim then follows by the usual limiting arguments.

Remark 2.13. The corresponding question about pointwise almost-everywhere con-
vergence is the Carleson-Hunt theorem, which is quite difficult. When p = 1 an
example of Kolmogorov shows that both norm convergence and almost-everywhere
convergence can fail. In higher dimensions, the norm convergence for p = 2 is
true by Plancherel’s theorem, but a surprising result of Fefferman shows that it
fails for p 6= 2. The almost everywhere convergence problem remains open (and is
considered very difficult) in higher dimensions.

3. Bounded mean oscillation

Let us now study what a CZO T does on the endpoint space L∞(Rd). At first
glance things are rather bad; not only is T unbounded on L∞(Rd) in general, T
is not even known yet to be defined on a dense subset of L∞(Rd). Nevertheless, a
closer inspection of things will show that T actually does have a fairly reasonable
definition on L∞(Rd), up to constants.

Let us try to define Tf for f ∈ L∞(Rd) directly. A naive implementation of the
kernel formula

Tf(y) =

∫

Rd

K(x, y)f(x) dx

runs into problems both for x near y, and x near infinity, since the decay (4) is
not strong enough to give absolute integrability in either case. Localising f to
be supported away from y helps with the first problem, but not the second. But
suppose we instead looked at the difference Tf(y) − Tf(y′) between Tf at two
values. Then we formally have

Tf(y)− Tf(y′) =

∫

Rd

(K(x, y)−K(x, y′))f(x) dx.

Now (5) implies that for fixed y, y′, the expression K(x, y) − K(x, y′) decays like
|x|−d−σ as x → ∞, and so the integral will be absolutely integrable as long as f
vanishes near y and y′. At the other extreme, if f is compactly supported, then it
lies in L2(Rd) and there is no difficulty defining Tf(y)− Tf(y′) (up to the usual
measure zero ambiguities).

Motivated by this, let us make the following definitions. We say that two functions
f, g : Rd → C are equivalent modulo a constant if there exists a complex number
C such that f(x) − g(x) = C for almost every x; this is of course an equivalence
relation. Given f ∈ L∞(Rd), we define Tf to be the equivalence class associated
to the function

Tf(y) := T (f1B)(y) +

∫

Rd\B

(K(x, y)−K(x, 0))f(x) dx

where B = By is any ball which contains both y and 0; it is not hard to see that the
right-hand side is well-defined (in particular, the integral is absolutely convergent)
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and is independent (modulo a constant) of the choice of B, and that T remains
linear. One can also check that this definition is consistent (modulo a constant)
with the existing definition of T on L2(Rd) (or on Lp(Rd)) on the common domain
of definition (i.e. L2(Rd) ∩ L∞(Rd) or Lp(Rd) ∩ L∞(Rd)).

Because Tf is only defined modulo a constant, we cannot meaningfully control it
in standard norms such as Lp. However, there is a norm which is suitable for this
type of function.

Definition 3.1 (Bounded mean oscillation). Let f : Rd → C be a function defined
modulo a constant. The BMO (or Bounded Mean Oscillation) norm of f is defined
as

‖f‖BMO := sup
B

∫
−

B

∣∣∣∣f −

∫
−

B

f

∣∣∣∣
whereB ranges over all balls. Note that if one shifts f by a constant, the BMO norm
is unchanged, so this norm is well-defined for functions defined modulo constants.
We denote by BMO(Rd) the space of all functions with finite BMO norm, modulo
constants.

It is not hard to verify that this is indeed a norm (but note that one has to quotient
out by constants before this is the case!), and that BMO(Rd) is a Banach space.
One can also easily check using the triangle inequality that

∫
−

B

∣∣∣∣f −

∫
−

B

f

∣∣∣∣ ∼ inf
c

∫
−

B

|f − c|

where c ranges over constants; thus the statement ‖f‖BMO . A is equivalent (up
to changes in the implied constant) to the assertion that for any ball B there exists
a constant cB such that

∫
−B|f − cB| . A, thus f deviates from cB by at most A on

the average.

It is not hard to see that BMO(Rd) contains L∞(Rd), and that ‖f‖BMO(Rd) .

‖f‖L∞(Rd). But it also contains unbounded functions:

Problem 3.2. Verify that the function log |x| is in BMO(Rd).

The primary significance of BMO for Calderón-Zygmund theory is that it can serve
as a substitute for L∞, on which CZOs are often ill-behaved. Consider for instance
the Hilbert transform applied (formally) to the signum function sgn. The resulting
function is not bounded, but lies in BMO:

Problem 3.3. Verify that using the previous definitions, Hsgn = 2
π log |x| modulo

constants.

This phenomenon applies more generally to all CZOs:

Proposition 3.4 (CZOs map L∞ to BMO). Let T be a CZO and f ∈ L∞(Rd).
Then Tf ∈ BMO(Rd) and

‖Tf‖BMO(Rd) .d ‖f‖L∞(Rd).
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Proof We can normalise ‖f‖L∞(Rd) = 1. By definition of the BMO norm, it
suffices to show that for every ball B there exists a constant cB such that∫

−
B

|Tf − cB| .d 1.

By translation and dilation symmetry we may take B = B(0, 1). We split Tf =
T (f12B) + T (f1Rd\2B). Since T is bounded on L2, we have

‖T (f12B)‖L2(Rd) .d ‖f12B‖L2(Rd) .d 1

and hence by Hölder (or Cauchy-Schwarz)
∫
−

B

|T (f12B)| .d 1.

This deals with the “local” part of Tf . For the “global” part, observe that for
x ∈ B we have

T (f1Rd\2B)(x) =

∫

|y|≥2

(K(x, y)−K(0, y))f(y) + c

for some arbitrary constant c. But by (6) we have K(x, y)−K(0, y) = O(|y|−d−σ);
since f is bounded by O(1), we thus see that T (f1Rd\2B)(x) = c+O(1), and so

∫
−

B

|T (f1Rd\2B)− c| .d 1.

Adding the two facts, we obtain the claim.

In order to exploit this proposition, we need to understand to what extent BMO
bounds on a function control its size. The basic insight here is that BMO bounds
are “almost as good as” L∞ control for many purposes, despite the logarithmically
unbounded members of BMO such as log |x|.

Let us first work informally. Let f be a real-valued BMO function, normalised so
that ‖f‖BMO(Rd) = 1, thus

∫

B

|f −

∫
−

B

f | ≤ |B|

for all balls B. By Markov’s inequality, this means that

|{x ∈ B : |f(x)−

∫
−

B

f | ≥ λ}| ≤ |B|/λ (8)

for any λ > 0. Note that this bound is only non-trivial for λ > 1, otherwise the
trivial bound of |B| is superior. It asserts, for instance, that f only exceeds its
average by (say) 10 on at most 10% of any given ball.

It turns out that one can iterate the above fact to give far better estimates in the
limit λ → ∞ that (8) initially suggests. This is because of a basic principle in
harmonic analysis: bad behaviour on a small exceptional set (such as 10% of any
given ball) can often be iterated away if we know that the exceptional sets are small
at every scale. Roughly speaking, this principle allows us to say that f only exceeds
its average by 20 on at most 10% of 10% of a given ball (i.e. on at most 1% of the
ball), f exceeds its average by 30 on at most 0.1%, and so forth, leading to a bound
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of the form (8) which tails off exponentially in λ rather than polynomially. More
precisely, we have

Proposition 3.5 (John-Nirenberg inequality). Let f ∈ BMO(Rd). Then for any
ball B we have

|{x ∈ B : |f(x)−

∫
−

B

f | ≥ λ‖f‖BMO(Rd)}| .d e
−cdλ|B|

for all λ > 0 and some constant cd > 0 depending only on d.

Proof We can normalise ‖f‖BMO(Rd) = 1. For each λ > 0 let A(λ) denote the
best constant for which we have

|{x ∈ B : f(x) ≥

∫
−

B

f + λ}| ≤ A(λ)|B|

whenever B is a ball and f is a real-valued function with BMO norm 1. From (8)
and the trivial bound of |B| we have the bounds

A(λ) ≤ min(1, 1/λ)

and our task is to somehow iterate this to obtain the improved estimate

A(λ) .d e
−cd/λ.

We shall do this by a variant of the Calderón-Zygmund decomposition. We’ll need
a moderately large quantity λ0 > 0 to be chosen later, and assume that λ > λ0.
Let B be any ball, and let F := max((f −

∫
−

B
f)12B, 0). Then we have

‖F‖L1(Rd) ≤

∫

2B

|f −

∫
−

B

f | . |2B|‖f‖BMO(Rd) .d |B|.

We consider the set E := B ∩ {MF > λ0}. Let ε > 0 be small, and let K be any
compact set in E such that

|E\K| ≤ ε.

Applying the Vitali covering lemma as in the proof of the Hardy-Littlewood maxi-
mal inequality (one can also use the Whitney decomposition or Calderón-Zygmund
decomposition here) we can cover

K ⊂
⋃

n

Bn

where Bn are a finite collection of balls intersecting K such that
∫
−

Bn
F ∼d λ0 and

∑

n

|Bn| .d ‖F‖L1(Rd)/λ0 ≤ |B|/λ0.

Note that as ∫
−

Bn

F ≤
‖F‖L1(Rd)

|Bn|
.d

|B|

|Bn|

we conclude that

|Bn| .d |B|/λ0.

Since Bn intersects K, which is contained in B, we can conclude that Bn ⊂ 2B if
we choose λ0 large enough.
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Observe that F is pointwise bounded almost everywhere by MF (by the Lebesgue
differentiation theorem), and so

|{x ∈ B : |F (x)| ≥ λ}| = |{x ∈ B : |F (x)| ≥ λ,MF ≥ λ0}| ≤
∑

n

|{x ∈ B : |F (x)| ≥ λ}∩Bn|+ε.

On the other hand, on each Bn we see that f =
∫
−

B
f +O(F ), and hence

∫
−

Bn

f =

∫
−

B

f +O(

∫
−

Bn

F ) =

∫
−

B

f +O(λ0)

and so by definition of A

|{x ∈ B : |F (x)| ≥ λ}∩Bn| ≤ |{x ∈ Bn : |f(x)−

∫
−

B

f | ≥ λ−O(λ0)}| ≤ A(λ−O(λ0))|Bn|.

Summing this we conclude

|{x ∈ B : |F (x)| ≥ λ}| ≤ A(λ −O(λ0))
∑

n

|Bn|+ ε .d A(λ−O(λ0))|B|/λ0 + ε.

Since ε is arbitrary we can remove it. Taking suprema over all B and f we conclude
the recursive inequality

A(λ) .d A(λ−O(λ0))/λ0.

Taking λ0 sufficiently large depending on d, and iterating starting from the trivial
bound A(λ) ≤ 1, we obtain the claim.

Using the distributional characterisation of the Lp norms, we conclude

Corollary 3.6 (Alternate characterisation of BMO norm). For any 1 ≤ p < ∞
and all locally integrable f we have

sup
B

(

∫
−

B

|f −

∫
−

B

f |p)1/p ∼p,d sup
B

inf
c
(

∫
−

B

|f − c|p)1/p ∼p,d ‖f‖BMO(Rd).

We leave the proof as an exercise to the reader.

One consequence of this corollary, when combined with the Calderón-Zygmund
decomposition, is that the BMO norm serves as a substitute for the L∞ norm as
far as log-convexity of Hölder norms is concerned:

Lemma 3.7. Let 0 < p < q <∞ and f ∈ Lp(Rd) ∩ BMO(Rd). Then f ∈ Lq(Rd)
and

‖f‖Lq(Rd) .p,q,d ‖f‖
p/q

Lp(Rd)
‖f‖

1−p/q

BMO(Rd)
.

Proof By rescaling one can normalise ‖f‖Lp(Rd) = ‖f‖BMO(Rd) = 1. Let us
understand the size of the distribution function |{|f | ≥ λ}|. From the Lp bound we
already have

|{|f | ≥ λ}| ≤ λ−p.

We can get a better bound for large λ as follows. Applying the Lp version of the
Calderón-Zygmund decomposition at level 1, we can find a collection of disjoint
dyadic cubes Q with

∑
Q |Q| .d 1, such that |f | ≤ 1 almost everywhere outside of



LECTURE NOTES 4 15

⋃
QQ, and such that

∫
−

Q
|f |p .d 1 on each cube Q. If we let B be a ball containing

Q of comparable diameter, we then easily verify that
∫
−

B
|f |p .d 1 also, and thus∫

−Bf = O(1). From the John-Nirenberg inequality we thus see that

|{x ∈ B : |f(x)| ≥ λ}| .d e
−cdλ|B|

for λ large enough; summing over B we conclude that

|{|f(x)| ≥ λ}| .d e
−cdλ

for large λ. Combining this with the Lp bound for small λ and using the distribu-
tional formula for the Lq norm we obtain the claim.

Because of this, we can also use BMO as a substitute for L∞ for real interpolation
purposes. For instance, let T be a CZO and 2 < p < ∞. It is now easy to check
that T is restricted type (p, p). Indeed, for any sub-step function f of height H and
width W , the boundedness on L2 gives

‖Tf‖L2(Rd) . HW 1/2

and Proposition 3.4 gives

‖Tf‖BMO(Rd) .d H

and so Lemma 3.7 gives

‖Tf‖Lp(Rd) .p,d HW
1/p

for 2 < p <∞, which is the restricted type. Further interpolation then gives strong
type. (Note that these arguments are essentially the dual of those which establish
weak-type (p, p) for 1 ≤ p < 2; in particular, note how the Calderón-Zygmund
decomposition continues to make an appearance.)

4. Multiplier theory

An important subclass of CZOs are given by certain types5 of Fourier multipliers.

Definition 4.1. If m : Rd → C is a tempered distribution we define the Fourier
multiplier m(D) : S(Rd) → S(Rd)∗ on Schwartz functions f ∈ S(Rd) by the
formula

m̂(D)f(ξ) = m(ξ)f̂(ξ).

We refer to the function m as the symbol of the multiplier m(D).

Note that if f is Schwartz, then so is f̂ , and that is enough to make mf̂ a tempered
distribution, and so m(D)f is well-defined as a tempered distribution. If m is
bounded, we observe from Plancherel’s identity that

‖m(D)f‖L2(Rd) ≤ ‖m‖L∞(Rd)‖f‖L2(Rd)

5We also have spatial multipliers m(X) : f(x) 7→ m(x)f(x), but their behaviour is much more
elementary to analyse thanks to Hölder’s inequality; for instance, a spatial multiplier m(X) is
bounded on Lp if and only if the symbol m is in L∞, and indeed the operator norm of the former
is the sup norm of the latter.
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and hence the Fourier multiplier extends continuously to all of L2 in this case.
Indeed it is not hard to show that in fact

‖m(D)‖L2(Rd)→L2(Rd) = ‖m‖L∞(Rd).

Examples 4.2. The partial derivative operator ∂
∂xj

is a Fourier multiplier with

symbol 2πiξj . More generally, any constant-coefficient differential operator P (∇),
where P : Rd → C is a polynomial, has symbol P (2πiξ); thus one can formally view
D in m(D) as representing the vector-valued operator D = 1

2πi∇. The translation

operator Transx0 is a Fourier multiplier with symbol e−2πix·ξ0 , thus we formally have
Transx0 = e−2πiD·x0 = e−x0·∇. A convolution operator T : f 7→ f ∗K, with K a

distribution, is a Fourier multiplier with symbol m = K̂; conversely, every Fourier
multiplier is a convolution operator with the distribution K = m̌. The Hilbert
transform is a Fourier multiplier with symbol −isgn(ξ), thus H = −isgn(D).

Let 1 ≤ p ≤ ∞. We say that m is an Lp multiplier if m(D) extends to a bounded
linear operator on Lp(Rd), and in that case denote ‖m‖Mp to be the Lp operator
norm of m on Mp. Thus for instance the M2 norm is the same as the L∞ norm.
At first glance, it seems one can say quite a lot about these quantities; for instance,
since the adjoint ofm(D) is easily seen to bem(D), which has the same Lp operator
norm as m(D), we see that

‖m‖Mp(Rd) = ‖m‖Mp(Rd) = ‖m‖Mp′(Rd)

and thus by Riesz-Thorin interpolation

‖m‖L∞(Rd) = ‖m‖M2(Rd) ≤ ‖m‖Mp(Rd)

and so all Lp multipliers are bounded (though the converse turns out to be false,
as we shall see later). The space Mp of Lp multipliers turns out to be a Banach
algebra, thus the Mp norm is a Banach space norm and furthermore

‖m1m2‖Mp(Rd) ≤ ‖m1‖Mp(Rd)‖m2‖Mp(Rd).

One can also show (from the symmetries of the Fourier transform) that the Mp

norm is invariant under translations, modulations, and L∞ dilations:

‖Transx0m‖Mp(Rd) = ‖Modξ0m‖Mp(Rd) = ‖Dil∞λ m‖Mp(Rd) = ‖m‖Mp(Rd).
(9)

The dilation invariance can be generalised: given any invertible linear transforma-
tion L : Rd → Rd we can check that

‖m ◦ L‖Mp(Rd) = ‖m‖Mp(Rd). (10)

Because of the translation invariance, the same is true if L is an affine transforma-
tion rather than a linear one.

Thus for instance, by modulating the Hilbert transform we see that

‖1[ξ0,+∞)‖Mp(R) .p 1

for 1 < p <∞, which by Riemann-Stieltjes integration and Minkowski’s inequality
shows that

‖m‖Mp(R) .p ‖m‖BV (R)
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when m has bounded variation, where

‖m‖BV (R) := ‖m‖L∞(R) + sup
ξ1<...<ξN

N−1∑

j=1

|m(ξj+1)−m(ξj)|.

For M1 or M∞, it is also not hard to show that

‖m‖M1(Rd) = ‖m‖M∞(Rd) = ‖m̌‖L1(Rd)

whenever the inverse Fourier transform of m is absolutely integrable; with a little
more work one can also show that m(D) is unbounded on L1 and L∞ when m̌ does
not lie in L1(Rd), although this is a little tricky. Thus for 1 ≤ p ≤ ∞ we have (by
Riesz-Thorin again)

‖m‖L∞(Rd) ≤ ‖m‖Mp(Rd) ≤ ‖m̌‖L1(Rd).

One consequence of this is that if m is a bump function adapted to L(Ω) for some
fixed bounded domain Ω and some arbitrary affine linear transformation L, then
m is an Mp multiplier with
|m‖Mp(Rd) = Od,Ω(1) for all 1 ≤ p ≤ ∞.

Suppose a multiplier m on Rd does not depend on the final coordinate ξd, thus

m(ξ1, . . . , ξd) = m̃(ξ1, . . . , ξd−1)

for some m̃ : Rd−1 → C. Then the d-dimensional Fourier multiplier m(D) and the
d− 1-dimensional Fourier multiplier m̃(D) are related by the identity

[m(D)f ]xd
= m̃(D)[fxd

]

for all xd ∈ R and Schwartz f ∈ S(Rd), where fxd
: Rd−1 → C is the slice

fxd
(x1, . . . , xd−1) := f(x1, . . . , xd).

From this and Fubini’s theorem one easily verifies that if m̃ is in Mp(Rd−1), then
m is in Mp(Rd) with

‖m‖Mp(Rd) = ‖m̃‖Mp(Rd). (11)

Of course, most multipliersm onRd do depend on the final coordinate ξd. Neverthe-
less we can obtain a partial generalisation of (11) for these more general multipliers:

Theorem 4.3 (De Leeuw’s theorem). Ifm ∈Mp(Rd) is continuous, then ‖mξd‖Mp(Rd−1) ≤
‖m‖Mp(Rd) for any ξd.

Proof By translation invariance we can take ξd = 0. For any λ > 0, let Lλ : Rd →
Rd be the linear transformation

L(ξ1, . . . , ξd) := (ξ1, . . . , ξd−1, ξd/λ),

then by (10) we have

‖m ◦ Lλ‖Mp(Rd) = ‖m‖Mp(Rd).
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Now we send λ → ∞. We observe from the hypothesis that m is continuous that
m ◦ Lλ → m ◦ L∞ pointwise, where L∞ is the (non-invertible) projection

L∞(ξ1, . . . , ξd) = (ξ1, . . . , ξd−1, 0).

On the other hand, from (11) we have

‖m ◦ L∞‖Mp(Rd) = ‖m0‖Mp(Rd−1).

So to conclude the theorem it suffices to show that

‖m ◦ L∞‖Mp(Rd) ≤ lim sup
λ→∞

‖m ◦ Lλ‖Mp(Rd).

This can be achieved by a weak convergence6 argument. If f, g are Schwartz func-
tions, we see from Hölder’s inequality that

|〈m ◦ Lλ(D)f, g〉| ≤ ‖m ◦ Lλ‖Mp(Rd)‖f‖Lp(Rd)‖g‖Lp′(Rd).

Taking limit superior as λ → ∞ and using Plancherel and dominated convergence
on the left-hand side (using the pointwise convergence, as well as the boundedness
of m) we conclude

|〈m ◦ L∞(D)f, g〉| ≤ lim sup
λ→∞

‖m ◦ Lλ‖Mp(Rd)‖f‖Lp(Rd)‖g‖Lp′(Rd).

Using the converse to Hölder’s inequality we obtain the claim.

One consequence of de Leeuw’s theorem is that we expect multiplier theory on
higher dimensions to be harder than multiplier theory for lower dimensions.

One can view de Leeuw’s theorem as a transference theorem, transferring a bound
on one space (Rd) to another (Rd−1), basically by exploiting the fact that there
was a projection from Rd to Rd−1. For a result of similar flavour, see Q12.

Despite these encouraging initial results, it appears very difficult to decide in general
whether any given multiplier m lies in Mp or not for any 1 < p < ∞ other than
p = 2. For instance, the question of determining the precise values of p and δ for
which the multiplier mδ(ξ) := max(1− |ξ|2, 0)δ is an Lp(Rd) multiplier is not fully
resolved in three and higher dimensions; this problem is known as the Bochner-Riesz
conjecture, which we will not discuss in detail here. Broadly speaking, the difficulty
with the Bochner-Riesz conjecture is that the symbol mδ is singular on a large,
curved set (in this case, the sphere), which necessarily leads to some delicate and
still incompletely understood geometric issues (most notably the Kakeya conjecture,
which we will also not discuss here).

However, one can do a lot better if the multiplier has no singularities, or is only
singular at one point (such as the origin). For instance, if m is Schwartz, then m̌
is definitely in L1, and so m lies in Mp for all 1 ≤ p ≤ ∞. Note from (9) that
any dilate, translate, and/or modulation of a Schwartz function is then also in Mp

uniformly in the dilation, translation, and modulation parameters.

Now we address multipliers which only have singularities at the origin.

6As usual, weak convergence preserves upper bounds, but does not necessarily preserve lower
bounds (cf. Fatou’s lemma).



LECTURE NOTES 4 19

Theorem 4.4 (Hörmander-Mikhlin multiplier theorem). Let m : Rd → C obey
the homogeneous symbol estimates of order 0

|∇km(ξ)| . |ξ|−k (12)

for all ξ 6= 0 and 0 ≤ k ≤ d + 2. (In particular ‖m‖L∞(Rd) . 1.) Then m is a
CZO, and we have ‖m‖Mp(Rd) .p,d 1 for all 1 < p <∞.

Remark 4.5. It is possible to use less regularity than d + 2 derivatives here, but
in practice this type of control is sufficient for many applications. The conditions
(12) are essentially asserting that m is smooth and does not oscillate on each an-
nulus 2j ≤ |ξ| ≤ 2j+1, although it essentially allows different annuli to behave
independently. For instance, if ψj is a bump function adapted to the annulus
2j ≤ |ξ| ≤ 2j+1, and εj ∈ {−1,+1} are arbitrary signs, then

∑
j εjψj obeys the

homogeneous symbol estimates of order 0 uniformly in the choice of εj .

Proof The multiplier m(D) is already bounded on L2(Rd). Formally, we know
that m(D) is a convolution operator: m(D)f = f ∗ m̌, but we run into the formal
difficulty that m̌ need not be locally integrable. To compute things rigorously it
is convenient to use the Littlewood-Paley decomposition. Let φ : Rd → R+ be a
fixed bump function which equals one on the ball B(0, 1) and is supported on the
ball B(0, 2), and write

ψj(ξ) := φ(ξ/2j)− φ(ξ/2j−1)

for j ∈ Z. Then we have the partition of unity

1 =
∑

j∈Z

ψj(ξ)

for almost every ξ, and hence we have the pointwise convergent sum

m =
∑

j∈Z

mj

where mj := ψjm. Using Plancherel and dominated convergence we conclude that

m(D)f =
∑

j∈Z

mj(D)f

for all f ∈ L2(Rd), where the sum is conditionally convergent in the L2 sense. In
particular for any f, g ∈ L2(Rd) we have

〈m(D)f, g〉 =
∑

j∈Z

〈mj(D)f, g〉

where the sum is at least conditionally convergent (indeed by Parseval one can show
that it is absolutely convergent). Now let us assume that f, g are also bounded and
compactly supported with disjoint supports. We can write

〈mj(D)f, g〉 =

∫

Rd

∫

Rd

Kj(y − x)f(x)g(y) dxdy

where

Kj(x) = m̌j(x) =

∫

Rd

mj(ξ)e
2πix·ξ dξ.

One can justify these formulae via the Fourier inversion formula and Fubini’s the-
orem using the fact that f, g,mj are bounded with compact support; we omit the
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details. Now observe that mj is supported on the annulus |ξ| ∼ 2j , and multiple
applications of the Leibnitz rule give us the bounds

|∇kmj(ξ)| .k,d 2−jk

for 0 ≤ k ≤ d + 2. From the k = 0 case of this bound and the triangle inequality
we obtain the bound

|Kj(x)| .d 2dj;

on the other hand, by integrating by parts k times (using the identity e2πix·ξ =
( x
2πi|x|2 · ∇ξ)

ke2πix·ξ) we obtain the bound

|Kj(x)| .d 2dj2−jk|x|−k

for k = 0, . . . , d+ 2, and hence

|Kj(x)| .d min(2dj, 2dj2−j(d+2)|x|−(d+2)) = |x|−d min((2j |x|)d, (2j |x|)−2).

Also, we can compute gradients

∇Kj(x) = m̌j(x) =

∫

Rd

2πiξmj(ξ)e
2πix·ξ dξ.

The additional 2πiξ factor essentially just contributes an extra factor of 2j to the
analysis, and we end up with

|∇Kj(x)| .d min(2dj, 2dj2−j(d+2)|x|−(d+2)) = |x|−d−1 min((2j |x|)d+1, (2j |x|)−1).

These estimates are enough to show that away from a neighbourhood of x = 0,
the series

∑
j∈Z

Kj is convergent in C1
loc to a kernel K : Rd\{0} → C obeying the

bounds

|K(x)| .d |x|−d; |∇K(x)| .d |x|−d−1 (13)

and by Fubini’s theorem we have

〈m(D)f, g〉 =

∫

Rd

∫

Rd

K(y − x)f(x)g(y) dxdy (14)

when f, g are bounded with disjoint support. By a monotone convergence argument
(noting thatm(D) is bounded on L2) the same is true when f, g are L2 with compact
support.

The bounds (13) (and the fundamental theorem of calculus) ensure that K(y − x)
is a singular kernel, and (14) shows that m(D) is a CZO with kernel K. Thus, by
Corollary 2.10, m(D) is of strong-type (p, p) with an operator norm of Op(1) for all
1 < p <∞, and the claim follows.

Note that the Hörmander-Mikhlin multiplier theorem includes the Lp boundedness
of the Hilbert transform for 1 < p < ∞ as a special case, since the multiplier
m(ξ) = isgn(ξ) certainly obeys the symbol estimates. Another useful instance
of the theorem is to conclude that the homogeneous fractional derivative operators
|∇|it = |2πD|it, with symbolm(ξ) = |2πξ|it and t real, are also bounded on Lp(Rd),
with an operator norm of Od(〈t〉

d+2) (in particular, it grows at most polynomially in
t). This fact turns out to be very useful when one wishes to use Stein interpolation
involving fractional differentiation operators |∇|z . A similar argument also applies
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to the inhomogeneous fractional derivative7 operators 〈∇〉it = 〈2πD〉it with symbol
〈2πξ〉it.

Another example of multipliers covered by this theorem are the Riesz transforms
Rj := iDj/|D| = ∂xj/|∇| for j = 1, . . . , d, with symbol iξj/|ξ|. These symbols are

easily verified to obey the homogeneous symbol estimates and are thus in Mp(Rd)
with norm Od(1) for all 1 < p < ∞. The significance of the Riesz transforms is
that they connect general second order derivatives to the Laplacian; indeed from
Fourier analysis we quickly see that

∂2

∂j∂k
f = −RjRk∆f

for all 1 ≤ j, k ≤ d and Schwartz f . In particular, since RjRk is bounded on Lp,
we obtain the elliptic regularity estimate

‖∇2f‖Lp(Rd) .d,p ‖∆f‖Lp(Rd)

for all Schwartz f and all 1 < p <∞. In a similar vein, we can show that

‖∇kf‖Lp(Rd) .d,p,k ‖|∇|kf‖Lp(Rd)

for any k ≥ 0, Schwartz f , and 1 < p < ∞, where |∇|k = |2πD|k is the Fourier
multiplier with symbol |2πξ|k.

More generally, any multiplier which is homogeneous of degree zero (thus m(λξ) =
m(ξ) for all λ > 0), and smooth on the sphere Sd−1, obeys the homogeneous symbol
estimates and is thus in Mp for all 1 < p <∞.

The Fourier multipliers covered by the Hörmander-Mikhlin multiplier theorem are
essentially special cases of the pseudodifferential operators of order 0, which we shall
discuss in later notes.

5. Vector-valued analogues

In the above discussion we considered only scalar-valued (complex-valued) func-
tions, and scalar-valued operators with scalar kernels K. However, it is possible
to generalise basically all of the above discussion to vector-valued cases, in which
the functions take values in a Hilbert space, and the kernel takes values in the
bounded linear operators from one Hilbert space to another. We rapidly present
these generalisations here; as it turns out only some notational changes need to be
made. We will then give an important application of this generalisation, namely
the Littlewood-Paley inequality.

LetH be a Hilbert space. For p <∞, we let Lp(X → H) be the space of measurable
functions f : X → H such that∫

X

‖f(x)‖pH dµ(x) <∞,

7The factor of 2π is of course irrelevant here and the same results hold if this factor is dropped.
Indeed, in PDE it is customary to drop the 2π from the definition of the Fourier transform so as
not to see these factors then arise from differential operators.
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where of course we identify functions which agree almost everywhere as before. We
also define L∞(X → H) in the usual manner. One can (rather laboriously) rederive
most of the scalar Lp theory to this vector-valued case (mostly by replacing absolute
values with H norms, and any scalar form fg with the inner product 〈f, g〉H). For
instance, one can verify the duality relationship

‖f‖Lp(X→H) = sup{

∫

X

〈f(x), g(x)〉H dµ(x) : ‖g‖Lp′(X→H) ≤ 1}

whenever 1 ≤ p ≤ ∞ and f ∈ Lp(X → H). Also, the real interpolation theory
continues to be valid in this setting (the basic reason being that the layer-cake
decompositions, which depend only on the magnitude of the underlying function,
continue to be valid).

Observe that if f : X → H is absolutely integrable on some set E, thus
∫
E ‖f(x)‖H dµ(x) <

∞, then one can define the vector-valued integral
∫
E
f(x) dµ(x) ∈ H in several

ways, for instance by using duality

〈

∫

E

f(x) dµ(x), g〉H :=

∫

E

〈f(x), g〉H dµ(x).

In particular, for locally integrable vector-valued functions f , we can compute av-
erages

∫
−Bf for balls or cubes B.

Let B(H → H ′) denote the bounded linear operators of H to H ′, with the usual
operator norm.

Definition 5.1 (Vector-valued singular kernels). Let H,H ′ be Hilbert spaces. A
singular kernel from H to H ′ is a function K : Rd ×Rd → B(H → H ′) (defined
away from the diagonal x = y) which obeys the decay estimate

‖K(x, y)‖B(H→H′) . |x− y|−d (15)

for x 6= y and the Hölder-type regularity estimates

‖K(x, y′)−K(x, y)‖B(H→H′) = O(
|y − y′|σ

|x− y|d+σ
) whenever |y − y′| ≤

1

2
|x− y|

(16)

and

‖K(x′, y)−K(x, y)‖B(H→H′) = O(
|x− x′|σ

|x− y|d+σ
) whenever |x− x′| ≤

1

2
|x− y|

(17)

for some Hölder exponent 0 < σ ≤ 1.

Definition 5.2 (Vector-valued Calderón-Zygmund operators). A Calderón-Zygmund
operator (CZO) fromH toH ′ is a linear operator T : L2(Rd → H) → L2(Rd → H ′)
which is bounded,

‖Tf‖L2(Rd→H′) . ‖f‖L2(Rd→H),

and such that there exists a singular kernel K from H to H ′ for which

Tf(y) =

∫

Rd

K(x, y)f(x) dx

whenever f ∈ L2(Rd → H) is compactly supported, and y lies outside of the
support of f . Note that the integral here is an absolutely convergent Hilbert space-
valued integral.
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One can then repeat the derivation of Corollary 2.10 more or less verbatim to
show that vector-valued Calderón-Zygmund operators continue to be bounded from
Lp(Rd → H) to Lp(Rd → H ′) with bound Od,p(1). Note that the constants never
depend on the dimension of H and H ′, and indeed this dimension may be infinite.

An important application of vector-valued Calderón-Zygmund theory is the Littlewood-
Paley inequality.

Proposition 5.3 (Upper Littlewood-Paley inequality). For each integer j, let ψj :
Rd → C be a bump function adapted to an annulus {ξ : |ξ| ∼ 2j}. Then for any
1 < p <∞ and f ∈ Lp(Rd) we have

‖(
∑

j∈Z

|ψj(D)f |2)1/2‖Lp(Rd) .p,d ‖f‖Lp(Rd)

and for any fj ∈ Lp(Rd) for j ∈ Z we have

‖
∑

j∈Z

ψj(D)fj‖Lp(Rd) .p,d ‖(
∑

j∈Z

|fj |
2)1/2‖Lp(Rd) (18)

where the sum in the left is conditionally convergent in Lp.

Proof By monotone convergence it suffices to prove the claim assuming that only
finitely many of the ψj are non-zero. (This step is not strictly necessary, but it lets
us avoid unnecessary technicalities in what follows.) It suffices to prove the first
claim, as the second follows from a standard duality argument.

We consider the vector-valued operator T : L2(Rd) → L2(Rd; l2(Z)) defined by

Tf := (ψj(D)f)j∈Z,

thus

‖Tf(x)‖l2(Z) = (
∑

j∈Z

|ψj(D)f(x)|2)1/2.

Since
∑

j |ψj |
2 = O(1), we quickly see from Plancherel’s theorem that T is strong-

type (2, 2) with operator norm O(1). Next, we observe that T has a vector-valued
kernel

K(x, y) = (ψ̌j(y − x))j∈Z

where we identify such vectors with operators from C to l2(Z) in the obvious
manner. But as in the proof of the Hörmander-Mikhlin multiplier theorem we have

ψ̌j(x) = O(
1

|x|d
min((2j |x|)d, (2j |x|)−2))

and

∇ψ̌j(x) = O(
1

|x|d+1
min((2j |x|)d+1, (2j |x|)−1))

from which we easily verify (15), (16), (17). The claim then follows from the vector-
valued analogue of Corollary 2.10.
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Corollary 5.4 (Two-sided Littlewood-Paley inequality). For each integer j, let
ψj : Rd → C be a bump function adapted to an annulus {ξ : |ξ| ∼ 2j}. Suppose
also that

∑
j |ψj |

2 ∼ 1. Then for any 1 < p <∞ and f ∈ Lp(Rd) we have

‖(
∑

j∈Z

|ψj(D)f |2)1/2‖Lp(Rd) ∼p,d ‖f‖Lp(Rd).

Proof By density (and the preceding proposition) it suffices to prove this when f
is Schwartz.

From the preceding proposition we already have the upper bound; the task is to
establish the lower bound. Let ψ̃j be bump functions adapted to a slightly wider
annulus than ψj , which equal 1 on the support of ψj . Writing

ϕj := ψ̃j
ψj∑
j |ψj |2

we verify that ϕj is also adapted to the same annulus as ψj , and that we have the
partition of unity 1 =

∑
j ϕjψj . This leads to the identity

f =
∑

j

ϕj(D)ψj(D)f

when f is Schwartz, and hence by (18) we obtain

‖f‖Lp(Rd) .p,d ‖(
∑

j

|ψj(D)f |2)1/2‖Lp(Rd)

as desired.

The quantity (
∑

j∈Z
|ψj(D)f |2)1/2 is known as a Littlewood-Paley square function

of f . One can view ψj(D)f as the component of f whose frequencies have magnitude
∼ 2j . The point of the inequality is that even though each component ψj(D)f may
individually oscillate, no cancellation occurs between the components in the square
function. This makes the square function more amenable than the original function
f when it comes to analyse operators (such as differential or pseudodifferential
operators) which treat each frequency component in a different way.

5.5. An alternate approach via Khinchine’s inequality. One can avoid deal-
ing with vector-valued CZOs by instead using randomised signs as a substitute.
The key tool is the following inequality, which roughly speaking asserts that a
random walk with steps x1, . . . , xN is extremely likely to have magnitude about

(
∑N

j=1 |xj |
2)1/2, and can be viewed as a variant of the law of large numbers:

Lemma 5.6 (Khinchine’s inequality for scalars). Let x1, . . . , xN be complex num-
bers, and let ǫ1, . . . , ǫN ∈ {−1, 1} be independent random signs, drawn from {−1, 1}
with the uniform distribution. Then for any 0 < p <∞

(E|

N∑

j=1

ǫjxj |
p)1/p ∼p (

N∑

j=1

|xj |
2)1/2.
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Proof By the triangle inequality it suffices to prove this when the xj are real.
When p = 2 we observe that

E|
N∑

j=1

ǫjxj |
2 = E

∑

1≤j,j′≤N

ǫjǫj′xjxj′ =
N∑

j=1

x2j

since ǫjǫj′ has expectation 0 when j 6= j′ and 1 when j = j′. This proves the claim
for p = 2. By Hölder’s inequality this gives the upper bound for p ≤ 2 and the
lower bound for p ≥ 2. Hölder also shows us that the lower bound for p ≤ 2 will
follow from the upper bound for p ≥ 2, so it remains to prove the upper bound for
p ≥ 2.

We will use the “exponential moment method”. We normalise
∑N

j=1 |xj |
2 = 1.

Now consider the expression

E exp

N∑

j=1

ǫjxj = E

N∏

j=1

exp ǫjxj

=

N∏

j=1

E exp ǫjxj

=

N∏

j=1

coshxj .

A comparison of Taylor series reveals the inequality

coshxj ≤ exp(x2j/2)

and hence

E exp

N∑

j=1

ǫjxj ≤ exp

N∏

j=1

x2j/2 . 1.

By Markov’s inequality we conclude

P(

N∑

j=1

ǫjxj ≥ λ) . e−λ

and hence (by the symmetry of the ǫj)

P(|

N∑

j=1

ǫjxj | ≥ λ) . e−λ.

The claim then follows from the distributional representation of the Lp norm.

Remark 5.7. It is instructive to prove Khinchine’s inequality directly for even ex-
ponents such as p = 4.

Corollary 5.8 (Khinchine’s inequality for functions). Let f1, . . . , fN ∈ Lp(X) for
some 0 < p <∞, and let ǫ1, . . . , ǫN ∈ {−1, 1} be independent random signs, drawn
from {−1, 1} with the uniform distribution. Then for any 0 < p <∞

(E‖

N∑

j=1

ǫjfj‖
p
Lp(X))

1/p ∼p ‖(

N∑

j=1

|fj |
2)1/2‖Lp(X).
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Proof Apply the above inequality to the sequence f1(x), . . . , fN (x) for each x ∈ X
and then take Lp norms of both sides.

This gives the following alternate proof of Proposition 5.3. Once again we may
restrict to only finitely many of the ψj being non-zero. Observe that for arbitrary
choices of signs ǫj ∈ {−1, 1}, that the sum

∑
j ǫjψj obeys the homogeneous symbol

estimates of order 0. Thus by the Hörmander-Mikhlin theorem we have

‖
∑

j

ǫjψj(D)f‖p
Lp(Rd)

.p,d ‖f‖p
Lp(Rd)

for 1 < p < ∞. Taking expectations and using Khinchine’s inequality we obtain
the claim.

6. Exercises

• Q1. Let T : S(R) → C0(R) be a continuous linear operator which maps
Schwartz functions to bounded continuous, and which commutes with trans-
lations and dilations as in (2). Show that T is a linear multiple of the Hilbert
transform and the identity. (Hint: first establish the existence of a distri-
bution K ∈ S(R)∗ such that Tf(x) = 〈K,Trans−xf〉 for all f ∈ S(R),
and such that K is homogeneous of degree −1. Restrict the action of K to
Schwartz functions on R+ or R− and show that K is a constant multiple
of 1/x on these functions.) (The claim is also true if we relax C0(R) to
S(R)∗, the space of distributions, but this is a little trickier to prove.)

• Q2. Let T and T ′ be two CZOs with the same kernel K. Show that there
exists a bounded function b ∈ L∞(Rd) such that Tf = T ′f + bf for all
f ∈ L2(Rd). (Hint: by subtraction we can assume T ′ = 0 and K = 0. Now
observe that E 7→ 〈T 1E, 1E〉 is an absolutely continuous measure, and use
the Radon-Nikodym theorem.)

• Q3. Show that if we redefine the notion of a CZO by weakening the hy-
pothesis of L2(Rd) boundedness, to merely being of restricted weak-type
(p0, p0) for some 1 < p0 <∞, then Corollary 2.10 remains unchanged (but
with an operator norm of Op0(1) instead of O(1). In particular this appar-
ent expansion of the notion of a CZO does not in fact increase the class of
CZOs (up to changes in the implied constants).

• Q4. (Lacunary exponential sums lie in BMO) Let (ξn)n∈Z be a sequence
of non-zero frequencies in R which are lacunary in the sense that |ξn| ∼ 2n

for all n. Let (cn)n∈Z be a sequence of complex numbers which obeys the l2

bound
∑

n |cn|
2 . 1. To avoid issues of convergence let us assume that only

finitely many of the cn are non-zero. Let f : R → C be the exponential
sum

f(x) :=
∑

n

cne
2πiξnx.

If I is an interval in R, and φI : R → R is a bump function adapted to I,
establish the local L2 estimate∫

R

φI(x)|f(x) − cI |
2 dx . |I|
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for some constant cI . (Hints: split the n summation into the high frequen-
cies where 2n ≥ |I|−1, and the low frequencies where 2n < |I|−1. For the
high frequencies, forget about cI and expand out the sum, using some good
estimate on the Fourier transform of φI . For the low frequencies, choose cI
in order to obtain some cancellation and then use the triangle inequality.)
Conclude that

‖f‖BMO(R) . 1.

• Q5: Show that Corollary 3.6 is in fact true for all 0 < p <∞.
• Q6 (Dyadic BMO) Given any Ω ⊂ Rd and any locally integrable f : Ω → C,
define the dyadic BMO norm ‖f‖BMO∆(Ω) of f as

‖f‖BMO∆(Ω) = sup
Q⊂Ω

∫
−

Q

|f −

∫
−

Q

f |

where Q ranges over all dyadic cubes inside Ω. Show that we have the
John-Nirenberg inequality

|{f ∈ Q : |f −

∫
−

Q

f | ≥ λ}| . e−cλ/‖f‖BMO∆(Ω) |Q|

for all λ > 0 and all Q ⊂ Rd, and in particular

‖f‖BMO∆(Ω) ∼p sup
Q⊂Ω

(

∫
−

Q

|f −

∫
−

Q

f |p)1/p

for all 1 ≤ p <∞. (As in Q5, this extends to 0 < p < 1 as well.)
• Q7 (BMO and dyadic BMO) For any locally integrable f in Rd, show that

‖f‖BMO∆(Rd) .d ‖f‖BMO(Rd)

but that the converse inequality is not true. On the other hand, if we let
Dd,α be the shifted dyadic meshes from the previous week’s notes, and set
BMO∆,α to be the associated shifted dyadic BMO norms, show that

‖f‖BMO(Rd) ∼d

∑

α

‖f‖BMO∆,α(Rd).

• Q8 (Sharp function, I) For any locally integrable function f : Rd → C,
define the function f ♯ : Rd → R+ as

f ♯(x) := sup
B∋x

∫
−

B

|f −

∫
−

B

f |

where the supremum ranges over all balls containing x. In particular we
see that

‖f ♯‖L∞(Rd) = ‖f‖BMO(Rd).

Show that we have the pointwise bound

|f ♯| .d Mf.

• Q9 (Sharp function, II) Let f be locally integrable, let ε, λ > 0, and let B
be any ball on which Mf(x) . λ for at least one x ∈ B, and such that
f ♯(y) ≤ ελ for at least one y ∈ B. Use the Hardy-Littlewood maximal
inequality to show that for any sufficiently large K ≫ 1, that

|{x ∈ B :Mf ≥ Kλ}| .d
ε

K
|B|.
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From this and a Vitali covering lemma or Calderón-Zygmund decomposition
argument, conclude the good λ inequality

|{Mf ≥ Kλ and f ♯ ≤ ελ}| .d
ε

K
|{Mf ≥ λ}|

and then (by taking K large, and ε very small) show that

‖f‖Lp(Rd) ∼p,d ‖Mf‖Lp(Rd) .p,d ‖f ♯‖Lp(Rd)

for all 1 < p < ∞ and f ∈ Lp(Rd). Use this to give an alternate proof of
Lemma 3.7.

• Q10 Show that if T is a bounded linear operator on L2(Rd) which commutes
with translations, then it is a Fourier multiplier operator with bounded
symbol.

• Q11 Let m : Rd → C and m′ : Rd′

→ C be Lp multipliers. Show that the
tensor product m⊗m′ : Rd+d′

→ C is also an Lp multiplier with

‖m⊗m′‖Mp(Rd+d′) = ‖m‖Mp(Rd)‖m
′‖Mp(Rd′).

(Hint: it may help to first establish the cases when m ≡ 1 or m′ ≡ 1.)
• Q12 (Transference theorem for Zd) If m : Zd → C is bounded, define the
multiplier m(D) on L2(Td) by the formula

m̂(D)f(ξ) := m(ξ)f̂(ξ) for ξ ∈ Zd

where we use the Fourier transform on the torus Td := Rd/Zd,

f̂(ξ) :=

∫

Td

e−2πix·ξf(x) dx.

We then define ‖m‖Mp(Zd) to be the Lp(Td) operator norm of m(D).

Let m : Rd → C be continuous and an Mp(Rd) multiplier for some
1 ≤ p ≤ ∞. Show that ‖m|Zd‖Mp(Zd) ≤ ‖m‖Mp(Rd). (Hint: take functions

f, g ∈ C∞(Td), extend them periodically to Rd, multiply them by some

cutoff to 1 (such as e−ε|x|2), apply m(D) on Rd, and use some appropriate
limiting argument (and possibly a Poisson summation formula) to get down
to Rd.)

• Q13 (Continuous Littlewood-Paley inequality) For every t > 0, let ψt :
Rd → C be a function obeying the estimates

|∇jψt(ξ)| .d t
−j min((|ξ|/2j)−ε, (|ξ|/2j)ε)

for all 0 ≤ j ≤ d + 2, all ξ ∈ Rd, and some ε > 0 (independent of t).
Conclude that

‖(

∫ ∞

0

|ψt(D)f |2
dt

t
)1/2‖Lp(Rd) .p,d ‖f‖Lp(Rd)

for f ∈ Lp(Rd). If we also have the pointwise bound
∫∞

0 |ψt|
2 dt

t ∼ 1,
improve this bound to

‖(

∫ ∞

0

|ψt(D)f |2
dt

t
)1/2‖Lp(Rd) ∼p,d ‖f‖Lp(Rd).
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• Q14. (Chernoff’s inequality) If x1, . . . , xN are complex numbers of magni-
tude at most one, establish the inequality

P(|

N∑

j=1

ǫjxj | ≥ λ(

N∑

j=1

|xj |
2)1/2) . e−λ2/4

for all 0 < λ ≤ 2(
∑N

j=1 |xj |
2)1/2. (Hint: look at exp(t

∑N
j=1 ǫjxj) for a real

parameter t.)
• Q15. (Marcinkiewicz-Zygmund vector extension) Let T be a linear operator
on Lp(Rd) with operator norm 1. Show that for any functions f1, f2, . . . ∈
Lp(Rd) we have

‖(

∞∑

n=1

|Tfn|
2)1/2‖Lp(Rd) .p ‖(

∞∑

n=1

|fn|
2)1/2‖Lp(Rd).

(Hint: reduce to finite summation and use Khinchine’s inequality.)
• Q16. (BMO Littlewood-Paley inequality) For each integer j, let fj ∈
L∞(Rd); assume that all but finitely many of the fj are non-zero. Let
ψj be as in Proposition 5.3. Show that

‖
∑

j

ψj(D)fj‖BMO(Rd) .d ‖(
∑

j

|fj |
2)1/2‖L∞(Rd).

(It is possible to remove the hypothesis that finitely many of the fj are non-
zero, but then some care must be taken to define

∑
j ψj(D)fj ; in particular

it will only be defined modulo a constant.)
• Q17. (Zygmund’s inequality) For each positive integer n, let ξn be an
integer with |ξn| ∼ 2n, and let cn be a complex number with

∑
n |cn|

2

finite. Show that

‖cne
2πiξnx‖eL2(T) ∼ (

∑

n

|cn|
2)1/2

and in particular that

‖cne
2πiξnx‖Lp(T) ∼p (

∑

n

|cn|
2)1/2

for all 2 ≤ p <∞. Dually, for any f ∈ L log1/2 L(T), show that

(
∑

n

|f̂(ξn)|
2)1/2 . ‖f‖L log1/2 L(T)

and in particular that

(
∑

n

|f̂(ξn)|
2)1/2 .p ‖f‖Lp(T)

for all 1 < p ≤ ∞.
• Q18. (John-Nirenberg via Bellman functions) Let V : [0, 1] → R be the
function V (x) := 10−(x−2)2. Use a Bellman function approach to establish
the John-Nirenberg type inequality

|{x ∈ I : f(x)−

∫
−

I

f ≥ λ}| ≤ C0|I|V (
‖f −

∫
−If‖

2
L2(I)

|I|
)e−ελ

for some absolute constants C0, ε > 0, all intervals I, and all functions
f : I → R with ‖f‖BMO∆(I) ≤ 1.
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