Mathematics 245B
Terence Tao
Midterm, Feb 11, 2003

Instructions: Try to do all three problems; they are all of equal value. There is plenty of
working space, and a blank page at the end.

You may enter in a nickname if you want your midterm score posted.

Good luck!
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Problem 1. Let f : R — R be an absolutely integrable function. For any ¢ > 0, let P, f(x)
denote the function | oo .
P, = — —_— dy;
tf(x) W[m (y—x)2+tzf(y) Y;
this is known as the harmonic extension of f and is of importance in the theory of harmonic
functions. Establish the inequality sup;s  |Pif(z)| < CM f(x) for all z € R, where M f(x)
is the Hardy-Littlewood maximal function

1 T+

Mf(z): =supon | |f(y)| dy

and 0 < C < oo is an absolute constant (not depending on f or z).

(Hint: split the region of integration for P f(z) into the interval {y : |y — z| < t} and to the
sets {y: 27t < |y — x| < 29Tt} for j =0,1,2,.... Estimate the integral on each set by some
multiple of M f(z), and then sum in j. This argument should give a constant C' which looks
something like
2 =1 27+2
C:=— — -~ 2.5.
™ + jZO w14 22

The best value of C' that one can get is in fact C' = 1, but you are not required to obtain this
sharp result.)

Fix z € R and t > 0. By the triangle inequality we have

o

r|Pf(2)] < / F@)] dy

—oo (y— ) + 17

(goting that ;5> is positive). Let Eo := {y: [y~ <t} and Fj := {{y: 2t < |y — 2| <
20+1¢} for j = 0,1,2,.... It is clear that Ey and Fp, Fi,... are disjoint, and their union is

equal to R. Thus (using dominated convergence or monotone convergence)

ARSI <2 [ el |dy+2 L el

On the set Ey, 5 is at most 5 = 1, and hence

_t
(y—z)2+t

z+t

z+t1 1
/E m'ﬂ Ndyf/it @y =25 | 1f@) dy <2M (@)

by definition of M f(x). Similarly, on the set Fj, W is at most
and Fj is contained inside the interval [z — 27+1¢, 27F1¢] thus

t _ 1
27t)2+t2 — (224+1)t°

J

t $+2'7+1 1 2]+2 z+2]+1
/F- (y —z)? + 12 W)l dy < o—ni+1y 1(2%7 +1) W)l dy = (227 + 1) Jywaitry Jo_astre fo)ldy <



Summing this we obtain

O 9j+2
m|Pif(2)] < 2Mf(x +Z @)
J=

M f(x)

and thus |P;f(z)] < CM f(x), where C is the constant described above. Taking suprema
over all ¢ one obtains the result.

To get the sharp constant C' = 1, one argues as follows. For y € R, let F'(y f Y 1f(2)] dz.
Then by the Fundamental theorem of calculus, F' is absolutely contlnuous and bounded and
|f(y)| = F'(y) almost everywhere. Thus

Ars@l < [l = [ s

We may integrate by parts to write this as

* 2(y — x)t
/_oo W-ar+epl W

('l leave it to you to justify why this integration by parts is rigorous despite the interval of
integration being infinite. Hint: restrict to an interval [—N, N] for some large N, and take
limits as N — oo exploiting the fact that F' is bounded). We split into y > = and y < z, and
change variables to y =z +r or y = x — r to obtain

° 2rt < 2rt
/0 7(7‘2 n 752)2F(ac +r)dr— /0 7(712 n t2)2F($ —r) dr.
On the other hand, we have
T+7r
Fa+n)-Fa-n)= [ |f()]ds <2rM](0)
by definition of M f(x). Thus we have

T\ P ()] < / h : 2rt

W2TM]“(Z') dr

An elementary exercise establishes that

/°° 2rt 9
— %r=nm
o (r2+1t2)?

and so we have |P,f(z)| < M f(z) for all t > 0. Taking suprema over all ¢ we obtain the
claim.

As a side remark - by repeating the proof of the Lebesgue differentiation theorem one can
also prove that lim; o P; f(x) = f(z) for almost every z. This is known as Fatou’s theorem.




Problem 2. (a) Let X be a locally compact Hausdorff space, and let Y be a closed subset
of X. Show that Y is also locally compact Hausdorff.

First observe that any subspace of a Hausdorff space is still Hausdorff (if two open sets in
X separate two points in Y, then their restriction to Y will be open in Y, and continue to
separate those two points). So it suffices to verify local compactness. Let y € Y, then by
hypothesis there is a compact (hence closed) neighbourhood K of y in X, which contains an
open neighbourhood V' of y. The set K NY is a closed subset of the compact set K, and is
hence compact, hence is compact in Y (compactness is intrinsic). It contains V' N'Y, which
is an open neighbourhood of y in Y. Thus K NY is a compact neighbourhood of y in Y, and
the claim follows.

(b) Let X be a locally compact Hausdorff space, and let Y be an open subset of X. Show
that Y is also locally compact Hausdorff.

As before it suffices to verify the local compactness property. Let y € Y, then by Proposition
4.30 there exists a compact neighbourhood N of y in X which is contained in Y. Since
compactness is intrinsic, IV is also a neighbourhood of v in Y, and the claim follows.




Problem 3. Let X be a non-empty topological space, and let C(X) be the space of real-
valued continuous functions on X. Show that the set

(EC X :1p € C(X)}

has cardinality two if and only if X is connected. (Recall that 1 : X — R is the indicator
function of E, with 1g(z) =1 when z € FE and 1g(z) = 0 when z ¢ E).

Note that if E is empty or equal to X, then 1 is constant and hence clearly continuous. Thus
the set {E C X : 15 € C(X)} always has at least two elements (recall that X is assumed to
be non-empty).

Now suppose that X is connected. Suppose for contradiction that there existed an E not
equal to § or X such that 1z € C(X). Then 15'({0}) = X\E and 1;'({1}) = E are inverse
images of closed sets via a continuous function and are hence closed. But then X is parti-
tioned into two disjoint non-empty closed (hence open) sets, and is therefore disconnected, a
contradiction.

Conversely, suppose that {E C X : 1y € C(X)} contained no sets other than @ and X.
Suppose for contradiction that X is disconnected, thus X = E N F for some disjoint open
non-empty sets E, F. Consider the function 1. For any set V in R (open or otherwise), the
set IEI(V) is equal to 0, E, F, or X - all of which are open. Thus 1g is continuous, and so
{E C X :1g € C(X)} has cardinality at least three, a contradiction.

Remark: Another amusing way to phrase this problem is that the number of idempotents in
the algebra C(X) (i.e. elements f € C(X) such that f2 = f) is always at least two, and is
equal to two precisely when X is connected.

Extra challenge: try showing that if the set {E C X : 1 € C(X)} is finite, then the
cardinality is always a power of two.




