Mathematics 245A
Terence Tao
Midterm, Nov 3, 2004

Instructions: Try to do all three problems; they are all of equal value. There is plenty of
working space, and a blank page at the end. Throughout this midterm, “measure” refers to
a non-negative, countably additive measure. You may use the axiom of choice freely.

You may enter in a nickname if you want your midterm score posted.

Good luck!

Name:

Nickame:

Student ID:

Signature:

Problem 1.

Problem 2.

Problem 3.

Total:




Problem 1. Let X be a set, let £ be a collection of subsets of X, and let M(E) be the
o-algebra generated by £. Let p, v be two measures on M(€) such that u(X) = v(X) < oo,
and are such that u(A) = v(A) for all A € £. Prove that in fact we have u(A) = v(A) for all
A e M(&). (Hint: what can you say about the set C := {4 € M(E) : u(4) =v(A)}?)

Unfortunately, this statement is false. Here is a counterexample: Let X = {a,b,c,d} be a
four-element set, let £ = {{a, b}, {b, c}}, then it is easy to see that M(E) is the power set of
X. Let p be the measure such that p({a}) = u({c}) =1 and p({b}) = u({d}) =0, and let v
be the measure such that v({a}) = v({c}) = 0 and v({b}) = v({d}) = 1. Then p and v agree
on £ but do not agree on M(E).

(My intention with this question was for you to show that C was a o-algebra that contains &,
and hence must necessarily contain M(E). Unfortunately, while C does indeed contain @) and
X, and is closed under complementations, disjoint unions, and closed under countable increas-
ing unions and countable decreasing intersections), it is not closed under finite intersections
or finite unions. For instance, in the above example C = {0, {a, b}, {b, ¢}, {a,d}, {c,d}, X}.)

The statement is true however if £ is an algebra, basically because of Theorem 1.14. If one
lets po be the restriction of u (or v) to &, then g is a premeasure (why?), and hence by
Theorem 1.14 there is a unique extension of ug to M(E) which is a measure, and thus p and
v must both equal this extension, and are thus equal to each other.

The statement is also true under the weaker assumption that £ is an elementary family,
because p and v will then also agree on the space of finite disjoint unions of sets in £, which
is an algebra.




Problem 2. (a) Let A C R be an arbitrary subset of the real line (not necessarily Lebesgue
measurable), and let p*(A) denote the Lebesgue outer measure of A. Show that there exists
a Lebesgue measurable set B C R such that A C B and u(B) = p*(A).

Let n > 1, then by definition of outer measure, there exists a countable family of intervals
(17)52, which covers A and is such that

By countable sub-additivity, this means that

WU 1) <)+

Thus if welet B := (72, (Uj2, I}'), then B is measurable (countable intersection of countable

union of intervals) and covers A, and p(B) < p*(A) + - for all n > 1, hence u(B) < p*(A).
On the other hand, by monotonicity of outer measure u(B) = p*(B) > p*(A). Thus u(B) =
p*(A) as claimed.

(b) Prove that Lebesgue outer measure is continuous from below. In other words, if A; C
Ay C A3 C ... C R, prove that p*(U,—, An) = lim,_,00 p*(Ay). (Note: the argument I gave
in class was incorrect. However, you may proceed by using (a)).

For each A,,, let us choose a measurable B,, such that u(B,) = p*(4,) and B,, contains A,,.
Now let C), := ﬂ;’::" B, then C, is still measurable and still contains A4,, (because each B,

contains A, and hence contains 4,, when m > n). Also

p*(An) < p*(Cn) = (Cn) < p(Bn) = p*(An)
and hence u(C,) = p*(4,) for all n. Since the C, are increasing, we see using continuity

from below that

n— 00 n— oo

N*(U A,) < N*(U Cn) = N(U Cn) = lim p(Cp) = lim p*(4,),

SO o
u*(L_Jl An) < lim p*(An).

On the other hand, by monotonicity we have



for all n, hence
o

(U An) < Tim i (4,).
n=1

On the other hand, since |J;. ; A, containws each n, we have

n=1
for each n, and hence
o
p(J 4n) > lim " (4,).
n=1
Combining these two, we obtain
oo
B ( U1 Ap) = n]g%o (An)
n=

as desired.

Note that this argument shows in fact that any outer measure arising from a premeasure via
Caratheodory’s construction will necessarily be continuous from below. Note also that the
trick of passing from the B,, (which are not nested) to the C),, (which are) is quite crucial.




Problem 3. Let f : R — R be a Lebesgue measurable function (i.e. it is (£, Bg)-
measurable). Let E denote the set of all points = in R at which f is differentiable, i.e.

E={reR: lm &N -1@

exists}.
h—0;h0 h }

Prove that F is Lebesgue measurable.

The intended solution to this problem was to use the fact that the functions M were
measurable for each h. Unfortunately the fact that there are uncountably many h involved
causes significant problems with this approach. The following alternative approach works,
in fact it works for all functions f, not just the Lebesgue measurable ones, and it makes the
slightly stronger assertion that E is a Borel set, not just a Lebesgue measurable set.

Let us first define the sets E, 3. for a < b and € > 0 by

Ea,b,s:z{xGR:agw

<bforall 0 < |h|<e}.

We first clam that E, ;. is always closed, thus that E, ;. contains all its right limit points
and left limit points. To see this, suppose that there is a sequence (2,)52; in E, ;. which
converges to some real number z from either the right or the left; we need to show that z
also lies in E, .. Without loss of generality we assume that x, converges to = from the left,
thus z, < z for all n. For n large enough, we have 0 < z — z,, < €; since z, € E, ¢, this

implies
f@) = f(an)
T — Ty

a< < b for all sufficiently large n.
Multiplying this by  — z,, and then adding f(z,), we obtain

flzy) +alx — z,) < f(z) < f(x,) + bz — z,) for all sufficiently large n.
Applying the squeeze test, we see that f(x,) converges to f(z) as n — cc.

Now let 0 < |h| < e. We write
f@th) = f@) _ o St (bt —a) — fea) | flan) = f@)

h n—00 h h

The second sum goes to zero as n — oo (recall that h is fixed). Also, for n sufficiently large,
we have 0 < |h + 2 — z,| < €, and hence (since z,, € Eq )

a< f(wn‘i'(h"'xh_xn))_f(xn) <b.

As a consequence we have

_fath) — f@)
- h
Since 0 < |h| < € was arbitrary, we see that ¢ € E, . as claimed.

<b.



Let
f(z+h) — f(z)
h

It is easy to see that each Ea,b,g is a countable union of sets of the form E,1/n5_1/n, and
is thus Borel (in fact it is F,). Now let

By (o€ Riac limint JEEN=I@ o fa )~ f(a)
’ h—0;h#0 h h—30;h#0 h

Ea,b,s ={z€eR:a< <bfor all 0 < |h| < e}.

< b}.

It is easy to see that this set is a countable union of sets of the form Ea,b,l /n and is thus
Borel (in fact it is Fi;). Now for each 7 > 0, let

~ z+h)— f(z z+h)— f(z

E.:={z €R:q¢—r < liminf M < limsup M < g for some rational ¢}.
h—0;h#0 h h—0;h#£0 h

Tt is easy to see that each E, is a countable union of sets of the form E,_, , and is thus Borel

(in fact it is F;). Now we observe that E is the countable intersection of sets of the form

Ey;, and is thus Borel (in fact it is Fys).




