Orbispaces uniformizations of sub-hyperbolic maps and their iterated monodromy groups

Volodymyr Nekrashevych

2019, March 23
University of Hawai’i
Bonded orbit equivalence

A homeomorphism $\phi : \mathcal{X}_1 \to \mathcal{X}_2$ is an orbit equivalence of group actions (G_i, \mathcal{X}_i) if ϕ maps G_1-orbits to G_2-orbits.
A homeomorphism $\phi : X_1 \rightarrow X_2$ is an orbit equivalence of group actions (G_i, X_i) if ϕ maps G_1-orbits to G_2-orbits. Then for every $g_1 \in G_1$, $x \in X_1$ there exists $g_2 \in G_2$ such that $\phi(g_1(x)) = g_2(\phi(x))$.
A homeomorphism $\phi : \mathcal{X}_1 \rightarrow \mathcal{X}_2$ is an orbit equivalence of group actions (G_i, \mathcal{X}_i) if ϕ maps G_1-orbits to G_2-orbits. Then for every $g_1 \in G_1$, $x \in \mathcal{X}_1$ there exists $g_2 \in G_2$ such that $\phi(g_1(x)) = g_2(\phi(x))$. The map $(g_1, x) \mapsto g_2$ is not unique in general, and is called the associated cocycle.
A homeomorphism $\phi : \mathcal{X}_1 \rightarrow \mathcal{X}_2$ is an orbit equivalence of group actions (G_i, \mathcal{X}_i) if ϕ maps G_1-orbits to G_2-orbits. Then for every $g_1 \in G_1$, $x \in \mathcal{X}_1$ there exists $g_2 \in G_2$ such that $\phi(g_1(x)) = g_2(\phi(x))$. The map $(g_1, x) \mapsto g_2$ is not unique in general, and is called the associated cocycle.

The orbit equivalence is continuous if there exists a continuous (i.e., locally constant) associated cocycle.
A homeomorphism $\phi : \mathcal{X}_1 \rightarrow \mathcal{X}_2$ is an orbit equivalence of group actions (G_i, \mathcal{X}_i) if ϕ maps G_1-orbits to G_2-orbits. Then for every $g_1 \in G_1$, $x \in \mathcal{X}_1$ there exists $g_2 \in G_2$ such that $\phi(g_1(x)) = g_2(\phi(x))$. The map $(g_1, x) \mapsto g_2$ is not unique in general, and is called the associated cocycle.

The orbit equivalence is continuous if there exists a continuous (i.e., locally constant) associated cocycle. It is bounded if the cocycle can be chosen to take a finite number of values (as a function of x) for every $g_1 \in G_1$.
Example: torsion groups from the dihedral group

Theorem

Let a, b be two homeomorphisms of the Cantor set X such that $a^2 = b^2 = Id$.

First examples of simple groups of subexponential growth were constructed using this method.
Example: torsion groups from the dihedral group

Theorem

Let a, b be two homeomorphisms of the Cantor set \mathcal{X} such that $a^2 = b^2 = \text{Id}$. Suppose that all orbits of the action of $\langle a, b \rangle$ are dense.
Example: torsion groups from the dihedral group

Theorem

Let a, b be two homeomorphisms of the Cantor set \mathcal{X} such that $a^2 = b^2 = \text{Id}$. Suppose that all orbits of the action of $\langle a, b \rangle$ are dense. Let G be a group acting faithfully on \mathcal{X} so that the identity is a bounded orbit equivalence. Then G is an infinite torsion group.

First examples of simple groups of subexponential growth were constructed using this method.
Example: torsion groups from the dihedral group

Theorem

Let a, b be two homeomorphisms of the Cantor set \mathcal{X} such that $a^2 = b^2 = \text{Id}$. Suppose that all orbits of the action of $\langle a, b \rangle$ are dense. Let G be a group acting faithfully on \mathcal{X} so that the identity is a bounded orbit equivalence. Suppose that there exists a point $x \in \mathcal{X}$ such that its stabilizer in $\langle a, b \rangle$ is non-trivial, and for every $g \in G$ such that $g(x) = x$ the interior of the set of fixed points of g accumulates on x. Then G is an infinite torsion group. First examples of simple groups of subexponential growth were constructed using this method.
Example: torsion groups from the dihedral group

Theorem

Let a, b be two homeomorphisms of the Cantor set \mathcal{X} such that $a^2 = b^2 = \text{Id}$. Suppose that all orbits of the action of $\langle a, b \rangle$ are dense. Let G be a group acting faithfully on \mathcal{X} so that the identity is a bounded orbit equivalence. Suppose that there exists a point $x \in \mathcal{X}$ such that its stabilizer in $\langle a, b \rangle$ is non-trivial, and for every $g \in G$ such that $g(x) = x$ the interior of the set of fixed points of g accumulates on x. Then G is an infinite torsion group.
Example: torsion groups from the dihedral group

Theorem

Let a, b be two homeomorphisms of the Cantor set \mathcal{X} such that $a^2 = b^2 = \text{Id}$. Suppose that all orbits of the action of $\langle a, b \rangle$ are dense. Let G be a group acting faithfully on \mathcal{X} so that the identity is a bounded orbit equivalence. Suppose that there exists a point $x \in \mathcal{X}$ such that its stabilizer in $\langle a, b \rangle$ is non-trivial, and for every $g \in G$ such that $g(x) = x$ the interior of the set of fixed points of g accumulates on x. Then G is an infinite torsion group.

First examples of simple groups of subexponential growth were constructed using this method.
Informally, an orbispace is a topological space locally described as a quotient of a topological space by an action of a finite group.
Iterated monodromy groups

Informally, an orbispace is a topological space locally described as a quotient of a topological space by an action of a finite group. Formally, it is a proper (effective) étale groupoid (up to Morita equivalence of groupoids).
Iterated monodromy groups

Informally, an orbispace is a topological space locally described as a quotient of a topological space by an action of a finite group. Formally, it is a proper (effective) étale groupoid (up to Morita equivalence of groupoids).

Let \(f : \mathcal{M}_1 \rightarrow \mathcal{M} \) be a covering of orbispaces, and let \(\iota : \mathcal{M}_1 \rightarrow \mathcal{M} \) be a morphism of orbispaces.
Iterated monodromy groups

Informally, an orbispace is a topological space locally described as a quotient of a topological space by an action of a finite group. Formally, it is a proper (effective) étale groupoid (up to Morita equivalence of groupoids).

Let $f : \mathcal{M}_1 \to \mathcal{M}$ be a covering of orbispaces, and let $\iota : \mathcal{M}_1 \to \mathcal{M}$ be a morphism of orbispaces. Starting from $t \in \mathcal{M}$, and taking repeatedly preimages of a point $x \in \mathcal{M}$ and mapping them back to \mathcal{M} by ι, we get a rooted tree T_t.

Informally, an orbispace is a topological space locally described as a quotient of a topological space by an action of a finite group. Formally, it is a proper (effective) étale groupoid (up to Morita equivalence of groupoids).

Let \(f : \mathcal{M}_1 \to \mathcal{M} \) be a covering of orbispaces, and let \(\iota : \mathcal{M}_1 \to \mathcal{M} \) be a morphism of orbispaces. Starting from \(t \in \mathcal{M} \), and taking repeatedly preimages of a point \(x \in \mathcal{M} \) and mapping them back to \(\mathcal{M} \) by \(\iota \), we get a rooted tree \(T_t \). Doing the same with paths we get an action of \(\pi_1(\mathcal{M}, t) \) on \(T_t \).
Iterated monodromy groups

Informally, an orbispace is a topological space locally described as a quotient of a topological space by an action of a finite group. Formally, it is a proper (effective) étale groupoid (up to Morita equivalence of groupoids).

Let \(f : M_1 \to M \) be a covering of orbispaces, and let \(\iota : M_1 \to M \) be a morphism of orbispaces. Starting from \(t \in M \), and taking repeatedly preimages of a point \(x \in M \) and mapping them back to \(M \) by \(\iota \), we get a rooted tree \(T_t \). Doing the same with paths we get an action of \(\pi_1(M, t) \) on \(T_t \). The obtained group acting on the rooted tree \(T_t \) is the iterated monodromy group of the correspondence \(f, \iota : M_1 \to M \).
We say that a correspondence $f, \iota : M_1 \rightarrow M$ is \textit{expanding} if M is compact and there exists a metric on M with respect to which f is a local isometry and ι is locally contracting.
We say that a correspondence \(f, \iota : M_1 \to M \) is expanding if \(M \) is compact and there exists a metric on \(M \) with respect to which \(f \) is a local isometry and \(\iota \) is locally contracting. Then the iterated monodromy group is naturally realized as a contracting self-similar group acting on \(X^\omega \) for an alphabet \(X, |X| = \deg f \).
We say that a correspondence \(f, \iota : \mathcal{M}_1 \rightarrow \mathcal{M} \) is expanding if \(\mathcal{M} \) is compact and there exists a metric on \(\mathcal{M} \) with respect to which \(f \) is a local isometry and \(\iota \) is locally contracting. Then the iterated monodromy group is naturally realized as a contracting self-similar group acting on \(X^\omega \) for an alphabet \(X, |X| = \deg f \).

Here a faithful action of \(G \) on \(X^\omega \) is self-similar if for every \(g \in G \) and \(x \in X \) there exist \(h \in G \) and \(y \in X \) such that \(g(xw) = yh(w) \) for all \(w \in X^\omega \).
We say that a correspondence \(f, \iota : \mathcal{M}_1 \to \mathcal{M} \) is expanding if \(\mathcal{M} \) is compact and there exists a metric on \(\mathcal{M} \) with respect to which \(f \) is a local isometry and \(\iota \) is locally contracting. Then the iterated monodromy group is naturally realized as a contracting self-similar group acting on \(X^\omega \) for an alphabet \(X, |X| = \deg f \).

Here a faithful action of \(G \) on \(X^\omega \) is self-similar if for every \(g \in G \) and \(x \in X \) there exist \(h \in G \) and \(y \in X \) such that \(g(xw) = yh(w) \) for all \(w \in X^\omega \). Then for every finite word \(v \in X^* \) there exists a unique \(g|_v \in G \) such that \(g(vw) = g(v)g|_v(w) \) for all \(w \in X^\omega \).
We say that a correspondence \(f, \iota : M_1 \to M \) is expanding if \(M \) is compact and there exists a metric on \(M \) with respect to which \(f \) is a local isometry and \(\iota \) is locally contracting. Then the iterated monodromy group is naturally realized as a contracting self-similar group acting on \(X^\omega \) for an alphabet \(X, |X| = \deg f \).

Here a faithful action of \(G \) on \(X^\omega \) is self-similar if for every \(g \in G \) and \(x \in X \) there exist \(h \in G \) and \(y \in X \) such that \(g(xw) = yh(w) \) for all \(w \in X^\omega \). Then for every finite word \(v \in X^* \) there exists a unique \(g|_v \in G \) such that \(g(vw) = g(v)g|_v(w) \) for all \(w \in X^\omega \). The self-similar group \(G \) is contracting if \(g|_v \) is asymptotically shorter than \(g \).
Let \((G, X^\omega)\) be a contracting self-similar group action.
Let \((G, X^\omega)\) be a contracting self-similar group action. Consider the space \(X^{-\omega}\) of left-infinite sequences.
Let (G, X^ω) be a contracting self-similar group action. Consider the space $X^{-\omega}$ of left-infinite sequences. Identify two sequences

$\ldots x_2 x_1, \ldots y_2 y_1 \in X^{-\omega}$ if there exists a bounded sequence $g_k \in G$ such that $g_k(x_k \ldots x_2 x_1) = y_k \ldots y_2 y_1$ for every k.
Let \((G, X^\omega)\) be a contracting self-similar group action. Consider the space
\(X^{-\omega}\) of left-infinite sequences. Identify two sequences
\(\ldots x_2 x_1, \ldots y_2 y_1 \in X^{-\omega}\) if there exists a bounded sequence
\(g_k \in G\) such that
\(g_k(x_k \ldots x_2 x_1) = y_k \ldots y_2 y_1\) for every \(k\). The quotient is called the
\textit{limit space} \(\mathcal{J}_G\) of \((G, X^\omega)\), and the map induced by the shift
\(\ldots x_2 x_1 \mapsto \ldots x_3 x_2\) is called the limit dynamical system
Let \((G, X^\omega)\) be a contracting self-similar group action. Consider the space \(X^{-\omega}\) of left-infinite sequences. Identify two sequences
\[
\ldots x_2x_1, \ldots, y_2y_1 \in X^{-\omega}
\] if there exists a bounded sequence \(g_k \in G\) such that
\[
g_k(x_k \ldots x_2x_1) = y_k \ldots y_2y_1
\] for every \(k\). The quotient is called the \textit{limit space} \(\mathcal{J}_G\) of \((G, X^\omega)\), and the map induced by the shift
\[
\ldots x_2x_1 \mapsto \ldots x_3x_2
\] is called the limit dynamical system \(f : \mathcal{J}_G \longrightarrow \mathcal{J}_G\).
Let \((G, X^\omega)\) be a contracting self-similar group action. Consider the space \(X^{-\omega}\) of left-infinite sequences. Identify two sequences
\[
\ldots x_2x_1, \ldots y_2y_1 \in X^{-\omega}
\]
if there exists a bounded sequence \(g_k \in G\) such that
\[
g_k(x_k \ldots x_2x_1) = y_k \ldots y_2y_1
\]
for every \(k\). The quotient is called the limit space \(\mathcal{J}_G\) of \((G, X^\omega)\), and the map induced by the shift
\[
\ldots x_2x_1 \mapsto \ldots x_3x_2
\]
is called the limit dynamical system \(f : \mathcal{J}_G \rightarrow \mathcal{J}_G\).

There are two natural orbispaces \(M, M_1\) and a correspondence \(f, \iota : M_1 \rightarrow M\), where on the underlying topological spaces \(f\) coincides with the limit dynamical system, and \(\iota\) with the identity map.
Let \((G, X^\omega)\) be a contracting self-similar group action. Consider the space \(X^{-\omega}\) of left-infinite sequences. Identify two sequences \(\ldots x_2x_1, \ldots y_2y_1 \in X^{-\omega}\) if there exists a bounded sequence \(g_k \in G\) such that \(g_k(x_k \ldots x_2x_1) = y_k \ldots y_2y_1\) for every \(k\). The quotient is called the limit space \(\mathcal{J}_G\) of \((G, X^\omega)\), and the map induced by the shift \(\ldots x_2x_1 \mapsto \ldots x_3x_2\) is called the limit dynamical system \(f : \mathcal{J}_G \longrightarrow \mathcal{J}_G\).

There are two natural orbispaces \(\mathcal{M}, \mathcal{M}_1\) and a correspondence \(f, \iota : \mathcal{M}_1 \longrightarrow \mathcal{M}\), where on the underlying topological spaces \(f\) coincides with the limit dynamical system, and \(\iota\) with the identity map. The group \(G\) is the iterated monodromy group of \(f, \iota : \mathcal{M}_1 \longrightarrow \mathcal{M}\).
Let \((G, X^\omega)\) be a contracting self-similar group action. Consider the space \(X^{-\omega}\) of left-infinite sequences. Identify two sequences
\[
...x_2x_1, ...y_2y_1 \in X^{-\omega}\]
if there exists a bounded sequence \(g_k \in G\) such that \(g_k(x_k ... x_2x_1) = y_k ... y_2y_1\) for every \(k\). The quotient is called the limit space \(J_G\) of \((G, X^\omega)\), and the map induced by the shift \(...x_2x_1 \mapsto ...x_3x_2\) is called the limit dynamical system \(f : J_G \longrightarrow J_G\).

There are two natural orbispaces \(\mathcal{M}, \mathcal{M}_1\) and a correspondence \(f, \iota : \mathcal{M}_1 \longrightarrow \mathcal{M}\), where on the underlying topological spaces \(f\) coincides with the limit dynamical system, and \(\iota\) with the identity map. The group \(G\) is the iterated monodromy group of \(f, \iota : \mathcal{M}_1 \longrightarrow \mathcal{M}\). Conversely, if \(f, \iota : \mathcal{M}_1 \longrightarrow \mathcal{M}\) is expanding, then it is conjugate to the limit dynamical system of its iterated monodromy group.
Let \((G, X^\omega)\) be a contracting self-similar group action. Consider the space \(X^{-\omega}\) of left-infinite sequences. Identify two sequences
\[\ldots x_2 x_1, \ldots y_2 y_1 \in X^{-\omega} \]
if there exists a bounded sequence \(g_k \in G\) such that
\[g_k(x_k \ldots x_2 x_1) = y_k \ldots y_2 y_1 \]
for every \(k\). The quotient is called the \textit{limit space} \(\mathcal{J}_G\) of \((G, X^\omega)\), and the map induced by the shift
\[\ldots x_2 x_1 \mapsto \ldots x_3 x_2 \]
is called the limit dynamical system \(f : \mathcal{J}_G \to \mathcal{J}_G\).

There are two natural orbispaces \(\mathcal{M}, \mathcal{M}_1\) and a correspondence
\(f, \iota : \mathcal{M}_1 \to \mathcal{M}\), where on the underlying topological spaces \(f\) coincides with the limit dynamical system, and \(\iota\) with the identity map. The group \(G\) is the iterated monodromy group of \(f, \iota : \mathcal{M}_1 \to \mathcal{M}\). Conversely, if \(f, \iota : \mathcal{M}_1 \to \mathcal{M}\) is expanding, then it is conjugate to the limit dynamical system of its iterated monodromy group. We get a natural bijective correspondence between expanding orbispace correspondences and contracting self-similar groups.
Example: p.c.f. rational functions

Let $f \in \mathbb{C}(z)$ be a post-critically finite rational function.
Example: p.c.f. rational functions

Let \(f \in \mathbb{C}(z) \) be a post-critically finite rational function. Then the Riemann sphere minus the post-critical points eventually mapped to superattracting cycles has a natural structure of a *Thurston orbifold* \(\mathcal{M} \) such that there exists a correspondence \(f, \iota : \mathcal{M}_1 \rightarrow \mathcal{M} \), where \(\iota \) induces the identity embedding on the underlying spaces.
Let $f \in \mathbb{C}(z)$ be a post-critically finite rational function. Then the Riemann sphere minus the post-critical points eventually mapped to superattracting cycles has a natural structure of a *Thurston orbifold* \mathcal{M} such that there exists a correspondence $f, \iota : \mathcal{M}_1 \longrightarrow \mathcal{M}$, where ι induces the identity embedding on the underlying spaces. Here neighborhoods of post-critical points are represented as discs modulo finite groups of rotations.
Example: p.c.f. rational functions

Let \(f \in \mathbb{C}(z) \) be a post-critically finite rational function. Then the Riemann sphere minus the post-critical points eventually mapped to superattracting cycles has a natural structure of a *Thurston orbifold* \(\mathcal{M} \) such that there exists a correspondence \(f, \iota : \mathcal{M}_1 \rightarrow \mathcal{M} \), where \(\iota \) induces the identity embedding on the underlying spaces. Here neighborhoods of post-critical points are represented as discs modulo finite groups of rotations. This correspondence is expanding when restricted to the Julia set.
If we remove all points of the post-critical set P_f, we get a correspondence $f, \iota : \hat{\mathbb{C}} \setminus f^{-1}(P_f) \rightarrow \hat{\mathbb{C}} \setminus P_f$ of trivial orbispaces.

If we remove all points of the post-critical set \(P_f \), we get a correspondence \(f, \iota : \hat{\mathbb{C}} \setminus f^{-1}(P_f) \rightarrow \hat{\mathbb{C}} \setminus P_f \) of trivial orbispaces. The limit dynamical system of the iterated monodromy group of this correspondence is precisely the restriction to the Julia set of the correspondence on the Thurston orbifolds.
Let G_1, G_2 be contracting self-similar groups acting on X^ω.

Let G_1, G_2 be contracting self-similar groups acting on X^ω. The identity map $X^{-\omega} \to X^{-\omega}$ induces a topological conjugacy of the limit dynamical systems $f : \mathcal{J}_{G_i} \to \mathcal{J}_{G_i}$ if and only if the identity map $X^\omega \to X^\omega$ is a bounded orbit equivalence.

For example: the dihedral group is the iterated monodromy group of $z^2 - 2$; its limit dynamical system is conjugate to that of the Grigorchuk group.

All self-similar contracting groups with this limit dynamical system (conjugate to the tent map) have been classified and constitute a class of groups defined earlier by Z. Šunić.

All groups in this family are of intermediate growth, except for the dihedral group.
Let G_1, G_2 be contracting self-similar groups acting on X^ω. The identity map $X^{-\omega} \to X^{-\omega}$ induces a topological conjugacy of the limit dynamical systems $f : \mathcal{J}_{G_i} \to \mathcal{J}_{G_i}$ if and only if the identity map $X^\omega \to X^\omega$ is a bounded orbit equivalence.

For example: the dihedral group is the iterated monodromy group of $z^2 - 2$; its limit dynamical system is conjugate to that of the Grigorchuk group.
Let G_1, G_2 be contracting self-similar groups acting on X^ω. The identity map $X^{-\omega} \to X^{-\omega}$ induces a topological conjugacy of the limit dynamical systems $f : J_{G_i} \to J_{G_i}$ if and only if the identity map $X^\omega \to X^\omega$ is a bounded orbit equivalence.

For example: the dihedral group is the iterated monodromy group of $z^2 - 2$; its limit dynamical system is conjugate to that of the Grigorchuk group.

All self-similar contracting groups with this limit dynamical system (conjugate to the tent map) have been classified and constitute a class of groups defined earlier by Z. Šunić.
Let G_1, G_2 be contracting self-similar groups acting on X^ω. The identity map $X^{-\omega} \to X^{-\omega}$ induces a topological conjugacy of the limit dynamical systems $f : \mathcal{J}_{G_i} \to \mathcal{J}_{G_i}$ if and only if the identity map $X^\omega \to X^\omega$ is a bounded orbit equivalence.

For example: the dihedral group is the iterated monodromy group of $z^2 - 2$; its limit dynamical system is conjugate to that of the Grigorchuk group.

All self-similar contracting groups with this limit dynamical system (conjugate to the tent map) have been classified and constitute a class of groups defined earlier by Z. Šunić. All groups in this family are of intermediate growth, except for the dihedral group.
If f is a post-critically finite sub-hyperbolic rational function, then there are infinitely many contracting self-similar groups boundedly orbit equivalent to $\text{IMG}(f)$. They all have the same topological limit dynamical system but with different orbispace structure on them.
If f is a post-critically finite sub-hyperbolic rational function, then there are infinitely many contracting self-similar groups boundedly orbit equivalent to $\text{IMG}(f)$. They all have the same topological limit dynamical system but with different orbispace structure on them. It should be possible to classify them similarly to the tent map.
If f is a post-critically finite sub-hyperbolic rational function, then there are infinitely many contracting self-similar groups boundedly orbit equivalent to $\text{IMG}(f)$. They all have the same topological limit dynamical system but with different orbispace structure on them. It should be possible to classify them similarly to the tent map. Some of these “exotic” iterated monodromy groups come from classical constructions in holomorphic dynamics, e.g., from mating.
Let f_1, f_2 be two post-critically finite polynomials of equal degrees.
Let f_1, f_2 be two post-critically finite polynomials of equal degrees. Let them act on the complex planes compactified by the circle at infinity.
Let f_1, f_2 be two post-critically finite polynomials of equal degrees. Let them act on the complex planes compactified by the circle at infinity. Paste these dynamical systems together along the circle at infinity (reflecting one of them by complex conjugation) to get a post-critically finite self-covering of a sphere.
Let f_1, f_2 be two post-critically finite polynomials of equal degrees. Let them act on the complex planes compactified by the circle at infinity. Paste these dynamical systems together along the circle at infinity (reflecting one of them by complex conjugation) to get a post-critically finite self-covering of a sphere. The iterated monodromy group of this map is generated by copies of $\text{IMG}(f_1)$ and $\text{IMG}(f_2)$.
Let f_1, f_2 be two post-critically finite polynomials of equal degrees. Let them act on the complex planes compactified by the circle at infinity. Paste these dynamical systems together along the circle at infinity (reflecting one of them by complex conjugation) to get a post-critically finite self-covering of a sphere. The iterated monodromy group of this map is generated by copies of $\text{IMG}(f_1)$ and $\text{IMG}(f_2)$. In some cases it is boundedly orbit equivalent to the iterated monodromy group of a rational function.
Let f_1, f_2 be two post-critically finite polynomials of equal degrees. Let them act on the complex planes compactified by the circle at infinity. Paste these dynamical systems together along the circle at infinity (reflecting one of them by complex conjugation) to get a post-critically finite self-covering of a sphere. The iterated monodromy group of this map is generated by copies of $\text{IMG}(f_1)$ and $\text{IMG}(f_2)$. In some cases it is boundedly orbit equivalent to the iterated monodromy group of a rational function. This function is called then the mating of f_1 and f_2.
Examples

If the mating is a \textit{Lattès example}, then its iterated monodromy group is virtually \mathbb{Z}^2.
Examples

If the mating is a *Lattès example*, then its iterated monodromy group is virtually \mathbb{Z}^2. The group generated by $\text{IMG}(f_1) \cup \text{IMG}(f_2)$ is then a group such that the identity map is a bounded orbit equivalence with the virtually abelian group action.
If the mating is a *Lattès example*, then its iterated monodromy group is virtually \mathbb{Z}^2. The group generated by $\text{IMG}(f_1) \cup \text{IMG}(f_2)$ is then a group such that the identity map is a bounded orbit equivalence with the virtually abelian group action. We can draw the action of $\text{IMG}(f_1) \cup \text{IMG}(f_2)$ on an orbit in X^ω as a graph.
Examples

If the mating is a *Lattès example*, then its iterated monodromy group is virtually \mathbb{Z}^2. The group generated by $\text{IMG}(f_1) \cup \text{IMG}(f_2)$ is then a group such that the identity map is a bounded orbit equivalence with the virtually abelian group action. We can draw the action of $\text{IMG}(f_1) \cup \text{IMG}(f_2)$ on an orbit in X^ω as a graph. It will be then a “colored” Euclidean lattice.
Questions

- Describe explicitly all iterated monodromy groups of orbispace uniformizations of a p.c.f. rational function.
Questions

- Describe explicitly all iterated monodromy groups of orbispace uniformizations of a p.c.f. rational function.
- Interpret in group-theoretical terms the result of M. Bonk and D. Meyer on “unmating” rational functions.
Questions

- Describe explicitly all iterated monodromy groups of orbispace uniformizations of a p.c.f. rational function.
- Interpret in group-theoretical terms the result of M. Bonk and D. Meyer on “unmating” rational functions.
- Are all “exotic” iterated monodromy groups of Lattès examples amenable?
Questions

- Describe explicitly all iterated monodromy groups of orbispace uniformizations of a p.c.f. rational function.
- Interpret in group-theoretical terms the result of M. Bonk and D. Meyer on “unmating” rational functions.
- Are all “exotic” iterated monodromy groups of Lattès examples amenable? What is their growth?
Questions

- Describe explicitly all iterated monodromy groups of orbispace uniformizations of a p.c.f. rational function.
- Interpret in group-theoretical terms the result of M. Bonk and D. Meyer on “unmating” rational functions.
- Are all “exotic” iterated monodromy groups of Lattès examples amenable? What is their growth?
- Is every “exotic” iterated monodromy group of $z^2 + i$ of intermediate growth?
Questions

- Describe explicitly all iterated monodromy groups of orbispace uniformizations of a p.c.f. rational function.
- Interpret in group-theoretical terms the result of M. Bonk and D. Meyer on “unmating” rational functions.
- Are all “exotic” iterated monodromy groups of Lattès examples amenable? What is their growth?
- Is every “exotic” iterated monodromy group of $z^2 + i$ of intermediate growth?
- Do there exist torsion “exotic” i.m.g.’s of rational functions with the Julia set equal to the sphere.
Questions

- Describe explicitly all iterated monodromy groups of orbispace uniformizations of a p.c.f. rational function.
- Interpret in group-theoretical terms the result of M. Bonk and D. Meyer on “unmating” rational functions.
- Are all “exotic” iterated monodromy groups of Lattès examples amenable? What is their growth?
- Is every “exotic” iterated monodromy group of $z^2 + i$ of intermediate growth?
- Do there exist torsion “exotic” i.m.g.’s of rational functions with the Julia set equal to the sphere. (They do for some polynomials with dendroid Julia sets, by a result of J. Cantu.)
Questions

- Study more general (not self-similar) groups boundedly orbit equivalent to iterated monodromy groups of rational functions.
Questions

- Study more general (not self-similar) groups boundedly orbit equivalent to iterated monodromy groups of rational functions. Some of them may come in self-similar families related to non-autonomous “rotated” matings, or other representations of the Julia set as continuous images of the circle or dendrites.