Combinatorial Atlas for Log-concave Inequalities

Swee Hong Chan (UCLA)

joint with Igor Pak
What is log-concavity?

A sequence \(a_1, \ldots, a_n \in \mathbb{R}_{\geq 0} \) is log-concave if

\[
a_k^2 \geq a_{k+1} a_{k-1} \quad (1 \leq k < n).
\]

Equivalently,

\[
\log a_k \geq \frac{\log a_{k+1} + \log a_{k-1}}{2} \quad (1 \leq k < n).
\]
Example: binomial coefficients

\[a_k = \binom{n}{k} \quad k = 0, 1, \ldots, n. \]

This sequence is log-concave because

\[
\frac{a_k^2}{a_{k+1} a_{k-1}} = \frac{\binom{n}{k}^2}{\binom{n}{k+1} \binom{n}{k-1}} = \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right),
\]

which is greater than 1.
Example: permutations with k inversions

$$a_k = \text{number of } \pi \in S_n \text{ with } k \text{ inversions},$$

where inversion of π is pair $i < j$ s.t. $\pi_i > \pi_j$.

This sequence is log-concave because

$$\sum_{0 \leq k \leq \binom{n}{2}} a_k q^k = [n]_q! = (1+q) \ldots (1+q \ldots + q^{n-1})$$

is a product of log-concave polynomials.

```
1 4 9 15 20 22 20 15 9 4 1
```
Log-concavity appears in different objects for different reasons.

Today we focus on reason for matroids.
Let $G = (V, E)$ be a graph.

A (spanning) forest $F = (V, E')$ with $E' \subseteq E$ is a subset of edges without cycles.
Log-concavity for forests

Theorem (Huh ‘15)

For every graph and \(k \geq 1 \),

\[
I_k^2 \geq I_{k+1} I_{k-1},
\]

where \(I_k \) is the number of forests with \(k \) edges.

Proof used Hodge theory from algebraic geometry.

In fact, stronger inequalities for more general objects are true.
Object: Matroids

Matroid $\mathcal{M} = (X, \mathcal{I})$ is ground set X with collection of independent sets $\mathcal{I} \subseteq 2^X$.

Graphical matroids

- $X =$ edges of a graph G,
- $\mathcal{I} =$ forests in G.

Realizable matroids

- $X =$ finite set of vectors over field \mathbb{F},
- $\mathcal{I} =$ sets of linearly independent vectors.
Matroids: Conditions

- $S \subseteq T$ and $T \in \mathcal{I}$ implies $S \in \mathcal{I}$.

If $S, T \in \mathcal{I}$ and $|S| < |T|$, then there is $x \in T \setminus S$ such that $S \cup \{x\} \in \mathcal{I}$.

Note: These are natural properties of sets of linearly independent vectors.
Mason’s Conjecture (1972)

For every matroid and $k \geq 1$,

(1) $I_k^2 \geq I_{k+1} I_{k-1};$

(2) $I_k^2 \geq \left(1 + \frac{1}{k}\right) I_{k+1} I_{k-1};$

(3) $I_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right) I_{k+1} I_{k-1}.$

I_k is number of ind. sets of size k, and $n = |X|$.

Note: (3) \Rightarrow (2) \Rightarrow (1).
Why \((1 + \frac{1}{k}) (1 + \frac{1}{n-k})\) ?

Mason (3) is equivalent to ultra/binomial log-concavity,

\[
\frac{I_k^2}{\binom{n}{k}^2} \geq \frac{I_{k+1}}{\binom{n}{k+1}} \frac{I_{k-1}}{\binom{n}{k-1}}.
\]

Equality occurs if every subset with \(k + 1\) elements is independent.
Theorem (Adiprasito-Huh-Katz ‘18)

For every matroid and $k \geq 1$,

$$I_k^2 \geq I_{k+1} I_{k-1}.$$

Proof used combinatorial Hodge theory for matroids.
Solution to Mason (2)

Theorem (Huh-Schröter-Wang ‘18)
For every matroid and $k \geq 1$,

$$I_k^2 \geq \left(1 + \frac{1}{k}\right) I_{k+1} I_{k-1}.$$

Proof used combinatorial Hodge theory for correlation inequality on matroids.
Solution to Mason (3)

Theorem

(Anari-Liu-Oveis Gharan-Vinzant, Brändén-Huh ‘20)

*For every matroid and \(k \geq 1 \),

\[
I_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right) I_{k+1} I_{k-1}.
\]

Proof used theory of strong log-concave polynomials / Lorentzian polynomials.
Solution to Mason (3)

Theorem

\begin{equation}
I_k^2 \geq \left(1 + \frac{1}{k} \right) \left(1 + \frac{1}{n-k} \right) I_{k+1} I_{k-1}.
\end{equation}

Theorem (Murai-Nagaoka-Yazawa ‘21)

Equality occurs if and only if every subset with \(k + 1 \) elements is independent.
Our contribution
Method: Combinatorial atlas

Results: Log-concave inequalities, and if and only if conditions for equality

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley’s poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex);
- Interval greedoids.
Method: Combinatorial atlas

Results: Log-concave inequalities, and if and only if conditions for equality

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley’s poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex);
- Interval greedoids.
Combinatorial atlas application:
Matroids
Warmup: graphical matroids refinement

Corollary (C.-Pak)

For graphical matroid of simple connected graph $G = (V, E)$, and $k = |V| - 2$,

$$(I_k)^2 \geq \frac{3}{2} \left(1 + \frac{1}{k}\right) I_{k+1} I_{k-1},$$

with equality if and only if G is cycle graph.

Numerically better than Mason (3), because

$$\frac{3}{2} \geq 1 + \frac{1}{n-k} = 1 + \frac{1}{|E| - |V| + 2}$$

for G that is not tree.
Comparison with Mason (3)

Our bound gives
\[
\frac{(I_k)^2}{I_{k+1} I_{k-1}} \geq \frac{3}{2} \quad \text{when} \quad |E| - |V| \to \infty,
\]

Meanwhile, Mason (3) bound only gives
\[
\frac{(I_k)^2}{I_{k+1} I_{k-1}} \geq 1 \quad \text{when} \quad |E| - |V| \to \infty.
\]

Our bound is better numerically and asymptotically.
Refinement for Mason (3)

Theorem 1 (C.-Pak)

For every matroid and \(k \geq 1 \),

\[
I_k^2 \geq \left(1 + \frac{1}{k} \right) \left(1 + \frac{1}{\text{prl}_M(k - 1) - 1} \right) I_{k+1} I_{k-1}.
\]

This refines Mason (3),

\[
I_k^2 \geq \left(1 + \frac{1}{k} \right) \left(1 + \frac{1}{n - k} \right) I_{k+1} I_{k-1},
\]

since

\[
\text{prl}_M(k - 1) \leq n - k + 1.
\]
Refinement for different matroids

- For all matroids,
 \[I_k^2 \geq \left(1 + \frac{1}{k} \right) \left(1 + \frac{1}{n-k} \right) I_{k+1} I_{k-1}. \]

- Graphical matroids and \(k = |V| - 2 \),
 \[I_k^2 \geq \left(1 + \frac{1}{k} \right) \frac{3}{2} I_{k+1} I_{k-1}. \]

- Realizable matroids over \(\mathbb{F}_q \),
 \[I_k^2 \geq \left(1 + \frac{1}{k} \right) \left(1 + \frac{1}{q^{m-k+1}-2} \right) I_{k+1} I_{k-1}. \]

- \((k, m, n)\)-Steiner system matroid,
 \[I_k^2 \geq \left(1 + \frac{1}{k} \right) \frac{n-k+1}{n-m} I_{k+1} I_{k-1}. \]
Refinement for Mason (3)

Theorem 2 (C.-Pak)

For every matroid and \(k \geq 1 \),

\[
I_k^2 \geq \left(1 + \frac{1}{k} \right) \left(1 + \frac{1}{\text{prl}_\mathcal{M}(k-1)-1} \right) I_{k+1} I_{k-1}.
\]

This refines Mason (3),

\[
I_k^2 \geq \left(1 + \frac{1}{k} \right) \left(1 + \frac{1}{n-k} \right) I_{k+1} I_{k-1},
\]

since

\[
\text{prl}_\mathcal{M}(k-1) \leq n - k + 1.
\]
Parallel classes of matroid \mathcal{M}

Loop is $x \in X$ such that $\{x\} \notin \mathcal{I}$.

Non-loops x, y are parallel if $\{x, y\} \notin \mathcal{I}$.

Parallelship equiv. relation: $x \sim y$ if $\{x, y\} \notin \mathcal{I}$.

Parallel class $= \text{ equivalence class of } \sim$.
Matroid contraction

Contraction of \(S \in \mathcal{I} \) is matroid \(\mathcal{M}_S \) with

\[
X_S = X \setminus S, \quad \mathcal{I}_S = \{ T \setminus S : S \subseteq T \}.
\]

\[
\text{prl}(S) := \text{number of parallel classes of } \mathcal{M}_S
\]
Parallel number

The k-parallel number is

$$\text{prl}_\mathcal{M}(k) := \max\{\text{prl}(S) \mid S \in \mathcal{I} \text{ with } |S| = k\}.$$
Theorem 3 (C.-Pak)

For every matroid and \(k \geq 1 \),

\[
I_k^2 \geq \left(1 + \frac{1}{k} \right) \left(1 + \frac{1}{\text{prl}_M(k - 1) - 1} \right) I_{k+1} I_{k-1}.
\]

This refines Mason (3),

\[
I_k^2 \geq \left(1 + \frac{1}{k} \right) \left(1 + \frac{1}{n - k} \right) I_{k+1} I_{k-1},
\]

since

\[
\text{prl}_M(k - 1) \leq n - k + 1.
\]
When is equality achieved?

- When every \((k + 1)\)-subset is independent,
 \[\text{prl}_{\mathcal{M}}(k - 1) = n - k + 1.\]

- Graphical matroid when \(G\) is a cycle,
 \[\text{prl}_{\mathcal{M}}(k - 1) = 3.\]

- Realizable matroids of every \(m\)-vectors over \(\mathbb{F}_q\),
 \[\text{prl}_{\mathcal{M}}(k - 1) = q^{m-k+1} - 1.\]

- \((k, m, n)\)-Steiner system matroid,
 \[\text{prl}_{\mathcal{M}}(k - 1) = \frac{n - k + 1}{m - k + 1}.\]
Equality conditions

Theorem 4 (C.-Pak)

For every matroid and $k \geq 1$,

$$I_k^2 = \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{\text{prl}_M(k - 1) - 1}\right) I_{k+1} I_{k-1}$$

if and only if

for every $S \in \mathcal{I}$ with $|S| = k - 1$,

- M_S has $\text{prl}_M(k - 1)$ parallel classes; and
- Every parallel class of M_S has same size.
Combinatorial atlas: the method
Combinatorial atlas

Input: Acyclic digraph \mathcal{A}, where each vertex v is associated with
- Symmetric matrix M with nonnegative entries;
- Vector g, h with nonnegative entries.

Goal: Show every M has hyperbolic inequality.

Method: Verify two conditions:
- Inheritance conditions
- Subdivergence conditions
Atlas: example
Atlas: example (zoomed in)
Atlas example: matroid (simplified)

For matroid with $X = \{a, b, c\}$, the atlas for $k = 2$ is
Atlas example: matroid (simplified)

The matrix for the top vertex is

\[M_{a,b} = (k + 1)! \times \text{number of independent sets of size } k + 1 \text{ containing } a, b \]

\[M_{a,*} = k! \times \text{number of independent sets of size } k \text{ containing } a \]

\[M_{*,*} = (k - 1)! \times \text{number of independent sets of size } k - 1 \]
Combinatorial atlas

Input: Acyclic digraph \mathcal{A}, where each vertex v is associated with

- Symmetric matrix M with nonnegative entries;
- Vector g, h with nonnegative entries.

Goal: Show every M has hyperbolic inequality.
Hyperbolic inequality

M has hyperbolic inequality property if

$$\langle x, My \rangle^2 \geq \langle x, Mx \rangle \langle y, My \rangle,$$

for every $x \in \mathbb{R}^r$, $y \in \mathbb{R}_{\geq 0}^r$.

This condition is equivalent to

M has at most one positive eigenvalue.

Note: Already known to be important in Lorentzian polynomials and Bochner’s method proof of Aleksandrov-Fenchel inequality.
How to get log-concave inequalities?

Assume a_{k-1}, a_k, a_{k+1} can be computed by

$$a_k = \langle g, Mh \rangle, \quad a_{k+1} = \langle g, Mg \rangle, \quad a_{k-1} = \langle h, Mh \rangle,$$

for M, g, h from a top vertex of the atlas.

\[
\langle g, Mh \rangle^2 \geq \langle g, Mg \rangle \langle h, Mh \rangle \quad \text{(hyperbolic ineq.)}
\]

then implies

$$a_k^2 \geq a_{k+1}a_{k-1} \quad \text{(log-concave ineq.)}$$
Combinatorial atlas

Input: Acyclic digraph \mathcal{A}, where each vertex v is associated with

- Symmetric matrix M with nonnegative entries;
- Vector g, h with nonnegative entries.

Goal: Show every M has hyperbolic inequality.

Method: Verify three conditions:

- Irreducibility condition;
- Inheritance condition;
- Subdivergence condition.
Irreducibility condition

- Matrix \mathbf{M} associated to ν is irreducible when restricted to its support;
- Vector \mathbf{h} is associated to ν is a positive vector.

For matroids, this means that the base exchange graph is connected.
This is a consequence of the exchange property.
Inheritance condition

Edge $e = (v, v_i)$ of v is associated with linear map $T_i : \mathbb{R}^r \rightarrow \mathbb{R}^r$ such that, for every $x \in \mathbb{R}^r$,

$$i\text{-th coordinate of } Mx = \langle T_i x, M_i T_i h \rangle,$$

where M and h are associated to v, and M_i is associated to v_i.

For matroids with $X = \{e_1, \ldots, e_n\}$, this means

$$k \times \text{number of independent } k\text{-sets}$$

$$= \sum_{i=1}^{n} \text{number of independent } k\text{-sets containing } e_i.$$
Subdivergence condition

For every $x \in \mathbb{R}^r$,

\[
\sum_{i=1}^{r} h_i \langle T_i x, M_i T_i x \rangle \geq \langle x, Mx \rangle,
\]

where $h_i = i$-th coordinate of h.

Note: Equality occurs for Lorentzian polynomials and for matroids.

For matroids, this is consequence of hereditary property.
Bottom-to-top principle for hyperbolic inequalities

Proposition
Assume irreducibility, inheritance, subdvergence. If every child vertex has hyperbolic inequality property, then so does the parent vertex.

Bottom-to-top principle reduces Goal to checking hyperbolic inequality only for sink vertices.
Bottom-to-top principle
Bottom-to-top principle
Bottom-to-top principle
Bottom-to-top principle
How about equalities?
Combinatorial atlas equality

Input:
- An atlas \mathcal{A} satisfying irreducibility, inheritance, subdivergence conditions.

Goal: Show “every” M has hyperbolic equality,

$$\langle g, Mh \rangle^2 = \langle g, Mg \rangle \langle h, Mh \rangle.$$
Proposition

If parent vertex has hyperbolic equality property, then so does children vertices.

Top-to-bottom principle expands hyperbolic equality to sink vertices, and gives combinatorial characterizations.
Top-to-bottom principle
Top-to-bottom principle
Top-to-bottom principle
Top-to-bottom principle
Moral of the story

Problem: Log-concave inequalities and equalities.

Strategy:
- Build a combinatorial atlas;
- Verify the required conditions;
- Use hyperbolic inequality property to derive log-concave inequalities;
- Use hyperbolic equality property to derive log-concave equalities.
Other applications

Full version: 2110.10740 (71 pages)
Expository version: 2203.01533 (28 pages)

Results: Log-concave inequalities and equalities for

- Matroids (refined);
- Discrete polymatroids;
- Morphism of matroids (refined) (conjecture on equality conditions is resolved);
- Stanley’s poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex);
- Interval greedoids.
THANK YOU!

 www.arxiv.org/abs/2203.01533

Webpage: www.math.ucla.edu/~sweehong/

Email: sweehong@math.ucla.edu
Negative dependence for forests

Conjecture (Kahn '00, Grimmett-Winkler '04)

Let G be a graph, let e, f be distinct edges of G. Then

$$P[e, f \in F] \leq P[e \in F] P[f \in F],$$

where F is uniform random forest of G.

- Known with extra factor of 2 in RHS by Lorentzian polynomials
- For matroids, the conjectured factor is $\frac{8}{7}$.
Combinatorial atlas application:
Stanley’s poset inequality
A poset P is a set X with a partial order \prec on X.
Linear extension

A linear extension L is a complete order of \prec.

We write $L(x) = k$ if x is k-th smallest in L.
Stanley’s inequality

Fix \(z \in P \).

\(N_k \) is number of linear extensions with \(L(z) = k \).

Theorem (Stanley ‘81)

For every poset and \(k \geq 1 \),

\[
N_k^2 \geq N_{k+1} N_{k-1}.
\]

Proof used **Aleksandrov-Fenchel inequality** for mixed volumes.
When is equality achieved?

Theorem (Shenfeld-van Handel)

Suppose $N_k > 0$. Then

$$N_k^2 = N_{k+1} N_{k-1}$$

if and only if

$$N_k = N_{k+1} = N_{k-1}.$$

Proof used classifications of extremals of Aleksandrov-Fenchel inequality for convex polytopes.
Our contribution

Open Problem (Folklore)

Give a combinatorial proof to Stanley’s inequality.

Answer (C.–Pak)

We give new combinatorial proof for Stanley’s ineq. and extend to weighted version.
Order-reversing weight

A weight $w : X \to \mathbb{R}_{>0}$ is order-reversing if

$$w(x) \geq w(y) \quad \text{whenever} \quad x \prec y.$$

Weight of linear extension L is

$$w(L) := \prod_{L(x) < L(z)} w(x).$$

$$w(L) = w(a)$$

$$w(L) = w(a)w(b)$$
Weighted Stanley’s inequality

Fix $z \in P$.

$N_{w,k}$ is w-weight of linear extensions with $L(z) = k$.

Theorem 5 (C. Pak)

For every poset and $k \geq 1$,

$$N_{w,k}^2 \geq N_{w,k+1} N_{w,k-1}.$$
When is equality achieved?

Theorem 6 (C.-Pak)

Suppose $N_{w,k} > 0$. Then

$$N_{w,k}^2 = N_{w,k+1}N_{w,k-1}$$

if and only if

for every linear extension L with $L(z) = k$,

$$w(L^{-1}(k + 1)) = w(L^{-1}(k - 1)) =: s,$$

and

$$\frac{N_{w,k}}{s^k} = \frac{N_{w,k+1}}{s^{k+1}} = \frac{N_{w,k-1}}{s^{k-1}}.$$
Combinatorial atlas application: Poset antimatroids
Feasible words of a poset

A word $\alpha \in X^*$ is feasible if no repeating elements, and y occurs in α and $x \prec y$ \Rightarrow x occurs in α before y.

Feasible: \emptyset, a, ab, ac, abc, acb, $abcd$, $acbd$.

Not feasible: aa, bc, ba.

\[
\begin{array}{cccc}
\text{d} & \text{c} \\
\text{b} & \text{a}
\end{array}
\]
Chain weight

For \(x \in P \), chain weight is \(\omega(x) = \) number of maximal chains that starts with \(x \).

\[
\begin{align*}
\omega(a) &= 2 \\
\omega(b) &= 1 \\
\omega(c) &= 1 \\
\omega(d) &= 1
\end{align*}
\]

Weight of word \(\alpha \) is \(\omega(\alpha) := \omega(\alpha_1) \ldots \omega(\alpha_\ell) \).
Log-concave inequality for poset antimatroids

$F_{\omega,k}$ is sum of ω-weight of feasible words of length k.

Theorem 7 (C.-Pak)

For every poset and $k \geq 1$,

$$F_{\omega,k}^2 \geq F_{\omega,k+1} F_{\omega,k-1}.$$
When is equality achieved?

Theorem 8 (C.-Pak)

Equality occurs for \(k = 1, \ldots, \text{height}(P) - 1 \)

if and only if

Hasse diagram of \(P \) is a forest where every leaf is of the same level.