Combinatorial Atlas for Log-concave Inequalities

Swee Hong Chan (UCLA)

joint with Igor Pak
What is log-concavity?

A sequence $a_1, \ldots, a_n \in \mathbb{R}_{\geq 0}$ is log-concave if

$$a_k^2 \geq a_{k+1} a_{k-1} \quad (1 \leq k < n).$$

Equivalently,

$$\log a_k \geq \frac{\log a_{k+1} + \log a_{k-1}}{2} \quad (1 \leq k < n).$$

1 4 9 15 20 22 20 15 9 4 1
Example: binomial coefficients

\[a_k = \binom{n}{k} \quad k = 0, 1, \ldots, n. \]

This sequence is log-concave because

\[
\frac{a_k^2}{a_{k+1}a_{k-1}} = \frac{(n)^2}{\binom{n}{k+1}\binom{n}{k-1}} = \left(1 + \frac{1}{k}\right)\left(1 + \frac{1}{n-k}\right),
\]

which is greater than 1.
Example: permutations with k inversions

$$a_k = \text{number of } \pi \in S_n \text{ with } k \text{ inversions,}$$

where inversion of π is pair $i < j$ s.t. $\pi_i > \pi_j$.

This sequence is log-concave because

$$\sum_{0 \leq k \leq \binom{n}{2}} a_k x^k = (1 + x) \ldots (1 + x + \ldots + x^{n-1})$$

is a product of log-concave polynomials.
Log-concavity appears in many objects:

algebras, matroids, mixed volumes, measures, posets, random walks.
Log-concavity appears in many objects:

algebras, matroids, mixed volumes, measures, posets, random walks

Today we focus on matroids and posets.
Matroids

Matroid \mathcal{M} is ground set X with collection of independent sets $\mathcal{I} \subseteq 2^X$,

- $S \subseteq T$ and $T \in \mathcal{I}$ implies $S \in \mathcal{I}$.

- If $S, T \in \mathcal{I}$ and $|S| < |T|$, then there is $x \in T \setminus S$ such that $S \cup \{x\} \in \mathcal{I}$.
Examples: Matroids

Graphical matroids
- $X = \text{edges of a graph } G$,
- $\mathcal{I} = \text{forests in } G$.

Realizable matroids
- $X = \text{finite set of vectors over field } \mathbb{F}$,
- $\mathcal{I} = \text{sets of linearly independent vectors.}$
Mason’s Conjecture (1972)

For every matroid and $k \geq 1$,

1. $I_k^2 \geq I_{k+1} I_{k-1}$;

2. $I_k^2 \geq \left(1 + \frac{1}{k}\right) I_{k+1} I_{k-1}$;

3. $I_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right) I_{k+1} I_{k-1}$.

I_k is number of ind. sets of size k, and $n = |X|$.
Why \((1 + \frac{1}{k})(1 + \frac{1}{n-k})\)?

Mason (3) is equivalent to **ultra log-concavity**,

\[
\frac{I_k^2}{\binom{n}{k}^2} \geq \frac{I_{k+1}}{\binom{n}{k+1}} \frac{I_{k-1}}{\binom{n}{k-1}}.
\]

Equality occurs **if** every \((k + 1)\)-subset is independent.
Solution to Mason (1)

Theorem (Adiprasito-Huh-Katz ‘18)

For every matroid and \(k \geq 1 \),

\[
I_k^2 \geq I_{k+1} I_{k-1}.
\]

Proof used combinatorial Hodge theory for matroids.
Solution to Mason (2)

Theorem (Huh-Schröter-Wang ‘18)
For every matroid and $k \geq 1$,

$$I_k^2 \geq \left(1 + \frac{1}{k}\right) I_{k+1} I_{k-1}.$$

Proof used combinatorial Hodge theory for correlation bound on matroids.
Solution to Mason (3)

Theorem (Anari-Liu-Gharan-Vinzant, Brändén-Huh ‘20)
For every matroid and $k \geq 1$,

\[I_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right) I_{k+1} I_{k-1}. \]

Proof used theory of strong log-concave polynomials / Lorentzian polynomials.
Theorem (Anari-Liu-Gharan-Vinzant, Brändén-Huh ‘20)

For every matroid and $k \geq 1$,

$$I_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right) I_{k+1} I_{k-1}.$$

Theorem (Murai-Nagaoka-Yazawa ‘21)

Equality occurs if and only if every $(k+1)$-subset is independent.
Our contribution
Method: Combinatorial atlas

Results: Log-concave inequalities, and if and only if conditions for equality

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley’s poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex).
Method: Combinatorial atlas

Results: Log-concave inequalities, and if and only if conditions for equality

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley’s poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex).
Matroids
Corollary (C.-Pak)

For graphical matroid of simple connected graph $G = (V, E)$ that is not tree, and $k = |V| - 2$,

$$(I_k)^2 \geq \frac{3}{2} \left(1 + \frac{1}{k}\right) I_{k+1} I_{k-1},$$

with equality if and only if G is cycle graph.

Numerically better than Mason (3), because

$$\frac{3}{2} \geq 1 + \frac{1}{n - k} = 1 + \frac{1}{|E| - |V| + 2}.$$
Comparison with Mason (3)

Our bound gives

\[\frac{(I_k)^2}{I_{k+1} I_{k-1}} \geq \frac{3}{2} \quad \text{when} \quad |E| - |V| \to \infty, \]

Meanwhile, Mason (3) bound only gives

\[\frac{(I_k)^2}{I_{k+1} I_{k-1}} \geq 1 \quad \text{when} \quad |E| - |V| \to \infty. \]

Our bound is better numerically and asymptotically.
Parallel classes of matroid \mathcal{M}

Loop is $x \in X$ such that $\{x\} \notin \mathcal{I}$.

Non-loops x, y are parallel if $\{x, y\} \notin \mathcal{I}$.

Parallelship equiv. relation: $x \sim y$ if $\{x, y\} \notin \mathcal{I}$.

Parallel class $=$ equivalence class of \sim.
Matroid contraction

Contraction of $S \in \mathcal{I}$ is matroid \mathcal{M}_S with

$$X_S = X \setminus S, \quad \mathcal{I}_S = \{ T \setminus S : S \subseteq T \}.$$

$$\operatorname{prl}(S) := \text{number of parallel classes of } \mathcal{M}_S$$
Parallel number

The k-parallel number is

$$\text{prl}(k) := \max\{\text{prl}(S) \mid S \in \mathcal{I} \text{ with } |S| = k\}.$$
For every matroid and $k \geq 1$,

$$I_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{\text{prl}(k - 1) + 1}\right) I_{k+1} I_{k-1}.$$

This refines Mason (3),

$$I_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n - k}\right) I_{k+1} I_{k-1},$$

since

$$\text{prl}(k - 1) \leq n - k + 1.$$
When is equality achieved?

- When every \((k + 1)\)-subset is independent,
 \[\text{prl}(k - 1) = n - k + 1. \]

- Graphical matroid when \(G\) is a cycle,
 \[\text{prl}(k - 1) = 3. \]

- Full realizable matroids over finite field \(\mathbb{F}_q\),
 \[\text{prl}(k - 1) = \frac{n}{q^{k-1}} - 1. \]

- \((k, m, n)\)-Steiner system matroid,
 \[\text{prl}(k - 1) = \frac{n - k + 1}{m - k + 1}. \]
Equality conditions

Theorem 2 (C.-Pak)

For every matroid and $k \geq 1$,

\[
I_k^2 = \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{\text{prl}(k-1) + 1}\right) I_{k+1} I_{k-1}
\]

if and only if

for every $S \in \mathcal{I}$ with $|S| = k - 1$,

- S has $\text{prl}(k-1)$ parallel classes; and
- Every parallel class of S has same size.
Stanley’s poset inequality
A poset P is a set X with a partial order \prec on X.
Linear extension

A linear extension L is a complete order of \prec.

We write $L(x) = k$ if x is k-th smallest in L.
Stanley’s inequality

Fix $z \in P$.

N_k is number of linear extensions with $L(z) = k$.

Theorem (Stanley ‘81)

For every poset and $k \geq 1$,

$$N_k^2 \geq N_{k+1} \cdot N_{k-1}.$$

Proof used **Aleksandrov-Fenchel inequality** for mixed volumes.
When is equality achieved?

Theorem (Shenfeld-van Handel)

Suppose $N_k > 0$. Then

$$N_k^2 = N_{k+1} N_{k-1}$$

if and only if

$$N_k = N_{k+1} = N_{k-1}.$$

Proof used classifications of extremals of Aleksandrov-Fenchel inequality for convex polytopes.
Kahn–Saks inequality

Fix $x, y \in P$.

E_k is number of lin. exts. with $L(y) - L(x) = k$.

Theorem (Kahn–Saks ‘84)

For every poset and $k \geq 1$,

$$E_k^2 \geq E_{k+1} E_{k-1}.$$

Crucial component in the proof of first known bound for $\frac{1}{3} - \frac{2}{3}$ Conjecture.
Kahn–Saks equality

Conjecture

Suppose $E_k > 0$. Then

$$E_k^2 = E_{k+1} E_{k-1}$$

if and only if

$$E_k = E_{k+1} = E_{k-1}.$$

Verified by C.–Pak–Panova for width two posets.
Our contribution

We give new *combinatorial proof* for Stanley’s ineq. and extend to *weighted version*.
Order-reversing weight

A weight $w : X \to \mathbb{R}_{>0}$ is order-reversing if

$$w(x) \geq w(y) \quad \text{whenever} \quad x \prec y.$$

Weight of linear extension L is

$$w(L) := \prod_{L(x) < L(z)} w(x).$$
Weighted Stanley’s inequality

Fix $z \in P$.

$N_{w,k}$ is w-weight of linear extensions with $L(z) = k$.

Theorem 3 (C. Pak)

For every poset and $k \geq 1$,

$$N_{w,k}^2 \geq N_{w,k+1} N_{w,k-1}.$$
When is equality achieved?

Theorem 4 (C.-Pak)

Suppose $N_{w,k} > 0$. Then

$$N_{w,k}^2 = N_{w,k+1}N_{w,k-1}$$

if and only if

for every linear extension L with $L(z) = k$,

$$w(L^{-1}(k + 1)) = w(L^{-1}(k - 1)) =: s,$$

and

$$\frac{N_{w,k}}{s^k} = \frac{N_{w,k+1}}{s^{k+1}} = \frac{N_{w,k-1}}{s^{k-1}}.$$
Poset antimatroids
Feasible words of a poset

A word $\alpha \in X^*$ is feasible if no repeating elements, and y occurs in α and $x \prec y \implies x$ occurs in α before y.

Feasible: \emptyset, a, ab, ac, abc, acb, $abcd$.
Not feasible: aa, bc, ba.
Chain weight

For \(x \in P \), chain weight is
\[\omega(x) = \text{number of maximal chains that starts with } x. \]

\[
\begin{align*}
\omega(a) &= 2 \\
\omega(b) &= 1 \\
\omega(c) &= 1 \\
\omega(d) &= 1
\end{align*}
\]

Weight of word \(\alpha \) is \(\omega(\alpha) := \omega(\alpha_1) \ldots \omega(\alpha_\ell) \).
Log-concave inequality for poset antimatroids

Theorem 5 (C.-Pak)

For every poset and $k \geq 1$,

$$F_{\omega,k}^2 \geq F_{\omega,k+1} F_{\omega,k-1}.$$
When is equality achieved?

Theorem 6 (C.-Pak)

Equality occurs for \(k = 1, \ldots, \text{height}(P) - 1 \)

if and only if

Hasse diagram of \(P \) is a forest where every leaf is of the same level.
Method: Combinatorial atlas

Results: Log-concave inequalities, and if and only if conditions for equality

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley’s poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex).
Method: **Combinatorial atlas**

Results: Log-concave inequalities, and if and only if conditions for equality

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley’s poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex).
Combinatorial atlas
The strategy

Input: Acyclic digraph \mathcal{A}, where each vertex v is associated with

- $r \times r$ nonnegative symmetric matrix M;
- nonnegative r-vector h.
Combinatorial atlas: example

\[\begin{array}{c}
 a & b \\
 c & d & e & f \\
 g & h & i & j & k & \ell
\end{array} \]
Combinatorial atlas: example (zoomed in)
Combinatorial atlas: Example Stanley’s Inequality

\[
\text{Poset} = \begin{array}{cccc}
 & x & \circ & \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
\end{array}
\]

- \(x \rightarrow y \rightarrow z \)
- \(y \rightarrow x \rightarrow z \)
- \(x \rightarrow z \rightarrow y \)
- \(z \rightarrow x \rightarrow y \)
- \(z \rightarrow y \rightarrow x \)
The strategy

Input: Acyclic digraph \mathcal{A}, where each vertex v is associated with
- $r \times r$ nonnegative symmetric matrix M;
- A nonnegative r-vector h.

Goal: Show every M has hyperbolic inequality.
Hyperbolic inequality

\(M \) has hyperbolic inequality property if

\[\langle x, My \rangle^2 \geq \langle x, Mx \rangle \langle y, My \rangle, \]

for every \(x \in \mathbb{R}^r, y \in \mathbb{R}^r_{\geq 0} \).

Note: This property already known to be important in Lorentzian polynomials and Bochner’s method proof of Aleksandrov-Fenchel inequality.
How to get log-concave inequalities?

Assume a_{k-1}, a_k, a_{k+1} can be computed by

$$a_k = \langle g, Mh \rangle, \quad a_{k+1} = \langle g, Mg \rangle, \quad a_{k-1} = \langle h, Mh \rangle,$$

for specific M, g, h in the atlas.

Then implies

$$\langle g, Mh \rangle^2 \geq \langle g, Mg \rangle \langle h, Mh \rangle \quad \text{(hyperbolic ineq.)}$$

then implies

$$a_k^2 \geq a_{k+1} a_{k-1} \quad \text{(log-concave ineq.)}$$
The strategy

Input: Acyclic digraph \mathcal{A}, where each vertex v is associated with
- $r \times r$ nonnegative symmetric matrix M,
- A nonnegative r-vector h.

Goal: Show every M has hyperbolic inequality.

Method: Verify three conditions:
- Irreducibility condition;
- Inheritance condition;
- Subdivergence condition.
Irreducibility condition

- Matrix \(M \) associated to \(v \) is irreducible when restricted to its support;
- Vector \(h \) is associated to \(v \) is a positive vector.

\[
\begin{bmatrix}
0 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]
Inheritance condition

The i-th edge $e = (v, v_i)$ of v is associated with linear map $T_i : \mathbb{R}^r \to \mathbb{R}^r$ such that, for every $x \in \mathbb{R}^r$,

$$i\text{-th coordinate of } Mx = \langle T_i x, M_i T_i h \rangle,$$

where M and h are associated to v, while M_i is associated to v_i.

![Diagram of inheritance condition](image)
Subdivergence condition

For every \(x \in \mathbb{R}^r \),

\[
\sum_{i=1}^{r} h_i \langle T_i x, M_i T_i x \rangle \geq \langle x, Mx \rangle,
\]

where \(h_i = i \)-th coordinate of \(h \).

Note: Often hardest condition to check, usually done through injective arguments.

Note: Equality occurs for matroids.
Bottom-to-top principle for inequalities

Proposition
Assume irreducibility, inheritance, subdivergence. If M_1, \ldots, M_r has hyperbolic inequality property, then so does M.

Bottom-to-top principle reduces **Goal** to checking hyperbolic inequality only for **sink vertices**, which are usually **easy** to check.
Bottom-to-top principle
Bottom-to-top principle
Bottom-to-top principle
Bottom-to-top principle
How about equalities?
The strategy

Input:
- An acyclic digraph $\mathcal{A} := (\mathcal{V}, \mathcal{E})$ satisfying previous conditions;
- Vectors $g, h \in \mathbb{R}_{\geq 0}$;

Goal: Show "every" M has hyperbolic equality,

$$\langle g, Mh \rangle^2 = \langle g, Mg \rangle \langle h, Mh \rangle.$$
Top-to-bottom principle for equalities

Proposition

Assume regularity condition. If M has hyperbolic equality property, then so do M_1, \ldots, M_r.

Top-to-bottom principle expands hyperbolic equality to sink vertices, which usually gives combinatorial characterizations.
Top-to-bottom principle
Top-to-bottom principle
Top-to-bottom principle
Top-to-bottom principle
Conclusion

Problem: Log-concave inequalities and equalities.
Strategy:

- Build a combinatorial atlas;
- Verify the required conditions;
- Use hyperbolic inequality property to derive log-concave inequalities;
- Use hyperbolic equality to derive log-concave equalities.
THANK YOU!

Preprint to appear soon in your nearest arXiv server.

Webpage: http://math.ucla.edu/∼sweehong/

Email: sweehong@math.ucla.edu