Performing random walk without randomnessness

Swee Hong Chan

UCLA

Joint with Lila Greco, Lionel Levine, Peter Li
Random walk

Rotor walk
Simple random walk on \mathbb{Z}^2
Simple random walk on \mathbb{Z}^2
Simple random walk on \mathbb{Z}^2

- Visits every site infinitely often? Yes!
- Scaling limit? The standard 2-D Brownian motion:

$$
\left(\frac{1}{\sqrt{n}} X_{[nt]}\right)_{t \geq 0} \xrightarrow{n \to \infty} \frac{1}{\sqrt{2}} (B_1(t), B_2(t))_{t \geq 0}.
$$

location of the walker at time $[nt]$ in independent standard Brownian motions
Rotor walk on \mathbb{Z}^2
Rotor walk on \mathbb{Z}^2

Put a signpost at each site.
Rotor walk on \mathbb{Z}^2

Turn the signpost 90° counterclockwise, then follow the signpost.

The signpost says:
"This is the way you went the last time you were here“, (assuming you ever were!)
Rotor walk on \mathbb{Z}^2

Turn the signpost 90° counterclockwise, then follow the signpost.
Rotor walk on \mathbb{Z}^2

Turn the signpost 90° counterclockwise, then follow the signpost.
Rotor walk on \mathbb{Z}^2

Turn the signpost 90° counterclockwise, then follow the signpost.
Rotor walk on \(\mathbb{Z}^2 \)

Turn the signpost 90° counterclockwise, then follow the signpost.
Rotor walk on \mathbb{Z}^2

Turn the signpost 90° counterclockwise, then follow the signpost.
Rotor walk on \mathbb{Z}^2

Turn the signpost 90° counterclockwise, then follow the signpost.
Rotor walk on \mathbb{Z}^2

Turn the signpost 90° counterclockwise, then follow the signpost.
Rotor walk on \mathbb{Z}^2

Turn the signpost 90° counterclockwise, then follow the signpost.
Rotor walk on \mathbb{Z}^2

Turn the signpost 90° counterclockwise, then follow the signpost.
Turn the signpost 90° counterclockwise, then follow the signpost.

The signpost says:
"This is the way you went the last time you were here",
(assuming you ever were!)
Why rotor walk?

Randomness can be (was) expensive to simulate!
Why rotor walk?

As a model for ants’ foraging strategy.
Why rotor walk?

As a model of self-organized criticality for statistical mechanics.

Visited sites after 80 returns to the origin (by Laura Florescu).
Conjectures for rotor walk on \mathbb{Z}^2

For initial signposts i.i.d. uniform among the four directions,

- (PDDK ‘96) Visits every site infinitely often?
- (PDDK ‘96) $\#\{X_1, \ldots, X_n\}$ is $\asymp n^{2/3}$?
 (compare with $n/\log n$ for the simple random walk.)
- (Kapri-Dhar ‘09) The asymptotic shape of $\{X_1, \ldots, X_n\}$ is a disc?
More randomness please!

Well studied

Many open problems

Random

Deterministic

Let's study this!!!
More randomness please!

- Well studied
- Let’s study this!!!
- Many open problems

Random

Something in between

Deterministic
p-rotor walk on \mathbb{Z}^2
p-rotor walk on \mathbb{Z}^2

With probability p, turn the signpost 90° counter-clockwise.
With probability $1 - p$, turn the signpost 90° clockwise.
p-rotor walk on \mathbb{Z}^2

Follow rotor walk rule with prob. p, do the opposite with prob. $1 - p$
p-rotor walk on \mathbb{Z}^2

Follow rotor walk rule with prob. p, do the opposite with prob. $1 - p$
p-rotor walk on \mathbb{Z}^2

Follow rotor walk rule with prob. p, do the opposite with prob. $1 - p$

Do the opposite.
p-rotor walk on \mathbb{Z}^2

Follow rotor walk rule with prob. p, do the opposite with prob. $1 - p$

Do the opposite again.
p-rotor walk on \mathbb{Z}^2

Follow rotor walk rule with prob. p, do the opposite with prob. $1 - p$
p-rotor walk on \mathbb{Z}^2

Follow rotor walk rule with prob. p, do the opposite with prob. $1 - p$

Do the opposite.
p-rotor walk on \mathbb{Z}^2

Follow rotor walk rule with prob. p, do the opposite with prob. $1 - p$
p-rotor walk on \mathbb{Z}^2

With probability p, turn the signpost 90° counter-clockwise. With probability $1 - p$, turn the signpost 90° clockwise.

Recover the rotor walk if $p = 1$.
Recurrence result for p-rotor walk
Theorem (C., 20+)

Let $p = \frac{1}{2}$ and let the i.i.d uniform among four directions be the initial signpost configuration. Then the p-rotor walk visits every vertex infinitely often almost surely.
Proof of recurrence for the simple random walk

Consider the following martingale:

\[M(t) \equiv a(X(t)) - N(t) . \]

- \(a(X(t)) \): potential kernel
- \(N(t) \): \# of times leaving origin

Use the optional stopping theorem:

\[0 = \mathbb{E}[M(\tau(r))] \approx \frac{2}{\pi} \ln r (1 - p_{\text{ret}}(r)) - 1 . \]

- \(\tau(r) \): hitting time of \(\partial B_r \cup \{0\} \)
- \(p_{\text{ret}}(r) \): prob. of return before hitting \(\partial B_r \)
Proof of recurrence for the simple random walk (ctd.)

We rewrite the equation to

\[p_{\text{ret}}(r) \approx 1 - \frac{\pi}{2 \ln r}, \]

prob. of return before hitting \(\partial B_r \)

and we then conclude that

\[p_{\text{rec}} \bigg|_{\text{recurrence probability}} = 1 - \lim_{r \to \infty} \frac{\pi}{2 \ln r} = 1. \]
Proof of recurrence for \(p \)-rotor walk

Consider the following martingale:

\[
M(t) := a(X(t)) - N(t) + \sum_{x \in \{X_0, \ldots, X_t\}} \mathbb{w}(x; \rho_t).
\]

By the same argument as before,

\[
\rho_{\text{rec}} = 1 - \lim_{r \to \infty} \frac{\pi}{2 \ln r} \left(\sum_{|x| \leq r} \mathbb{E}[\mathbb{w}(x; \rho_{\tau(r)})] \right).
\]

Here, \(\rho_{\text{rec}} \) is the recurrence probability.
Proof of recurrence for \(p \)-rotor walk (ctd.)

We can estimate the terms in the compensator locally by

\[
\left| E[w(x; \rho_{\tau(r)})] \right| \lesssim \left(1 - \frac{1}{2^{70}} \right) \frac{2}{\pi|x|^2}.
\]

Plugging this estimate into previous equation,

\[
p_{\text{rec}} \geq 1 - \lim_{r \to \infty} \frac{\pi}{2 \ln r} \left(\sum_{|x| \leq r} \left(1 - \frac{1}{2^{70}} \right) \frac{2}{\pi|x|^2} \right) = \frac{1}{2^{70}} > 0.
\]

By Kolmogorov zero-one law, the recurrence probability is 1.
So we have proved ...

Theorem (C., ‘20)

Let $p = \frac{1}{2}$ and let the *i.i.d uniform among four directions* be the initial signpost configuration. Then the p-rotor walk visits every vertex infinitely often almost surely.
Scaling limit result for p-rotor walk
Scaling limit for p-rotor walk on \mathbb{Z}

(Huss, Levine, Sava-Huss 18) The scaling limit for p-rotor walk on \mathbb{Z} is a perturbed Brownian motion $(Y(t))_{t \geq 0}$,

$$Y(t) = B(t) + a \sup_{0 \leq s \leq t} Y(s) + b \inf_{0 \leq s \leq t} Y(s), \quad t \geq 0.$$

$Y(t)$ for $a = -0.998$, and $b = 0$ (by Wilfried Huss).
Scaling limit for p-rotor walk on \mathbb{Z}^2

Question: Is the scaling limit for p-rotor walk on \mathbb{Z}^2 a "2-D perturbed Brownian motion"?

Problem: How to define "2-D perturbed Brownian motion"?
Scaling limit for p-rotor walk on \mathbb{Z}^2

Question: Is the scaling limit for p-rotor walk on \mathbb{Z}^2 a “2-D perturbed Brownian motion”?

Problem: How to define “2-D perturbed Brownian motion”?

Conjecture: The scaling limit for p-rotor walk on \mathbb{Z}^2 when $p = \frac{1}{2}$ is the standard 2-D Brownian motion.
Uniform spanning forest plus one edge (USF$^+$)
Uniform spanning forest plus one edge (USF$^+$)

Pick a spanning tree of the black box directed to the origin (uniformly at random).
Uniform spanning forest plus one edge (USF$^+$)

Take the limit as the black box grows until it covers \mathbb{Z}^2.
Uniform spanning forest plus one edge (USF^+)

Take the limit as the black box grows until it covers \mathbb{Z}^2.
Uniform spanning forest plus one edge (USF$^+$)

Take the limit as the black box grows until it covers \mathbb{Z}^2.
Uniform spanning forest plus one edge (USF$^+$)

Add a signpost from the origin, uniform among the four directions.
Scaling limit for p-rotor walk on \mathbb{Z}^2

Theorem (C., Greco, Levine, Li ‘19+)

Let $p = \frac{1}{2}$ and let the uniform spanning forest plus one edge be the initial signpost configuration. Then, with probability 1, the p-rotor walk on \mathbb{Z}^2 scales to the standard 2-D Brownian motion:

$$
\lim_{n \to \infty} \frac{1}{\sqrt{n}} \left(X_{[nt]} \right)_{t \geq 0} \Rightarrow \frac{1}{\sqrt{2}} \left(B_1(t), B_2(t) \right)_{t \geq 0}.
$$

Disclaimer: Proof in the paper was for h-v walks, not p-rotor walks.
Why *uniform spanning forest plus one edge*?
Why uniform spanning forest plus one edge?

Because it is stationary from the walker’s POV.
Stationarity from the walker’s POV

A signpost configuration \((\rho_0(x))_{x \in \mathbb{Z}^2}\) is stationary in time from the walker’s point of view if

\[
(\hat{\rho}_1(x))_{x \in \mathbb{Z}^2} := (\rho_1(x - X_1))_{x \in \mathbb{Z}^2} \overset{d}{=} (\rho_0(x))_{x \in \mathbb{Z}^2}.
\]

\(\hat{\rho}_1\) represents the signpost configuration at time 1 from the walker’s point of view, \(\rho_1\) at time 1 minus the walker’s position, and \(\rho_0\) at time 0.

\(\rho_0\)

\(\rho_1\)

\(\hat{\rho}_1\)
Why is USF$^+$ stationary?

The signposts at previously visited sites form a tree oriented toward the walker.
Why is USF$^+$ stationary?

The signposts at previously visited sites form a tree oriented toward the walker.
Why is USF$^+$ stationary?

The signposts at previously visited sites form a tree oriented toward the walker.
Why is USF$^+$ stationary?

The signposts at previously visited sites form a tree oriented toward the walker.
Why is USF^+ stationary?

The signposts at previously visited sites form a tree oriented toward the walker.
Why is USF$^+$ stationary?

The signposts at previously visited sites form a tree oriented toward the walker.
Why is USF$^+$ stationary?

The signposts at previously visited sites form a tree oriented toward the walker.
Why is USF^+ stationary?

The signposts at previously visited sites form a tree oriented toward the walker.
Why is USF$^+$ stationary?

The signposts at previously visited sites form a tree oriented toward the walker.
Why is USF^+ stationary?

The signposts at previously visited sites form a tree oriented toward the walker.
Why is USF$^+$ stationary?

The signposts at previously visited sites form a tree oriented toward the walker.
Why is USF$^+$ stationary?

The signposts at previously visited sites form a tree oriented toward the walker.
Why is USF$^+$ stationary?

The signposts at previously visited sites form a tree oriented toward the walker.
So we have proved...

Theorem (C., Greco, Levine, Li ‘19+)

Let $p = \frac{1}{2}$ and let the uniform spanning forest plus one edge be the initial signpost configuration. Then, with probability 1, the p-rotor walk on \mathbb{Z}^2 scales to the standard 2-D Brownian motion:

$$
\frac{1}{\sqrt{n}}(X_{\lfloor nt \rfloor})_{t \geq 0} \xrightarrow{n \to \infty} \frac{1}{\sqrt{2}} (B_1(t), B_2(t))_{t \geq 0}.
$$

location of the walker at time $[nt]$

independent Brownian motions
Back to our motivation

Well studied

Know a little bit now

Many open problems

Simple random walk p-rotor walk Rotor walk

Let’s apply what we have learnt to rotor walk.
Initially there are n prisoners at origin.

Prisoners will try to escape by doing rotor walks sequentially.

The prisoner is safe if they never return to origin.

The prisoner is caught if they ever return to origin, and is immediately removed.
Prison break using rotor walk

Put n walkers at the origin (the prison).
Prison break using rotor walk

First walker performs rotor walk.
Prison break using rotor walk

First walker performs rotor walk.
Prison break using rotor walk

First walker performs rotor walk.
Prison break using rotor walk

First walker returns to prison, and is removed.
Prison break using rotor walk

Second walker performs rotor walk.
Second walker performs rotor walk.
Prison break using rotor walk

Second walker performs rotor walk.
Prison break using rotor walk

Second walker performs rotor walk.
Prison break using rotor walk

Second walker performs rotor walk.
Prison break using rotor walk

Second walker never returns to origin.
Third walker performs rotor walk.
Prison break using rotor walk

Third walker performs rotor walk.
Prison break using rotor walk

Third walker performs rotor walk.
Prison break using rotor walk

Third walker performs rotor walk.
Prison break using rotor walk

Third walker performs rotor walk.
Prison break using rotor walk

Third walker never returns to prison.
Prison break using rotor walk

Fourth walker performs rotor walk.
Prison break using rotor walk

Fourth walker performs rotor walk.
Prison break using rotor walk

Fourth walker performs rotor walk.
Prison break using rotor walk

Fourth walker returns to prison, and is removed.
Escape rate of rotor walk

The escape rate of \(n \) rotor walkers with initial signpost \(\rho \) is

\[
r_{\text{esc}}(\rho, n) := \frac{\text{number of escaped walkers}}{n}.
\]

The escape rate of rotor walk is a deterministic counterpart of the escape probability of simple random walk.
What was known about escape rate

Theorem (Schramm ’10 (posthumous))

For any initial signpost ρ,

$$\limsup_{n \to \infty} r_{esc}(\rho, n) \leq p_{esc}(SRW).$$

Corollary

On \mathbb{Z}^2, for any initial signpost ρ,

$$\lim_{n \to \infty} r_{esc}(\rho, n) = p_{esc}(SRW) = 0.$$

In fact, this is true for all recurrent graphs.
What was known about escape rate

Theorem (Florescu Ganguly Levine Peres ‘13)

On \mathbb{Z}^d with $d \geq 3$, for the one-directional initial signpost ρ,

$$\liminf_{n \to \infty} r_{\text{esc}}(\rho, n) > 0.$$
For any transient graph, there exists an initial signpost ρ for which

$$\lim_{n \to \infty} r_{esc}(\rho, n) = p_{esc}(SRW).$$
Uniform spanning forest oriented to infinity (USF$_\infty$)

Start with uniform spanning forest plus one edge from before.
Uniform spanning forest oriented to infinity (USF$^\infty$)

Remove the signpost at the origin.
Uniform spanning forest oriented to infinity (USF^∞)

Find the unique infinite path oriented to origin.
Uniform spanning forest oriented to infinity (USF$_\infty$)

Reverse the orientation of this infinite path.
Answering the escape rate conjecture

Theorem (C. ‘19)

For vertex-transitive graphs, almost every ρ sampled from USF^∞ satisfies

$$\lim_{n \to \infty} r_{\text{esc}}(\rho, n) = p_{\text{esc}}(\text{SRW}).$$

This is proved using infinite-step stationarity for rotor walk on \mathbb{Z}^d.
Except that ...

- The conjecture of FGLP ‘13 is for all transient graphs;
- There are already other constructions for the special case of \mathbb{Z}^d (He ‘14) and trees (Angel Holroyd ‘11);
- Our construction of the initial signpost ρ is not deterministic.
Complete answer to the escape rate conjecture

Theorem (C., ‘20)

For any transient graph, the initial signpost ρ_{max} satisfies

$$\lim_{n \to \infty} r_{\text{esc}}(\rho_{\text{max}}, n) = p_{\text{esc}}(\text{SRW}).$$

Proved by showing that ρ_{max} maximizes the compensator in the martingale from the recurrence proof for p-rotor walk.
Conjecture

Let $p \neq \frac{1}{2}$. Prove that p-rotor walk with i.i.d. uniform signpost configuration is recurrent.

Obstacle: Need a good estimate for the compensator.

$$M(t) := a(X(t)) - N(t) + \sum_{x \in \{X_0, \ldots, X_t\}} w(x; \rho_t).$$
What is next?

Problem

Find the scaling limit for the p-rotor walk with i.i.d. uniform signpost configuration.

Obstacle: Need to define “2-D perturbed Brownian motion (?)”.
What is next?

Conjecture

For any graph, the i.i.d. uniform signpost configuration has rotor walk escape rate equal to the escape probability of the SRW, i.e.,

\[
\lim_{n \to \infty} r_{\text{esc}}(\rho, n) = p_{\text{esc}}(\text{SRW}).
\]

So far has only been proved for regular trees (Angel Holroyd ‘11).
All preprints and papers can be found in my webpage:

http://math.ucla.edu/~sweehong/

My email: sweehong@math.ucla.edu
THANK YOU!

All preprints and papers can be found in my webpage:

http://math.ucla.edu/~sweehong/

My email: sweehong@math.ucla.edu