1 Motivating example

Example 1. We would like to estimate the likability index of four different instructors, Instructor 1, Instructor 2, Instructor 3, Instructor 4, by checking at their reviews from three students. Let X_i (for $i \in \{1, 2, 3, 4\}$) by the (random) likability index of Instructor i, which is a normal random variable with mean μ_i and variance σ^2 (all instructors share the same variance). The review scores from the three students are given by

<table>
<thead>
<tr>
<th></th>
<th>Student A</th>
<th>Student B</th>
<th>Student C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor 1</td>
<td>13</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Instructor 2</td>
<td>15</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Instructor 3</td>
<td>8</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Instructor 4</td>
<td>11</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

The hypothesis are:

\[H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 \]
\[H_1: \text{at least one } \mu_i \text{ is different} \]

\[F = \frac{MSB}{MSE} \]
\[dfB = k - 1 \]
\[dfE = (n - 1)(k - 1) \]
\[p\text{-value} = \Pr(F > F_{dfB, dfE}) \]

\[F_{dfB, dfE} \text{ is the } \alpha\text{ critical value of the } F \text{-distribution} \]

\[\text{Critical value: } F_{0.05, 3, 12} = 3.89 \]

The hypothesis are:

\[H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 \]
\[H_1: \text{at least one } \mu_i \text{ is different} \]

\[F = \frac{MSB}{MSE} \]
\[dfB = k - 1 \]
\[dfE = (n - 1)(k - 1) \]
\[p\text{-value} = \Pr(F > F_{dfB, dfE}) \]

\[F_{dfB, dfE} \text{ is the } \alpha\text{ critical value of the } F \text{-distribution} \]

\[\text{Critical value: } F_{0.05, 3, 12} = 3.89 \]

The hypothesis are:

\[H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 \]
\[H_1: \text{at least one } \mu_i \text{ is different} \]

\[F = \frac{MSB}{MSE} \]
\[dfB = k - 1 \]
\[dfE = (n - 1)(k - 1) \]
\[p\text{-value} = \Pr(F > F_{dfB, dfE}) \]

\[F_{dfB, dfE} \text{ is the } \alpha\text{ critical value of the } F \text{-distribution} \]

\[\text{Critical value: } F_{0.05, 3, 12} = 3.89 \]

The hypothesis are:

\[H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 \]
\[H_1: \text{at least one } \mu_i \text{ is different} \]

\[F = \frac{MSB}{MSE} \]
\[dfB = k - 1 \]
\[dfE = (n - 1)(k - 1) \]
\[p\text{-value} = \Pr(F > F_{dfB, dfE}) \]

\[F_{dfB, dfE} \text{ is the } \alpha\text{ critical value of the } F \text{-distribution} \]

\[\text{Critical value: } F_{0.05, 3, 12} = 3.89 \]

The hypothesis are:

\[H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 \]
\[H_1: \text{at least one } \mu_i \text{ is different} \]

\[F = \frac{MSB}{MSE} \]
\[dfB = k - 1 \]
\[dfE = (n - 1)(k - 1) \]
\[p\text{-value} = \Pr(F > F_{dfB, dfE}) \]

\[F_{dfB, dfE} \text{ is the } \alpha\text{ critical value of the } F \text{-distribution} \]

\[\text{Critical value: } F_{0.05, 3, 12} = 3.89 \]
• The null hypotheses H_0: $\mu_1 = \mu_2 = \ldots = \mu_4$;

• The alternative hypotheses H_1: $\mu_1 \neq \mu_2$, or $\mu_1 \neq \mu_3$, or $\mu_1 \neq \mu_4$.

Can we reject H_0 with significance level $\alpha = 0.05$? \hfill \triangle

2 One-factor analysis of variance

Our problem is of the following form.

• **Object:**
 - X_1, X_2, \ldots, X_m are **independent** random variables with **unknown** mean $\mu_1, \mu_2, \ldots, \mu_m$ and **unknown** variance σ^2.

• **Hypotheses:**
 - **Null Hypothesis** H_0: $\mu_1 = \mu_2 = \ldots = \mu_m$.
 - **Alternative Hypothesis** H_1: $\mu_1 \neq \mu_2$, or $\mu_1 \neq \mu_3$, \ldots, or $\mu_1 \neq \mu_m$.

• **Input:** Significance level α, and n_1 many random samples for X_1, n_2 many random samples for X_2, \ldots, n_m many random samples for X_m, i.e.,

```latex
\begin{array}{cccc}
\text{Samples for } X_1 & X_{11} & X_{12} & \ldots & X_{1n_1} \\
\text{Samples for } X_2 & X_{21} & X_{22} & \ldots & X_{2n_2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\text{Samples for } X_m & X_{m1} & X_{m2} & \ldots & X_{mn_m} \\
\end{array}
```

• **Methodology:**
 - Compute $n = n_1 + n_2 + \ldots + n_m$;
 - For each $i \in \{1, 2, \ldots, m\}$, compute
 \[\overline{X}_i := \frac{1}{n_i} \sum_{j=1}^{n_i} X_{ij}, \]
 and
 \[\overline{X} = \frac{1}{n} \sum_{i=1}^{m} n_i \overline{X}_i. \]
 - Compute SS(TO), SS(T), SS(E).
Reject H_0 if

$$\frac{\text{SS}(T)}{(m - 1)} \geq F_\alpha(m - 1, n - m),$$

where $F_\alpha(m - 1, n - m)$ can be computed from Table VII in the textbook.

Definition 2. The total sum of squares is

$$\text{SS(TO)} := \sum_{i=1}^{m} \sum_{j=1}^{n_i} (X_{ij} - \bar{X})^2.$$

The error sum of squares is

$$\text{SS(E)} := \sum_{i=1}^{m} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)^2.$$

The between-treatment sum of squares is

$$\text{SS(T)} := \sum_{i=1}^{m} n_i (\bar{X}_i - \bar{X})^2.$$

△

Note that there are formulas equivalent to Definition 2 that sometimes are simpler to compute:

$$\text{SS(TO)} = \left(\sum_{i=1}^{m} \sum_{j=1}^{n_i} X_{ij}^2 \right) - n(\bar{X})^2;$$

$$\text{SS(T)} = \left(\sum_{i=1}^{m} n_i (\bar{X}_i)^2 \right) - n(\bar{X})^2;$$

$$\text{SS(E)} = \text{SS(TO)} - \text{SS(T)}.$$

Answer to Example 1. From the sample data, we have

$$n = n_1 + n_2 + n_3 + n_4 = 12;$$

$$\bar{X}_1 = \frac{13 + 8 + 9}{3} = 10;$$

$$\bar{X}_2 = \frac{15 + 11 + 13}{3} = 13;$$

$$\bar{X}_3 = \frac{8 + 12 + 7}{3} = 9;$$

$$\bar{X}_4 = \frac{11 + 15 + 10}{3} = 12;$$

$$\bar{X} = \frac{(3)(10) + (3)(13) + (3)(9) + (3)(12)}{12} = 11.$$
which gives us

$$SS(TO) = (13 - 11)^2 + (8 - 11)^2 + (9 - 11)^2 + (15 - 11)^2 + (11 - 11)^2 + (13 - 11)^2$$
$$+ (8 - 11)^2 + (12 - 11)^2 + (7 - 11)^2 + (11 - 11)^2 + (15 - 11)^2 + (10 - 11)^2$$
$$= 80,$$

and

$$SS(T) = (3)(10 - 11)^2 + (3)(13 - 11)^2 + (3)(9 - 11)^2 + (3)(12 - 11)^2 = 30,$$

and

$$SS(E) = SS(TO) - SS(T) = 80 - 30 = 50.$$

This gives us

$$\frac{SS(T)}{(m - 1)} \cdot \frac{SS(E)}{(n - m)} = \frac{30}{3} \cdot \frac{50}{8} = 1.6.$$

On the other hand, the value for $F_\alpha(m - 1, n - m)$ is

$$F_\alpha(m - 1, n - m) = F_{0.05}(3, 8) = 4.07.$$

Since the former is smaller than the latter, we conclude that the test is inconclusive.

\[\square \]

Remark 3. The notation X_i here is written as \mathbf{X}_i in the textbook. The notation \mathbf{X} here is written as \mathbf{X}_s in the textbook.

Remark 4. We can drop the assumption that X_1, \ldots, X_m are normal random variables, assuming that n_1, n_2, \ldots, n_m are large enough.

\[\triangle \]

3 ANOVA table

Definition 5. The *analysis-of-variance table* (ANOVA table) is
<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of squares (SS)</th>
<th>Degrees of freedom</th>
<th>Mean square (MS)</th>
<th>F ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>SS(T)</td>
<td>m − 1</td>
<td>MS(T) = \frac{SS(T)}{m-1}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MS(T) \cdot MS(E)</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>SS(E)</td>
<td>n − m</td>
<td>MS(E) = \frac{SS(E)}{n-m}</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>SS(TO)</td>
<td>n − 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For example, the ANOVA table for Example 1 is

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of squares (SS)</th>
<th>Degrees of freedom</th>
<th>Mean square (MS)</th>
<th>F ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>30</td>
<td>3</td>
<td>10</td>
<td>1.6</td>
</tr>
<tr>
<td>Error</td>
<td>50</td>
<td>8</td>
<td>6.25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>